MATEMATИKA И MATEMATИЧЕСКО ОБРАЗОВАНИЕ, 2005 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2005 Proceedings of the Thirty Fourth Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 6–9, 2005

ONE-DIMENSIONAL SHAPE SPACES^{*}

Georgi Hr. Georgiev, Radostina P. Encheva

Using equivalence classes of similar triangles H. Sato introduces a closed convex curve associated to a non-degenerate triangle. We show that this curve is a circle in the Lester's model of the two-dimensional shape space. We also prove that all such circles form a Poncelet pencil.

There are different ways to investigate the equivalence classes of triangles with respect to the group $G = Sim^+(\mathbb{R}^2)$ of the direct similarities of the Euclidean plane \mathbb{R}^2 . One of these ways is due to H. Sato (see [5]). For a fixed non-degenerate triangle $\triangle abc$, he considered a point (x, y, z) in the Euclidean space \mathbb{R}^3 , where $x = \bigstar(bac), y = \bigstar(cba), z = \bigstar(acb)$. Thus the points of the set

$$\Pi = \{ (x, y, z) \mid x + y + z = \pi, \ x > 0, \ y > 0, \ z > 0 \}$$

represent the equivalence classes of similar triangles in \mathbb{R}^2 . Let a(t), b(t), c(t) be points lying on the sides \overline{ab} , \overline{bc} , \overline{ca} of $\triangle abc$ such that the corresponding affine ratios are (aba(t)) = (bcb(t)) = (cac(t)) = t : (1 - t). H. Sato proves that the set of non-degenerate triangles $\triangle abc$

$$T(\triangle abc) = \{\triangle a(t)b(t)c(t) \mid t \in \mathbb{R}\}\$$

is represented by a closed convex curve in Π .

Another representation of the classes of similar triangles is the Euclidean plane extended with a point at infinity. This interpretation is realized by J. Lester in [4]. For that purpose, the Euclidean plane is identified with the field of complex numbers \mathbb{C} and it is extended by a point at infinity, i. e. $\mathbb{C}_{\infty} = \mathbb{C} \bigcup \infty$. Let us recall some basic facts from [4]. If **a**, **b**, **c** are three points in \mathbb{C} and at most two of them are coinciding, then it is defined a triangle $\triangle \mathbf{abc}$. Degenerated triangles with distinct collinear vertices or two coinciding vertices are allowed. There exists a complex number which determines the ordered triangle $\triangle \mathbf{abc}$ up to a direct plane similarity. According to [4], this is the number

called a shape of the triangle $\triangle \mathbf{abc}$. In particular, $\triangle \mathbf{abc}$ is isosceles with apex at \mathbf{a} whenever $|\triangle_{\mathbf{abc}}| = 1$, $\triangle \mathbf{abc}$ is equilateral when $\triangle_{\mathbf{abc}} = \omega = \frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}$ or $\triangle_{\mathbf{abc}}$

^{*}Research partially supported by Shumen University under grant 2329240604.

²⁰⁰⁰ Math. Subject Classification: 51M15, 51M05

 $=\overline{\omega} = \frac{1}{2} - i \cdot \frac{\sqrt{3}}{2} \text{ and } \triangle \mathbf{abc} \text{ is right-angled at } \mathbf{a} \text{ whenever } \triangle_{\mathbf{abc}} \text{ is imaginary. It is clear that } \triangle_{\mathbf{abc}} = \infty \iff \mathbf{a} = \mathbf{b} \neq \mathbf{c}. \text{ For any degenerate triangle with } \mathbf{a} \neq \mathbf{b}, \triangle_{\mathbf{abc}} \in \mathbb{R}.$

D. Kendall introduced the notion of the two-dimensional shape space in [2]. The set II and the extended plane \mathbb{C}_{∞} are models of this shape space. We call them the Sato's model and the Lester's model, respectively. In this paper we obtain a representation of the set $T(\triangle abc)$ in the Lester's model. Then this representation can be considered as a one-parameter set of triangle shapes or as a one-dimensional shape space. Moreover we shall describe all such one-dimensional shape spaces.

