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ONE-DIMENSIONAL SHAPE SPACES’

Georgi Hr. Georgiev, Radostina P. Encheva

Using equivalence classes of similar triangles H. Sato introduces a closed convex curve
associated to a non-degenerate triangle. We show that this curve is a circle in the
Lester’s model of the two-dimensional shape space. We also prove that all such circles
form a Poncelet pencil.

There are different ways to investigate the equivalence classes of triangles with respect
to the group G = Sim™ (R?) of the direct similarities of the Euclidean plane R?. One of
these ways is due to H. Sato (see [5]). For a fixed non-degenerate triangle Aabe, he consid-
ered a point (z, y, 2) in the Euclidean space R3, where x =< (bac), y =% (cba), z =% (acb).
Thus the points of the set

O=A(z,y,2) |z+y+z=m x>0,y >0, z>0}
represent the equivalence classes of similar triangles in R2. Let a(t), b(t), c(t) be points ly-
ing on the sides ab, be, ca of Aabe such that the corresponding affine ratios are (aba(t)) =

(beb(t)) = (cac(t)) =t : (1 —t). H. Sato proves that the set of non-degenerate triangles
Aabe

T (A abe) = {Aa(t)b(t)c(t) | t € R}
is represented by a closed convex curve in II.

Another representation of the classes of similar triangles is the Euclidean plane ex-
tended with a point at infinity. This interpretation is realized by J. Lester in [4]. For
that purpose, the Euclidean plane is identified with the field of complex numbers C and
it is extended by a point at infinity, i. e. Co = C|Joo. Let us recall some basic facts
from [4]. If a, b, ¢ are three points in C and at most two of them are coinciding, then
it is defined a triangle Aabc .Degenerated triangles with distinct collinear vertices or
two coinciding vertices are allowed. There exists a complex number which determines
the ordered triangle Aabc up to a direct plane similarity. According to [4], this is the

number

a—c

called a shape of the triangle Aabc. In particular, Aabc is isosceles with apex at a

1 V3

whenever [A,p.| = 1, Aabc is equilateral when Ay, = w = 5 + 27 or Agpe
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=w= 3~ 1.7 and Aabc is right-angled at a whenever A4y, is imaginary. It is clear

that Ajpe =00 <= a=Db # c. For any degenerate triangle with a # b, A p. € R.

D. Kendall introduced the notion of the two-dimensional shape space in [2]. The set
IT and the extended plane C,, are models of this shape space. We call them the Sato’s
model and the Lester’s model, respectively. In this paper we obtain a representation of
the set T'(Aabc) in the Lester’s model. Then this representation can be considered as a
one-parameter set of triangle shapes or as a one-dimensional shape space. Moreover we
shall describe all such one-dimensional shape spaces.

C

b(t)

c(t)

a aty P
Fig. 1

Let z € C be the shape of the triangle Aabc, i. e. Ayp. = 2. Without loss of
generality we may suppose a = 0, b = 1, ¢ = z. If the points a(t) € ab, b(t) € bc
and c( ) € ca (see Fig. 1) are such that a(t) = (1 — t)a + tb, b(t) = (1 — t)b + tc,

( = (1 — t)c + ta, where t € R, then a(t) —c(t) = (1 —t)(a—c) + (b—a)
= [(1 —t)z — t|(a—b) and a(t) — b(t) (1—-t)(a=—b)+tb—c) = (1-2t)(a—b)
c) =

+t(a (1 —2t+tz)(a—b). Using (1), we find that
1-t)z—1
@ W= Bawb(telt) = i oa L<F

Three distinct points a, b, ¢ € C define commonly six distinct ordered triangles. The
triangles Aabc, Abca and Acab have the same orientation and different shapes. We

1 1
obtain the shapes of the triangles A 1. = 2, Apea = 12 and A 1—- replacmg
-z

t in (2) by 0, 1 and 1/2, respectively.

The equation (2), obtained above, allows us to define a map of R into the extended
Euclidean plane. Let z € C\{RUw U@} be fixed. We consider the map ¢ : R — C\ R
such that

(1-t)z—t

(3) P2(t) = S

Then, 7 is a curve in the Euclidean plane which Corresponds to a one-parameter family of
triangle shapes. In other words, ¢, represents a one-dimensional shape space. Moreover,

cab —

, teR.

7 —
zegoz,17Z€<pzandT€<pz.
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Proposition 1. The curve gy, defined by (3) is a circle in C\R, passing through the
—1

and z .
z

o0ints z
p "1 Z

Proof. It is well known that four points p, q, r and s in C are concyclic or collinear

if and only if the cross ratio [p, q; r, s] = w isreal. FromA | ,_1 =
(p-s)(a—r) T =77
7 — z—1 -1 1 —1
% _Z € C\R it follows that the points z, 1 and z are not collinear.
_ z -
z —z
Besides,
’ z—1 (1-t)z—t 1
A - A R S PR EV
zZ — - 1 - — — — = — 1
e 7= 1= o2 (£) — (I-tz—-t z—-1 1-2tz—1
1—z tz+1—2t Z
Hence,
1 z—1 1—t¢
[pz(t), 2; , |=A 1 _1-A -1 1 = eR
1—12z Z Zmzz (IOZ(t)ZZ m 1-—2¢

-1
for t # 1/2. Since pz(1/2) = Z= ¢ ¢z, the proof is completed. O
z

Proposition 2. w € ¢, <=z € pw.

