ONE-DIMENSIONAL SHAPE SPACES*

Georgi Hr. Georgiev, Radostina P. Encheva

Using equivalence classes of similar triangles H. Sato introduces a closed convex curve associated to a non-degenerate triangle. We show that this curve is a circle in the Lester's model of the two-dimensional shape space. We also prove that all such circles form a Poncelet pencil.

There are different ways to investigate the equivalence classes of triangles with respect to the group $G=\operatorname{Sim}^{+}\left(\mathbb{R}^{2}\right)$ of the direct similarities of the Euclidean plane \mathbb{R}^{2}. One of these ways is due to H. Sato (see [5]). For a fixed non-degenerate triangle $\triangle a b c$, he considered a point (x, y, z) in the Euclidean space \mathbb{R}^{3}, where $x=\Varangle(b a c), y=\Varangle(c b a), z=\Varangle(a c b)$. Thus the points of the set

$$
\Pi=\{(x, y, z) \mid x+y+z=\pi, x>0, y>0, z>0\}
$$

represent the equivalence classes of similar triangles in \mathbb{R}^{2}. Let $a(t), b(t), c(t)$ be points lying on the sides $\overline{a b}, \overline{b c}, \overline{c a}$ of $\triangle a b c$ such that the corresponding affine ratios are $(a b a(t))=$ $(b c b(t))=(\operatorname{cac}(t))=t:(1-t)$. H. Sato proves that the set of non-degenerate triangles $\triangle a b c$

$$
T(\triangle a b c)=\{\triangle a(t) b(t) c(t) \mid t \in \mathbb{R}\}
$$

is represented by a closed convex curve in Π.
Another representation of the classes of similar triangles is the Euclidean plane extended with a point at infinity. This interpretation is realized by J. Lester in [4]. For that purpose, the Euclidean plane is identified with the field of complex numbers \mathbb{C} and it is extended by a point at infinity, i. e. $\mathbb{C}_{\infty}=\mathbb{C} \bigcup \infty$. Let us recall some basic facts from [4]. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three points in \mathbb{C} and at most two of them are coinciding, then it is defined a triangle $\triangle \mathbf{a b c}$. Degenerated triangles with distinct collinear vertices or two coinciding vertices are allowed. There exists a complex number which determines the ordered triangle $\triangle \mathbf{a b c}$ up to a direct plane similarity. According to [4], this is the number

$$
\begin{equation*}
\triangle_{\mathbf{a b c}}=\frac{\mathbf{a}-\mathbf{c}}{\mathbf{a}-\mathbf{b}} \in \mathbb{C}_{\infty} \tag{1}
\end{equation*}
$$

called a shape of the triangle $\triangle \mathbf{a b c}$. In particular, $\triangle \mathbf{a b c}$ is isosceles with apex at a whenever $\left|\triangle_{\mathbf{a b c}}\right|=1, \triangle \mathbf{a b c}$ is equilateral when $\triangle_{\mathbf{a b c}}=\omega=\frac{1}{2}+i \cdot \frac{\sqrt{3}}{2}$ or $\triangle_{\mathbf{a b c}}$

[^0]$=\bar{\omega}=\frac{1}{2}-i \cdot \frac{\sqrt{3}}{2}$ and $\triangle \mathbf{a b c}$ is right-angled at a whenever $\triangle_{\mathbf{a b c}}$ is imaginary. It is clear that $\triangle_{\mathbf{a b c}}=\infty \Longleftrightarrow \mathbf{a}=\mathbf{b} \neq \mathbf{c}$. For any degenerate triangle with $\mathbf{a} \neq \mathbf{b}, \triangle_{\mathbf{a b c}} \in \mathbb{R}$.
D. Kendall introduced the notion of the two-dimensional shape space in [2]. The set Π and the extended plane \mathbb{C}_{∞} are models of this shape space. We call them the Sato's model and the Lester's model, respectively. In this paper we obtain a representation of the set $T(\triangle a b c)$ in the Lester's model. Then this representation can be considered as a one-parameter set of triangle shapes or as a one-dimensional shape space. Moreover we shall describe all such one-dimensional shape spaces.