Let $\mathbf{z} \in \mathbb{C}$ be the shape of the triangle $\triangle \mathbf{abc}$, i. e. $\triangle_{\mathbf{abc}} = \mathbf{z}$. Without loss of generality we may suppose $\mathbf{a} = 0$, $\mathbf{b} = 1$, $\mathbf{c} = \mathbf{z}$. If the points $\mathbf{a}(t) \in \overline{\mathbf{ab}}$, $\mathbf{b}(t) \in \overline{\mathbf{bc}}$ and $\mathbf{c}(t) \in \overline{\mathbf{ca}}$ (see Fig. 1) are such that $\mathbf{a}(t) = (1 - t)\mathbf{a} + t\mathbf{b}$, $\mathbf{b}(t) = (1 - t)\mathbf{b} + t\mathbf{c}$, $\mathbf{c}(t) = (1 - t)\mathbf{c} + t\mathbf{a}$, where $t \in \mathbb{R}$, then $\mathbf{a}(t) - \mathbf{c}(t) = (1 - t)(\mathbf{a} - \mathbf{c}) + t(\mathbf{b} - \mathbf{a}) = [(1 - t)\mathbf{z} - t](\mathbf{a} - \mathbf{b})$ and $\mathbf{a}(t) - \mathbf{b}(t) = (1 - t)(\mathbf{a} - \mathbf{b}) + t(\mathbf{b} - \mathbf{c}) = (1 - 2t)(\mathbf{a} - \mathbf{b}) + t(\mathbf{a} - \mathbf{c}) = (1 - 2t + t\mathbf{z})(\mathbf{a} - \mathbf{b})$. Using (1), we find that

(2)
$$\mathbf{w} = \triangle_{\mathbf{a}(t)\mathbf{b}(t)\mathbf{c}(t)} = \frac{(1-t)\mathbf{z}-t}{t\mathbf{z}+1-2t}, \quad t \in \mathbb{R}$$

Three distinct points **a**, **b**, **c** $\in \mathbb{C}$ define commonly six distinct ordered triangles. The triangles $\triangle \mathbf{abc}$, $\triangle \mathbf{bca}$ and $\triangle \mathbf{cab}$ have the same orientation and different shapes. We obtain the shapes of the triangles $\triangle_{\mathbf{abc}} = \mathbf{z}$, $\triangle_{\mathbf{bca}} = \frac{1}{1-\mathbf{z}}$ and $\triangle_{\mathbf{cab}} = 1-\frac{1}{\mathbf{z}}$ replacing t in (2) by 0, 1 and 1/2, respectively.

The equation (2), obtained above, allows us to define a map of \mathbb{R} into the extended Euclidean plane. Let $\mathbf{z} \in \mathbb{C} \setminus \{\mathbb{R} \cup \omega \cup \overline{\omega}\}$ be fixed. We consider the map $\varphi_z : \mathbb{R} \longrightarrow \mathbb{C} \setminus \mathbb{R}$ such that

(3)
$$\varphi_{z}(t) = \frac{(1-t)\mathbf{z} - t}{t\mathbf{z} + 1 - 2t}, \quad t \in \mathbb{R}.$$

Then, φ_z is a curve in the Euclidean plane which corresponds to a one-parameter family of triangle shapes. In other words, φ_z represents a one-dimensional shape space. Moreover, $\mathbf{z} \in \varphi_z$, $\frac{1}{1-\mathbf{z}} \in \varphi_z$ and $\frac{\mathbf{z}-1}{\mathbf{z}} \in \varphi_z$.

109

Proposition 1. The curve φ_z , defined by (3) is a circle in $\mathbb{C} \setminus \mathbb{R}$, passing through the points \mathbf{z} , $\frac{1}{1-\mathbf{z}}$ and $\frac{\mathbf{z}-1}{\mathbf{z}}$.

Proof. It is well known that four points \mathbf{p} , \mathbf{q} , \mathbf{r} and \mathbf{s} in \mathbb{C} are concyclic or collinear if and only if the cross ratio $[\mathbf{p}, \mathbf{q}; \mathbf{r}, \mathbf{s}] = \frac{(\mathbf{p} - \mathbf{r})(\mathbf{q} - \mathbf{s})}{(\mathbf{p} - \mathbf{s})(\mathbf{q} - \mathbf{r})}$ is real. From $\triangle_{\mathbf{z}} \frac{1}{1 - \mathbf{z}} \frac{\mathbf{z} - 1}{\mathbf{z}} = \frac{\mathbf{z} - 1}{\mathbf{z}} = \frac{\mathbf{z} - 1}{\mathbf{z}} \in \mathbb{C} \setminus \mathbb{R}$ it follows that the points \mathbf{z} , $\frac{1}{\mathbf{z}}$ and $\frac{\mathbf{z} - 1}{\mathbf{z}}$ are not collinear.