Proof. First we shall prove that ¢y = pw if w € pz. From w € ¢, it follows that

1-tz—-1
there exists t € R such that w = & Since
tz+1—2¢
1
1 1 tzy1-2t (=)=t
l-w (I-tla—t (2—-1z+1—t 4 1 L1 _ 9
L= r1—2 =z
w—1

1
then 1 €¢ 1 =@z Similarly, € ¢z . Since the circle pw is unique, we

- W
1-—2
obtain that ¢, = pw. Hence, if w € @z, then z € p; = pw and vice versa. O

Corollary 1. Let z; € C\ R, z; # w, @, i = 1, 2. Then the circles vz, and @z,,
defined by (3) are either coinciding or non-intersecting.

1 Zlf].
17Z1, VAl

Proof. The case z; = zy is trivial. Let z; # zy. If either zo € {

}
1 Zy — 1 o . .
2 2 } then ¢z, = ¢z,. Otherwise, let there exists w € ¢z, () ¥z,
and @z, # @z, i. €. W € ¢z and W € @z,. Applying Proposition 2 we obtain

Yz = Pw = @z, which is a contradiction. [J
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Fig. 2. A Poncelet pencil

When z € {w, W} the map ¢, is constant, i. e. @, (t) = w and pz(t) = w for any
t € R. The real line is an axis of symmetry for the set of all circles ¢z, z € C\ R. Then,
taking into account the above assertion, we prove the main result in this paper.

Theorem 1. The set . of all one-dimensional shape subspaces pz, defined by (3) for
z € C\ R, is a Poncelet pencil of circles with limit points w and W excepting the radical
azis (see Fig. 2)

The definition and the properties of the Poncelet pencils of circles are known from [1]
and [3].

We can find the center wq of the circle ¢z, z € C\ R, z # w, W using the inversion
2

z — Wo + where R is the radius of ¢z. So, the point wy is the solution of the

= — >

Z — Wo
1 z—1 1 z—1 — z—1
equation [wy, z; T | = [0, 2; T |l=A 1 5_1 =——=—: Hence
, — Z Z — Z Z ZiTZ 7 Z
z— |z|° —1
wo = L If (z, y) € R? are the Cartesian coordinates of the point z € R? = C,

i.e z= §+ iz.y, then the Cartesian coordinates (2w, yw,) of the point wy are
1 1—x+2%+9y?
<5’ 2y > '
For the radius R of ¢z we get
z? —z+1
Z—7Z

1

2yl

The imaginary line in R? 2 C, representing all right-angled triangles in the plane, has at
most two common points with any circle of 3. Therefore, the Poncelet pencil of circles
Y. can be divided into three subset ¥, X1 and Y5 of one-dimensional shape subspaces,

1
containing 0, 1 or 2 right-angled triangles, respectively. Since R = 3 sy’ = (22 —9?

R=|z—wy|= V(@2 —y2 —x+1)2 + 9222 — 1)2.

—z+1)249y*2z-1)? & (1—z+22+y?)? = 4y? & yw, = £1 we have that 1 has only
two circles ki, ko with centers ¢1(1/2, 1) and ¢2(1/2, —1), respectively. These circles are
the one-dimensional shape spaces associated to the isosceles right-angled triangles. Thus
the centers of the circles of ¥ are between the points ¢; and co. Otherwise, we get .

In [5], H. Sato does not explore the case when the triangles Aabc are degenerated.
Having in mind the previous considerations we may examine this case. If the triangle
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Aabc is degenerated, ie. A = z € R, then the triangle Aa(t)b(t)c(t) is also

degenerated and

abc

1-t)z—t
- A =77 "R f R.
W= Rab(e(t) T i g p1 L Y e
Since t = 2w the one-dimensional shape space associated to the degen-

w(z—2)+z+1
erated A abc is either R U oo when A p. =2z € R\ {2} or R when A . =2z = 2.
Finally, we may conclude that all one-dimensional shape spaces form a Poncelet pencil
of circles in the Euclidean plane with limit points w and @.
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EJHOMEPHM IIIEIII IPOCTPAHCTBA

T'eopru Xp. I'eoprueB, Pagoctuna II. EnuyeBa

X. Caro BbBEXK/1a 3aTBOPEHA U3II'bKHAJIA KPUBA, CbOTBETHA HA €IUH HEU3POJEH TPU'b-
I'bJIHUK, U3MOJI3BANKY KJIACOBE HA €KBUBAJIEHTHOCT OT MOJOOHM TpUbI'bJHUIM. B pa-
OboTara MOKa3BaMe, Y€ Ta3h KPUBa € OKP'bXKHOCT B Mojiesia Ha JlecTbp Ha JIByMEpPHOTO
meiinn mpocTpancTBo. JlokasBaMe CbINO, Y€ BCUYKHU TaKWBa OKPbKHOCTU OOpasyBaT
cuon Ha Iloncese.

112



