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ONE-DIMENSIONAL SHAPE SPACES
*

Georgi Hr. Georgiev, Radostina P. Encheva

Using equivalence classes of similar triangles H. Sato introduces a closed convex curve
associated to a non-degenerate triangle. We show that this curve is a circle in the
Lester’s model of the two-dimensional shape space. We also prove that all such circles
form a Poncelet pencil.

There are different ways to investigate the equivalence classes of triangles with respect
to the group G = Sim+(R2) of the direct similarities of the Euclidean plane R2. One of
these ways is due to H. Sato (see [5]). For a fixed non-degenerate triangle △abc, he consid-
ered a point (x, y, z) in the Euclidean space R3, where x =<) (bac), y =<) (cba), z =<) (acb).
Thus the points of the set

Π = {(x, y, z) | x + y + z = π, x > 0, y > 0, z > 0}
represent the equivalence classes of similar triangles in R2. Let a(t), b(t), c(t) be points ly-
ing on the sides ab, bc, ca of △abc such that the corresponding affine ratios are (aba(t)) =
(bcb(t)) = (cac(t)) = t : (1 − t). H. Sato proves that the set of non-degenerate triangles
△abc

T (△ abc) = {△ a(t)b(t)c(t) | t ∈ R}
is represented by a closed convex curve in Π.

Another representation of the classes of similar triangles is the Euclidean plane ex-
tended with a point at infinity. This interpretation is realized by J. Lester in [4]. For
that purpose, the Euclidean plane is identified with the field of complex numbers C and
it is extended by a point at infinity, i. e. C∞ = C

⋃∞. Let us recall some basic facts
from [4]. If a, b, c are three points in C and at most two of them are coinciding, then
it is defined a triangle △abc .Degenerated triangles with distinct collinear vertices or
two coinciding vertices are allowed. There exists a complex number which determines
the ordered triangle △abc up to a direct plane similarity. According to [4], this is the
number

(1) △abc =
a− c

a − b
∈ C∞,

called a shape of the triangle △abc. In particular, △abc is isosceles with apex at a

whenever |△abc| = 1, △abc is equilateral when △abc = ω =
1

2
+ i.

√
3

2
or △abc

*Research partially supported by Shumen University under grant 2329240604.
2000 Math. Subject Classification: 51M15, 51M05

108



= ω =
1

2
− i.

√
3

2
and △abc is right-angled at a whenever △abc is imaginary. It is clear

that △abc = ∞ ⇐⇒ a = b 6= c. For any degenerate triangle with a 6= b, △abc ∈ R.
D. Kendall introduced the notion of the two-dimensional shape space in [2]. The set

Π and the extended plane C∞ are models of this shape space. We call them the Sato’s
model and the Lester’s model, respectively. In this paper we obtain a representation of
the set T (△abc) in the Lester’s model. Then this representation can be considered as a
one-parameter set of triangle shapes or as a one-dimensional shape space. Moreover we
shall describe all such one-dimensional shape spaces.

a
a(t) b

b(t)

c

c(t)

Fig. 1

Let z ∈ C be the shape of the triangle △abc, i. e. △abc = z. Without loss of

generality we may suppose a = 0, b = 1, c = z. If the points a(t) ∈ ab, b(t) ∈ bc

and c(t) ∈ ca (see Fig. 1) are such that a(t) = (1 − t)a + tb, b(t) = (1 − t)b + tc,
c(t) = (1 − t)c + ta, where t ∈ R, then a(t) − c(t) = (1 − t)(a − c) + t(b − a)
= [(1 − t)z − t](a − b) and a(t) − b(t) = (1 − t)(a − b) + t(b − c) = (1 − 2t)(a − b)
+t(a − c) = (1 − 2t + tz)(a − b). Using (1), we find that

(2) w = △a(t)b(t)c(t) =
(1 − t)z − t

tz + 1 − 2t
, t ∈ R.