Fig. 1
Let $\mathbf{z} \in \mathbb{C}$ be the shape of the triangle $\triangle \mathbf{a b c}$, i. e. $\triangle_{\mathbf{a b c}}=\mathbf{z}$. Without loss of generality we may suppose $\mathbf{a}=0, \mathbf{b}=1, \mathbf{c}=\mathbf{z}$. If the points $\mathbf{a}(t) \in \overline{\mathbf{a b}}, \mathbf{b}(t) \in \overline{\mathbf{b c}}$ and $\mathbf{c}(t) \in \overline{\mathbf{c a}}$ (see Fig. 1) are such that $\mathbf{a}(t)=(1-t) \mathbf{a}+t \mathbf{b}, \mathbf{b}(t)=(1-t) \mathbf{b}+t \mathbf{c}$, $\mathbf{c}(t)=(1-t) \mathbf{c}+t \mathbf{a}$, where $t \in \mathbb{R}$, then $\mathbf{a}(t)-\mathbf{c}(t)=(1-t)(\mathbf{a}-\mathbf{c})+t(\mathbf{b}-\mathbf{a})$ $=[(1-t) \mathbf{z}-t](\mathbf{a}-\mathbf{b})$ and $\mathbf{a}(t)-\mathbf{b}(t)=(1-t)(\mathbf{a}-\mathbf{b})+t(\mathbf{b}-\mathbf{c})=(1-2 t)(\mathbf{a}-\mathbf{b})$ $+t(\mathbf{a}-\mathbf{c})=(1-2 t+t \mathbf{z})(\mathbf{a}-\mathbf{b})$. Using (1), we find that

$$
\begin{equation*}
\mathbf{w}=\triangle_{\mathbf{a}(t) \mathbf{b}(t) \mathbf{c}(t)}=\frac{(1-t) \mathbf{z}-t}{t \mathbf{z}+1-2 t}, \quad t \in \mathbb{R} \tag{2}
\end{equation*}
$$

Three distinct points $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{C}$ define commonly six distinct ordered triangles. The triangles $\triangle \mathbf{a b c}, \triangle \mathbf{b c a}$ and $\triangle \mathbf{c a b}$ have the same orientation and different shapes. We obtain the shapes of the triangles $\triangle_{\mathbf{a b c}}=\mathbf{z}, \triangle_{\mathbf{b c a}}=\frac{1}{1-\mathbf{z}}$ and $\triangle_{\mathbf{c a b}}=1-\frac{1}{\mathbf{z}}$ replacing t in (2) by 0,1 and $1 / 2$, respectively.

The equation (2), obtained above, allows us to define a map of \mathbb{R} into the extended Euclidean plane. Let $\mathbf{z} \in \mathbb{C} \backslash\{\mathbb{R} \cup \omega \cup \bar{\omega}\}$ be fixed. We consider the map $\varphi_{z}: \mathbb{R} \longrightarrow \mathbb{C} \backslash \mathbb{R}$ such that

$$
\begin{equation*}
\varphi_{z}(t)=\frac{(1-t) \mathbf{z}-t}{t \mathbf{z}+1-2 t}, \quad t \in \mathbb{R} \tag{3}
\end{equation*}
$$

Then, φ_{z} is a curve in the Euclidean plane which corresponds to a one-parameter family of triangle shapes. In other words, φ_{z} represents a one-dimensional shape space. Moreover, $\mathbf{z} \in \varphi_{z}, \frac{1}{1-\mathbf{z}} \in \varphi_{z}$ and $\frac{\mathbf{z}-1}{\mathbf{z}} \in \varphi_{z}$.

Proposition 1. The curve φ_{z}, defined by (3) is a circle in $\mathbb{C} \backslash \mathbb{R}$, passing through the points $\mathbf{z}, \frac{1}{1-\mathbf{z}}$ and $\frac{\mathbf{z}-1}{\mathbf{z}}$.

