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This paper presents some new conditions which ensure that certain special polyno-
mials in a large number of variables have a non-trivial zero over a p-adic field. In
particular, it is shown that if K is an extension of Qp of finite degree n, then every
diagonal equation a1x

k
1 + · · · + asx

k
s = 0 over K in at least nk

5 variables is solvable
non-trivially.

1. Introduction. Let Qp be the field of p-adic numbers, K an extension of Qp of
degree n = [K : Qp] < ∞, and O the ring of integers of K. The present note is addressed
to the solvability of equations of the form f(x1, . . . , xs) = 0 in elements x1, . . . , xs ∈ K,
not all zero, for certain polynomials f ∈ O[x1, . . . , xs] with a zero free term and in a
large number s of variables.

Our main result is the following:

Theorem 1. Let F ∈ O[x1, . . . , xs] be a polynomial with zero free term, and let
k, t, w ∈ N be positive integers such that:

(i) s ≥ 1 + nkw
(

p2t+2 − 1
)

;

(ii) The degree of F in each variable xj is at most k;

(iii) No monomial of F consists of more than w variables;

(iv) If for each i = 1, . . . , s, if xl11
1 · · ·xli1

i · · ·xls1

s , . . . , xl1v

1 · · ·xliv

i · · ·xlsv

s are the mono-
mials of F which are divisible by xi (in other words, which appear with li1, . . . , liv ≥
1), then ordpli1, . . . , ordpliv are pairwise different, and maxv

j=1 ordplij = t. Here,
ordpl is the exact exponent of p dividing l ∈ N;

(v) For every monomial N of F , either the coefficient of N is a p-adic unit, or there
exist a variable xj |N which does not appear in any other monomial.

Then, the equation F (x1, . . . , xs) = 0 has a solution (x1, . . . , xs) ∈ Ks, different from the
trivial solution (0, . . . , 0).

The special case when F (x1, . . . , xs) = a1x
k
1 + · · ·+ asx

k
s is a diagonal form has been

long the subject of intensive research. Let Γ(K, k) denote the smallest integer s for which
any equation of the form

a1x
k
1 + a2x

k
2 + · · · + asx

k
s = 0, a1, . . . , as ∈ O \ {0}
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has a solution (x1, . . . , xs) ∈ Ks different from the trivial solution (0, . . . , 0). In 1964
Davenport and Lewis [3] showed that Γ(Qp, k) ≤ k2+1. In the case of arbitrary extensions
K, however, the following conjecture remains wide open.

Conjecture 2. There exists a polynomial P ∈ R[x], independent of the prime p and
of the field K, such that

Γ(K, k) < P (k)

for all K/Qp and k ∈ N.

In fact, the only field-independent bound in the literature is the one recorded by
Birch [2] in 1964. Birch’s bound implies that Conjecture 2 holds if the hypothesis that
P is a polynomial is weakened to P (x) = x3x−2.

Dodson [4] was the first to establish the following weaker version of Conjecture 2:
There exists a polynomial P ∈ R[x, y], independent of p, such that Γ(K, k) < P (n, k).

More precisely,

(1) Γ(K, k) < 16n2k2(log k)2.

As an immediate corollary of Theorem 1 we establish an estimate of the form Γ(K, k) <
P (n, k) which is linear in n (while Dodson’s bound (1) is quadratic in n).

Theorem 3. Let k = ptm with (p, m) = 1. Then,

Γ(K, k) ≤ 1 + nk
(

p2t+2 − 1
)

.

In particular, we have the polynomial bound Γ(K, k) < nk5.

Finally, we deduce the following corollary of Theorem 1.

Corollary 4. If d is the total degree of F , then Condition (i) in Theorem 1 may be
replaced by the simpler condition s ≥ nd6.

2. Preliminaries. In this section we set up the machinery that will enable us to
establish our bounds. The main idea is to use Hensel’s lemma to reduce the equations to
systems of modular congruences, and then to restrict the variables of these congruences
to the set {0, 1} and apply a theorem of Baker and Schmidt [1].