Three distinct points a, b, c ∈ C define commonly six distinct ordered triangles. The
triangles △abc, △bca and △cab have the same orientation and different shapes. We

obtain the shapes of the triangles △abc = z, △bca =
1

1 − z
and △cab = 1− 1

z
replacing

t in (2) by 0, 1 and 1/2, respectively.
The equation (2), obtained above, allows us to define a map of R into the extended

Euclidean plane. Let z ∈ C\{R∪ω∪ω} be fixed. We consider the map ϕz : R −→ C \R

such that

(3) ϕz(t) =
(1 − t)z − t

tz + 1 − 2t
, t ∈ R.

Then, ϕz is a curve in the Euclidean plane which corresponds to a one-parameter family of
triangle shapes. In other words, ϕz represents a one-dimensional shape space. Moreover,

z ∈ ϕz,
1

1 − z
∈ ϕz and

z − 1

z
∈ ϕz.
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Proposition 1. The curve ϕz, defined by (3) is a circle in C \R, passing through the

points z,
1

1 − z
and

z − 1

z
.

Proof. It is well known that four points p, q, r and s in C are concyclic or collinear

if and only if the cross ratio [p, q; r, s] =
(p − r)(q − s)

(p − s)(q − r)
is real. From △

z 1
1 − z

z − 1
z

=

z − z − 1
z

z − 1
1 − z

=
z − 1

z
∈ C\R it follows that the points z,

1

1 − z
and

z − 1

z
are not collinear.

Besides,

△
ϕz(t)

z − 1
z

1
1 − z

=
ϕz(t) − z − 1

z

ϕz(t) − 1

1 − z

=

(1 − t)z − t

tz + 1 − 2t
− 1

1 − z
(1 − t)z − t

tz + 1 − 2t
− z − 1

z

=
1 − t

1 − 2t
.

z

z − 1
.

Hence,

[ϕz(t), z;
1

1 − z
,
z − 1

z
] = △

z 1
1 − z

z− 1
z

.△
ϕz(t)

z − 1
z

1
1 − z

=
1 − t

1 − 2t
∈ R

for t 6= 1/2. Since ϕz(1/2) =
z− 1

z
∈ ϕz , the proof is completed. �

Proposition 2.w ∈ ϕz ⇐⇒ z ∈ ϕw.

Proof. First we shall prove that ϕz ≡ ϕw if w ∈ ϕz. From w ∈ ϕz it follows that

there exists t ∈ R such that w =
(1 − t)z − t

tz + 1 − 2t
. Since

1

1 − w
=

1

1 − (1 − t)z − t
tz + 1 − 2t

=
tz + 1 − 2t

(2t − 1)z + 1 − t
=

(1 − t) 1
1 − z

− t

t 1
1 − z

+ 1 − 2t
,

then
1

1 − w
∈ ϕ 1

1 − z
≡ ϕz. Similarly,

w − 1

w
∈ ϕz . Since the circle ϕw is unique, we

obtain that ϕz ≡ ϕw. Hence, if w ∈ ϕz , then z ∈ ϕz ≡ ϕw and vice versa. �

Corollary 1. Let zi ∈ C \ R, zi 6= ω, ω, i = 1, 2. Then the circles ϕz1
and ϕz2

,
defined by (3) are either coinciding or non-intersecting.

Proof. The case z1 = z2 is trivial. Let z1 6= z2. If either z2 ∈ { 1

1 − z1

,
z1 − 1

z1

}

or z1 ∈ { 1

1 − z2

,
z2 − 1

z2

} then ϕz1
≡ ϕz2

. Otherwise, let there exists w ∈ ϕz1

⋂

ϕz2

and ϕz1
6≡ ϕz2

, i. e. w ∈ ϕz1
and w ∈ ϕz2

. Applying Proposition 2 we obtain
ϕz1

≡ ϕw ≡ ϕz2
which is a contradiction. �
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Fig. 2. A Poncelet pencil

When z ∈ {ω, ω} the map ϕz is constant, i. e. ϕω(t) = ω and ϕω(t) = ω for any
t ∈ R. The real line is an axis of symmetry for the set of all circles ϕz, z ∈ C \R. Then,
taking into account the above assertion, we prove the main result in this paper.