Proof. It is well known that four points $\mathbf{p}, \mathbf{q}, \mathbf{r}$ and \mathbf{s} in \mathbb{C} are concyclic or collinear if and only if the cross ratio $[\mathbf{p}, \mathbf{q} ; \mathbf{r}, \mathbf{s}]=\frac{(\mathbf{p}-\mathbf{r})(\mathbf{q}-\mathbf{s})}{(\mathbf{p}-\mathbf{s})(\mathbf{q}-\mathbf{r})}$ is real. From $\triangle_{\mathbf{z}} \frac{1}{1-\mathbf{z}} \frac{\mathbf{z}-1}{\mathbf{Z}}=$ $\frac{\mathbf{z}-\frac{\mathbf{z}-1}{\mathbf{Z}}}{\mathbf{z}-\frac{1}{1-\mathbf{z}}}=\frac{\mathbf{z}-1}{\mathbf{z}} \in \mathbb{C} \backslash \mathbb{R}$ it follows that the points $\mathbf{z}, \frac{1}{1-\mathbf{z}}$ and $\frac{\mathbf{z}-1}{\mathbf{z}}$ are not collinear. Besides,

$$
\Delta_{\varphi_{z}(t) \frac{\mathbf{z}-1}{\mathbf{z}} \frac{1}{1-\mathbf{z}}=\frac{\varphi_{z}(t)-\frac{\mathbf{z}-1}{\mathbf{z}}}{\varphi_{z}(t)-\frac{1}{1-\mathbf{z}}}=\frac{\frac{(1-t) \mathbf{z}-t}{t \mathbf{z}+1-2 t}-\frac{1}{1-\mathbf{z}}}{\frac{(1-t) \mathbf{z}-t}{t \mathbf{z}+1-2 t}-\frac{\mathbf{z}-1}{\mathbf{z}}}=\frac{1-t}{1-2 t} \cdot \frac{\mathbf{z}}{\mathbf{z}-1}}
$$

Hence,

$$
\left[\varphi_{z}(t), \mathbf{z} ; \frac{1}{1-\mathbf{z}}, \frac{\mathbf{z}-1}{\mathbf{z}}\right]=\triangle_{\mathbf{z}} \frac{1}{1-\mathbf{z}} \frac{\mathbf{z}-1}{\mathbf{z}} \cdot \Delta_{\varphi_{z}(t) \frac{\mathbf{z}-1}{\mathbf{Z}} \frac{1}{1-\mathbf{z}}=\frac{1-t}{1-2 t} \in \mathbb{R}, ~}
$$

for $t \neq 1 / 2$. Since $\varphi_{z}(1 / 2)=\frac{\mathbf{z}-1}{\mathbf{z}} \in \varphi_{z}$, the proof is completed.

Proposition 2. $\mathbf{w} \in \varphi_{z} \Longleftrightarrow \mathbf{z} \in \varphi_{\mathrm{w}}$.

Proof. First we shall prove that $\varphi_{z} \equiv \varphi_{\mathrm{w}}$ if $\mathbf{w} \in \varphi_{z}$. From $\mathbf{w} \in \varphi_{z}$ it follows that there exists $t \in \mathbb{R}$ such that $\mathbf{w}=\frac{(1-t) \mathbf{z}-t}{t \mathbf{z}+1-2 t}$. Since

$$
\frac{1}{1-\mathbf{w}}=\frac{1}{1-\frac{(1-t) \mathbf{z}-t}{t \mathbf{z}+1-2 t}}=\frac{t \mathbf{z}+1-2 t}{(2 t-1) \mathbf{z}+1-t}=\frac{(1-t) \frac{1}{1-\mathbf{z}}-t}{t \frac{1}{1-\mathbf{z}}+1-2 t}
$$

then $\frac{1}{1-\mathbf{w}} \in \varphi \frac{1}{1-z} \equiv \varphi_{z}$. Similarly, $\frac{\mathrm{w}-1}{\mathrm{w}} \in \varphi_{z}$. Since the circle φ_{W} is unique, we obtain that $\varphi_{z} \equiv \varphi_{\mathrm{W}}$. Hence, if $\mathbf{w} \in \varphi_{z}$, then $\mathbf{z} \in \varphi_{z} \equiv \varphi_{\mathrm{W}}$ and vice versa.

Corollary 1. Let $\mathbf{z}_{i} \in \mathbb{C} \backslash \mathbb{R}, \mathbf{z}_{i} \neq \omega, \bar{\omega}, i=1,2$. Then the circles $\varphi_{z_{1}}$ and φz_{2}, defined by (3) are either coinciding or non-intersecting.