Throughout the paper, K is a fixed field extension of Qp with [K : Qp] = n < ∞; O

is the ring of integers of K; p = (π) is the unique maximal ideal of the (local) field K;
e is the ramification index of K; f is the residue class degree of K (so that ef = n and
|O/p| = pf).

Definition 2.1. For our purposes, a polynomial F ∈ O[x1, . . . , xs] which is non-
constant in each xi and has a zero free term will be called admissible if it has the fol-
lowing properties: 1. If xl11

1 · · ·xli1
i · · ·xls1

s , . . . , xl1v

1 · · ·xliv

i · · ·xlsv

s are the monomials
of F which are divisible by xi (in other words, which appear with li1, . . . , liv ≥ 1), then
ordpli1, . . . , ordpliv are pairwise different. (Here, ordpl is the exact power of p dividing
l ∈ N); and 2. If N is any monomial of F whose coefficient is divisible by π, then N
does not divide the product of the other monomials of F .

In other words, an admissible polynomial is a polynomial that satisfies conditions (iv)
and (v) of Theorem 1.

Let P(k, t, w) be the set of all admissible polynomials F ∈ O[x1, . . . , xs] satisfying
conditions (ii), (iii), (iv) and (v) from Theorem 1, and let P1(k, t, w) ⊂ P(k, t, w) be the
subset consisting of those polynomials in F1 ∈ P(k, t, w) all of whose non-zero coefficients
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are indivisible by π. Define G(k, t, w) = G(K; k, t, w) to be the minimal integer s such that
every polynomial in P(k, t, w) on s variables has a non-trivial zero (i.e. a zero different
from (0, . . . , 0)). Finally, define H(k, t, w, r) = H(K; k, t, w, r) to be the minimal integer
s such that, for every polynomial F ∈ P(k, t, w) on s variables, the congruence

F (ε1, . . . , εs) ≡ 0 (mod πr).

has a solution (ε1, . . . , εs) ∈ {0, 1}s different from (0, . . . , 0).

It is not difficult to see (for instance, by a classical theorem of Olson [5]) that
H(k, t, w, r) is always finite. The following lemma shows that G(k, t, w) is finite, and
reduces the problem of bounding G(k, t, w) to that of bounding H(k, t, w, r).

Lemma 2.2.For all k, t, w ∈ N, we have

(2) G(k, t, w) ≤ 1 + k
(

H(k, t, w, 2te + 1) − 1
)

.

Proof. Let h = H(k, t, w, 2te + 1). Consider an arbitrary polynomial F ∈ P(k, t, w)
of s > k(h−1) variables. Label by M1, M2, . . . the monomials of F in such a way that the
coefficients of M1, . . . , Mu are divisible by π, while the coefficients of Mu+1, Mu+2, . . . are
p-adic units. By condition (v), Mi 6 |

∏

j 6=i Mj for each i = 1, 2, . . . , u. By enumeration
the variables x1, x2, . . . , xs, we may assume that xi|Mj for i = 1, . . . , u, if and only if
j = i. For 1 ≤ i ≤ u, let ki > 0 be the exact exponent of xi in Mi, and let αi = πγiβi

be the coefficient of Mi, where βi is a p-adic unit. Write γi = qiki + ri with qi, ri ∈ Z

and 0 ≤ ri < ki. Since ki ≤ k for each i, we have that 0 ≤ r1, r2, . . . , ru < k. By the
pigeonhole principle, at least ⌈u/k⌉ of the numbers r1, . . . , ru are equal; without loss of
generality, assume that r1 = · · · = rℓ = δ, where ℓ = ⌈u/k⌉. Let F ∗ be the polynomial
π−δF (π−q1x1, . . . , π

−qℓxℓ, 0, . . . , 0, xu+1, . . . , xs). It is sufficient to show that F ∗ has a
non-trivial zero.