Theorem 1. The set Σ of all one-dimensional shape subspaces ϕz, defined by (3) for

z ∈ C \ R, is a Poncelet pencil of circles with limit points ω and ω excepting the radical

axis (see Fig. 2)

The definition and the properties of the Poncelet pencils of circles are known from [1]
and [3].

We can find the center w0 of the circle ϕz, z ∈ C \ R, z 6= ω, ω using the inversion

z −→ w0 +
R2

z − w0

, where R is the radius of ϕz . So, the point w0 is the solution of the

equation [w0, z;
1

1 − z
,
z − 1

z
] = [∞, z;

1

1 − z
,
z − 1

z
] = △

z 1
1 − z

z− 1
z

=
z − 1

z
. Hence

w0 =
z − |z|2 − 1

z − z
. If (x, y) ∈ R2 are the Cartesian coordinates of the point z ∈ R2 ∼= C,

i. e. z = x + i.y, then the Cartesian coordinates (xw0
, yw0

) of the point w0 are
(

1

2
,

1 − x + x2 + y2

2y

)

.

For the radius R of ϕz we get

R = | z − w0| =

∣

∣

∣

∣

z2 − z + 1

z − z

∣

∣

∣

∣

=
1

2|y|
√

(x2 − y2 − x + 1)2 + y2(2x − 1)2.

The imaginary line in R2 ∼= C, representing all right-angled triangles in the plane, has at
most two common points with any circle of Σ. Therefore, the Poncelet pencil of circles
Σ can be divided into three subset Σ0, Σ1 and Σ2 of one-dimensional shape subspaces,

containing 0, 1 or 2 right-angled triangles, respectively. Since R =
1

2
⇔ y2 = (x2 − y2

−x+1)2 +y2(2x−1)2 ⇔ (1−x+x2 +y2)2 = 4y2 ⇔ yw0
= ±1 we have that Σ1 has only

two circles k1, k2 with centers c1(1/2, 1) and c2(1/2, −1), respectively. These circles are
the one-dimensional shape spaces associated to the isosceles right-angled triangles. Thus
the centers of the circles of Σ0 are between the points c1 and c2. Otherwise, we get Σ2.

In [5], H. Sato does not explore the case when the triangles △abc are degenerated.
Having in mind the previous considerations we may examine this case. If the triangle
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△abc is degenerated, i.e. △abc = z ∈ R, then the triangle △ a(t)b(t)c(t) is also
degenerated and

w = △a(t)b(t)c(t) =
(1 − t)z − t

t(z − 2) + 1
∈ R for any z, t ∈ R.

Since t =
z − w

w(z − 2) + z + 1
, the one-dimensional shape space associated to the degen-

erated △ abc is either R ∪ ∞ when △abc = z ∈ R \ {2} or R when △abc = z = 2.
Finally, we may conclude that all one-dimensional shape spaces form a Poncelet pencil
of circles in the Euclidean plane with limit points ω and ω.

REFERENCES

[1] M. Berger. Geometry I. Springer, Berlin, 1994.
[2] D. Kendall. Shape manifolds, procrustean metric, and complex projective spaces. Bull.

London Math. Soc., 16 (1984), 81–121.
[3] R. Langevin, P. Walczak. Holomorphic maps and pencils of circles. Prépublications de
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ЕДНОМЕРНИ ШЕЙП ПРОСТРАНСТВА

Георги Хр. Георгиев, Радостина П. Енчева

Х. Сато въвежда затворена изпъкнала крива, съответна на един неизроден триъ-

гълник, използвайки класове на еквивалентност от подобни триъгълници. В ра-

ботата показваме, че тази крива е окръжност в модела на Лестър на двумерното

шейп пространство. Доказваме също, че всички такива окръжности образуват

сноп на Понселе.
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