Proof. The case $\mathbf{z}_{1}=\mathbf{z}_{2}$ is trivial. Let $\mathbf{z}_{1} \neq \mathbf{z}_{2}$. If either $\mathbf{z}_{2} \in\left\{\frac{1}{1-\mathbf{z}_{1}}, \frac{\mathbf{z}_{1}-1}{\mathbf{z}_{1}}\right\}$ or $\mathbf{z}_{1} \in\left\{\frac{1}{1-\mathbf{z}_{2}}, \frac{\mathbf{z}_{2}-1}{\mathbf{z}_{2}}\right\}$ then $\varphi z_{1} \equiv \varphi z_{2}$. Otherwise, let there exists $\mathbf{w} \in \varphi_{z_{1}} \bigcap \varphi z_{2}$ and $\varphi_{z_{1}} \not \equiv \varphi_{z_{2}}$, i. e. $\mathbf{w} \in \varphi_{z_{1}}$ and $\mathbf{w} \in \varphi_{z_{2}}$. Applying Proposition 2 we obtain $\varphi_{z_{1}} \equiv \varphi_{\mathrm{W}} \equiv \varphi z_{2}$ which is a contradiction.

Fig. 2. A Poncelet pencil
When $\mathbf{z} \in\{\omega, \bar{\omega}\}$ the map φ_{z} is constant, i. e. $\varphi_{\omega}(t)=\omega$ and $\varphi_{\bar{\omega}}(t)=\bar{\omega}$ for any $t \in \mathbb{R}$. The real line is an axis of symmetry for the set of all circles $\varphi z, \mathbf{z} \in \mathbb{C} \backslash \mathbb{R}$. Then, taking into account the above assertion, we prove the main result in this paper.

Theorem 1. The set Σ of all one-dimensional shape subspaces φ_{z}, defined by (3) for $\mathbf{z} \in \mathbb{C} \backslash \mathbb{R}$, is a Poncelet pencil of circles with limit points ω and $\bar{\omega}$ excepting the radical axis (see Fig. 2)

The definition and the properties of the Poncelet pencils of circles are known from [1] and [3].

We can find the center \mathbf{w}_{0} of the circle $\varphi_{z}, \mathbf{z} \in \mathbb{C} \backslash \mathbb{R}, \mathbf{z} \neq \omega, \bar{\omega}$ using the inversion $\mathbf{z} \longrightarrow \mathbf{w}_{0}+\frac{R^{2}}{\overline{\mathbf{z}}-\overline{\mathbf{w}}_{0}}$, where R is the radius of φ_{z}. So, the point \mathbf{w}_{0} is the solution of the equation $\left[\mathbf{w}_{0}, \mathbf{z} ; \frac{1}{1-\mathbf{z}}, \frac{\mathbf{z}-1}{\mathbf{z}}\right]=\overline{\left[\infty, \mathbf{z} ; \frac{1}{1-\mathbf{z}}, \frac{\mathbf{z}-1}{\mathbf{z}}\right]}=\bar{\triangle}_{\mathbf{z} \frac{1}{1-\mathbf{z}} \frac{\mathbf{z}-1}{\mathbf{z}}=\frac{\mathbf{z}-1}{\overline{\mathbf{z}}} \text {. Hence }{ }^{\text {. }} \text {. }}$ $\mathbf{w}_{0}=\frac{\mathbf{z}-|\mathbf{z}|^{2}-1}{\mathbf{z}-\overline{\mathbf{z}}}$. If $(x, y) \in \mathbb{R}^{2}$ are the Cartesian coordinates of the point $\mathbf{z} \in \mathbb{R}^{2} \cong \mathbb{C}$, i. e. $\mathbf{z}=x+i . y$, then the Cartesian coordinates $\left(x_{\mathrm{w}_{0}}, y_{\mathrm{w}_{0}}\right)$ of the point \mathbf{w}_{0} are

$$
\left(\frac{1}{2}, \frac{1-x+x^{2}+y^{2}}{2 y}\right) .
$$

For the radius R of φ_{z} we get

$$
R=\left|\mathbf{z}-\mathbf{w}_{0}\right|=\left|\frac{\mathbf{z}^{2}-\mathbf{z}+1}{\mathbf{z}-\overline{\mathbf{z}}}\right|=\frac{1}{2|y|} \sqrt{\left(x^{2}-y^{2}-x+1\right)^{2}+y^{2}(2 x-1)^{2}} .
$$