Since, for i ≤ u, xi does not appear in monomials other than Mi, and since the
coefficients of Mu+1, Mu+2, . . . are p-adic units, it follows easily that F ∗ ∈ P1(k, t, w) is
a polynomial whose non-zero coefficients are all indivisible by π. By the definition of h
and the fact that F ∗ is a polynomial on s′ := ⌈u/k⌉ + s − u ≥ ⌈s/k⌉ > h − 1 variables,
the congruence

(3) F ∗(ε1, . . . , εs′) ≡ 0 (mod π2te+1)

has a solution (ε1, . . . , εs′) ∈ {0, 1}s′

with εj0 = 1 for at least one j0.

We will show that the polynomial f(x) := F ∗(ε1, . . . , εj0−1, x, εj0+1, . . . , εs′) has a
p-adic root α ≡ 1 (mod π), which will complete the proof of the lemma. Write f(x) =
∑

i aix
ti with 0 < t1 < t2 < · · · . By condition (iv), the powers of p in t1, t2, . . . are

pairwise different, and maxi ordpti = t. Hence, the coefficients ai are all indivisible by
π (because those of F ∗ are all p-adic units), so the powers of π in a1k1, a2k2, . . . are
pairwise different, implying in particular that

ordπ{f
′(1)} = ordπ

{

∑

i

aiki

}

= min
i
{ordπaiki} = e min

i
{ordpki} ≤ et.

On the other hand, (3) implies that ordπ{f(1)} = ordπ{f(εj0)} ≥ 2et + 1. By Hensel’s
lemma, there exists a unique α ∈ K, α ≡ 1 (mod π2te+1) such that f(α) = 0. The proof
of the lemma is completed. �

We will also need the following result of Baker and Schmidt [1] concerning the solv-
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ability of modular polynomial equations with variables restricted to the set {0, 1}. A
short and elementary proof, due to Zhi-Wei Sun, can be found in [8].

Lemma 2.3 (Baker-Schmidt [1]). Let ei ∈ N and fi ∈ Z[x1, . . . , xk], 1 ≤ i ≤ m. If p

is a prime and k >

m
∑

i=1

(pei − 1) deg fi, then

∑

I⊂[k]
pei |fi([1∈I],...,[k∈I])

for all i ∈ [m]

(−1)|I| ≡ 0 (mod p).

Here, [j ∈ I] is 1 or 0, according to whether j ∈ I or j /∈ I, and [m] := {1, . . . , m}. In
particular, if each of the polynomials fi has zero free term, then the system

fi(x1, . . . , xk) ≡ 0 (mod pei), 1 ≤ i ≤ m

has a solution (x1, . . . , xk) ∈ {0, 1}k, different from the trivial solution (0, . . . , 0).

With e1 = · · · = em = ℓ, we have the following important corollary:

Corollary 2.4. Let p be a prime and R be a finite ring whose additive group is iso-
morphic to Zh

pℓ (the direct sum of h copies of Zpℓ). Let f1, . . . , fm ∈ R[x1, . . . , xs] be poly-

nomials with zero free terms, each of which has degree at most d. If s ≥ 1+mhd(pℓ −1),
then the system f1 = · · · = fm = 0 is solvable non-trivially in the set {0, 1}s.

Proofs of the main results. In this section we present proofs of Theorem 1,
Theorem 3 and Corollary 4.

Proof of Theorem 1. In view of Lemma 2.2, it is sufficient to show that
H

(

k, t, w, (2te + 1)
)

≤ 1 + nw
(

p2t+2 − 1
)

. This follows by taking r = 2te + 1 in the
following lemma; recall that f = n/e is the residue class degree of K.

Lemma 3.1.For all k, t, w, r ∈ N, we have the inequality

H(k, w, t, r) ≤ 1 + nw
(

p⌈r/e⌉ − 1
)

.

Proof. In what follows, L is the maximal unramified subfield of K and o is the ring of
integers of L. Let F ∈ P1(k, w, t) be an arbitrary polynomial, and let F be the multilinear
polynomial obtained from F modulo the relations x2

i = xi. By condition (iii), we have
deg F ≤ w. We shall seek a non-trivial solution to the congruence F (x1, . . . , xs) ≡ 0
(mod πr) in the set {0, 1}s.

Because {1, π, π2, . . . , πe−1} is an o-basis for O, we have

F (x1, . . . , xs) ≡
e−1
∑

j=0

πjFj(x1, . . . , xs) (mod πr)

for some polynomials F0, . . . , Fe−1 ∈ o[x1, . . . , xs]. Note that deg Fi ≤ deg F ≤ w for
each i ∈ {0, 1, . . . , e − 1}.

Let ℓ = ⌈r/e⌉. Then, ℓe ≥ r, so each solution (y1, . . . , ys) of the system Fj(y1, . . . , ys) ≡
0 (mod pℓ), 0 ≤ i < e, satisfies F (y1, . . . , ys) ≡ 0 (mod πr). Therefore, it will be
sufficient to show that every such system is solvable non-trivially. Since the addi-
tive group of the ring o/(pℓ) is isomorphic to Z

f
pℓ , Corollary 2.4 guarantees the ex-

istence of a non-trivial solution to F0 ≡ · · · ≡ Fe−1 ≡ 0 (mod pℓ) provided that
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s ≥ 1 + fwe
(

pℓ − 1
)

= 1 + nw
(

p⌈r/e⌉ − 1
)

. This completes the proof of the lemma. �

Proof of Theorem 3. Let t = ordpk. Then, each diagonal form F (x1, . . . , xs) =
a1x

k
1 + · · · + asx

k
s belongs to the set P(k, t, 1) of admissible polynomials with w = 1.

Therefore, Γ(K, k) ≤ G(k, t, 1) which, by Theorem 1, gives the bound

Γ(K, k) ≤ 1 + nk
(

p2t+2 − 1
)

.

If t ≥ 1, then the right-hand side is less than nkp2+2t ≤ nkp4t ≤ nk5. If t = 0, then
(k, p) = 1. In this case, Lemma 2.2 gives that Γ(K, k) ≤ 1+k

(

H(k, 0, 1, 1)−1
)

≤ k2+1 <
nk4 because, by the Chevalley-Warning theorem, we have the inequality H(k, 0, 1, 1) ≤
k + 1. Therefore, the polynomial bound Γ(K, k) < nk5 holds in all cases. �

Proof of Corollary 4. Theorem 1, together with the obvious fact that w, k ≤ d,
gives the bound

G(k, t, w) < nkwp2+2t ≤ nd2p2+2t,

due to kw ≤ d2. Now, if t ≥ 1, from d ≥ k ≥ pt it follows immediately that G(k, t, w) <
nd2p4t ≤ nd6. In the case t = 0, the assertion follows from

G(k, 0, w) ≤ 1 + k
(

H(k, 0, w, 1) − 1
)

≤ 1 + kd ≤ 1 + d2 < nd6,

where the second inequality is an immediate corollary of the Chevalley-Warning theorem.
This proves the assertion in all cases. �
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НЯКОИ ДОСТАТЪЧНИ УСЛОВИЯ ЗА РАЗРЕШИМОСТТА НА

p-АДИЧНИ ПОЛИНОМНИ УРАВНЕНИЯ

Веселин Ат. Димитров, Антони Кр. Рангачев

В настоящата статия са представени някои условия, които гарантират нетри-

виалната разрешимост на някои полиномни уравнения над p-адични полета. В

частност е доказано, че ако K е разширение на Qp с [K : Qp] = n < ∞, то

всяко диагонално уравнение a1x
k
1 + · · · + asx

k
s = 0 на поне nk

4 променливи има

нетривиално решение над K.
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