The imaginary line in $\mathbb{R}^{2} \cong \mathbb{C}$, representing all right-angled triangles in the plane, has at most two common points with any circle of Σ. Therefore, the Poncelet pencil of circles Σ can be divided into three subset Σ_{0}, Σ_{1} and Σ_{2} of one-dimensional shape subspaces, containing 0,1 or 2 right-angled triangles, respectively. Since $R=\frac{1}{2} \Leftrightarrow y^{2}=\left(x^{2}-y^{2}\right.$ $-x+1)^{2}+y^{2}(2 x-1)^{2} \Leftrightarrow\left(1-x+x^{2}+y^{2}\right)^{2}=4 y^{2} \Leftrightarrow y_{\mathrm{w}_{0}}= \pm 1$ we have that Σ_{1} has only two circles k_{1}, k_{2} with centers $c_{1}(1 / 2,1)$ and $c_{2}(1 / 2,-1)$, respectively. These circles are the one-dimensional shape spaces associated to the isosceles right-angled triangles. Thus the centers of the circles of Σ_{0} are between the points c_{1} and c_{2}. Otherwise, we get Σ_{2}.

In [5], H. Sato does not explore the case when the triangles $\triangle \mathbf{a b c}$ are degenerated. Having in mind the previous considerations we may examine this case. If the triangle
$\triangle \mathbf{a b c}$ is degenerated, i.e. $\triangle_{\mathbf{a b c}}=\mathbf{z} \in \mathbb{R}$, then the triangle $\triangle \mathbf{a}(t) \mathbf{b}(t) \mathbf{c}(t)$ is also degenerated and

$$
\mathbf{w}=\triangle_{\mathbf{a}(t) \mathbf{b}(t) \mathbf{c}(t)}=\frac{(1-t) \mathbf{z}-t}{t(\mathbf{z}-2)+1} \in \mathbb{R} \quad \text { for any } \mathbf{z}, t \in \mathbb{R}
$$

Since $t=\frac{\mathbf{z}-\mathbf{w}}{\mathbf{w}(\mathbf{z}-2)+\mathbf{z}+1}$, the one-dimensional shape space associated to the degenerated $\triangle \mathbf{a b c}$ is either $\mathbb{R} \cup \infty$ when $\triangle_{\mathbf{a b c}}=\mathbf{z} \in \mathbb{R} \backslash\{2\}$ or \mathbb{R} when $\triangle_{\mathbf{a b c}}=\mathbf{z}=2$. Finally, we may conclude that all one-dimensional shape spaces form a Poncelet pencil of circles in the Euclidean plane with limit points ω and $\bar{\omega}$.

REFERENCES

[1] M. Berger. Geometry I. Springer, Berlin, 1994.
[2] D. Kendall. Shape manifolds, procrustean metric, and complex projective spaces. Bull. London Math. Soc., 16 (1984), 81-121.
[3] R. Langevin, P. Walczak. Holomorphic maps and pencils of circles. Prépublications de l'Institut de Mathématiques de Bourgogne, No. 370, Dijon, 2004.
[4] J. A. Lester. Triangles I: Shapes. Aequationes Math., 52 (1996), 30-54.
[5] H. Sato. Orbits of triangles obtained by interior division of sides. Proc. Japan Acad., 74 (1998), 4-9.

Faculty of Mathematics and Informatics
Shumen University
115, Universitetska Str
9712 Shumen, Bulgaria
e-mail: g.georgiev@shu-bg.net
e-mail: r.encheva@fmi.shu-bg.net

ЕДНОМЕРНИ ШЕЙП ПРОСТРАНСТВА

Георги Хр. Георгиев, Радостина П. Енчева

X. Сато въвежда затворена изпъкнала крива, съответна на един неизроден триъгълник, използвайки класове на еквивалентност от подобни триъгълници. В работата показваме, че тази крива е окръжност в модела на Лестър на двумерното шейп пространство. Доказваме също, че всички такива окръжности образуват сноп на Понселе.

[^0]: *Research partially supported by Shumen University under grant 2329240604.
 2000 Math. Subject Classification: 51 M15, 51M05