 $\frac{\mathbf{z} - \frac{\mathbf{z} - 1}{\mathbf{z}}}{\mathbf{z} - \frac{1}{1 - \mathbf{z}}} = \frac{\mathbf{z} - 1}{\mathbf{z}} \in \mathbb{C} \setminus \mathbb{R} \text{ it follows that the points } \mathbf{z}, \frac{1}{1 - \mathbf{z}} \text{ and } \frac{\mathbf{z} - 1}{\mathbf{z}} \text{ are not collinear.}$ Besides.

$$\Delta_{\varphi_{z}(t)} \underline{\mathbf{z}-1}_{\mathbf{z}} \frac{1}{1-\mathbf{z}} = \frac{\varphi_{z}(t) - \frac{\mathbf{z}-1}{\mathbf{z}}}{\varphi_{z}(t) - \frac{1}{1-\mathbf{z}}} = \frac{\frac{(1-t)\mathbf{z}-t}{t\mathbf{z}+1-2t} - \frac{1}{1-\mathbf{z}}}{\frac{(1-t)\mathbf{z}-t}{t\mathbf{z}+1-2t} - \frac{\mathbf{z}-1}{\mathbf{z}}} = \frac{1-t}{1-2t} \cdot \frac{\mathbf{z}}{\mathbf{z}-1} \cdot \frac{\mathbf{z}-1}{\mathbf{z}}$$

Hence,

$$[\varphi_{z}(t), \mathbf{z}; \frac{1}{1-\mathbf{z}}, \frac{\mathbf{z}-1}{\mathbf{z}}] = \triangle_{\mathbf{z}} \frac{1}{1-\mathbf{z}} \frac{\mathbf{z}-1}{\mathbf{z}} \cdot \triangle_{\varphi_{z}(t)} \frac{\mathbf{z}-1}{\mathbf{z}} \frac{1}{1-\mathbf{z}} = \frac{1-t}{1-2t} \in \mathbb{R}$$

for $t \neq 1/2$. Since $\varphi_z(1/2) = \frac{\mathbf{z} - 1}{\mathbf{z}} \in \varphi_z$, the proof is completed. \Box

Proposition 2. $\mathbf{w} \in \varphi_z \iff \mathbf{z} \in \varphi_W$.

Proof. First we shall prove that $\varphi_z \equiv \varphi_W$ if $\mathbf{w} \in \varphi_z$. From $\mathbf{w} \in \varphi_z$ it follows that there exists $t \in \mathbb{R}$ such that $\mathbf{w} = \frac{(1-t)\mathbf{z}-t}{t\mathbf{z}+1-2t}$. Since

$$\frac{1}{1-\mathbf{w}} = \frac{1}{1-\frac{(1-t)\mathbf{z}-t}{t\mathbf{z}+1-2t}} = \frac{t\mathbf{z}+1-2t}{(2t-1)\mathbf{z}+1-t} = \frac{(1-t)\frac{1}{1-\mathbf{z}}-t}{t\frac{1}{1-\mathbf{z}}+1-2t},$$

then $\frac{1}{1-\mathbf{w}} \in \varphi_{\frac{1}{1-z}} \equiv \varphi_z$. Similarly, $\frac{\mathbf{w}-1}{\mathbf{w}} \in \varphi_z$. Since the circle $\varphi_{\mathbf{w}}$ is unique, we obtain that $\varphi_z \equiv \varphi_{\mathbf{w}}$. Hence, if $\mathbf{w} \in \varphi_z$, then $\mathbf{z} \in \varphi_z \equiv \varphi_{\mathbf{w}}$ and vice versa. \Box

Corollary 1. Let $\mathbf{z}_i \in \mathbb{C} \setminus \mathbb{R}$, $\mathbf{z}_i \neq \omega, \overline{\omega}, i = 1, 2$. Then the circles φ_{z_1} and φ_{z_2} , defined by (3) are either coinciding or non-intersecting.

Proof. The case $\mathbf{z}_1 = \mathbf{z}_2$ is trivial. Let $\mathbf{z}_1 \neq \mathbf{z}_2$. If either $\mathbf{z}_2 \in \{\frac{1}{1-\mathbf{z}_1}, \frac{\mathbf{z}_1-1}{\mathbf{z}_1}\}$ or $\mathbf{z}_1 \in \{\frac{1}{1-\mathbf{z}_2}, \frac{\mathbf{z}_2-1}{\mathbf{z}_2}\}$ then $\varphi_{z_1} \equiv \varphi_{z_2}$. Otherwise, let there exists $\mathbf{w} \in \varphi_{z_1} \cap \varphi_{z_2}$ and $\varphi_{z_1} \not\equiv \varphi_{z_2}$, i. e. $\mathbf{w} \in \varphi_{z_1}$ and $\mathbf{w} \in \varphi_{z_2}$. Applying Proposition 2 we obtain $\varphi_{z_1} \equiv \varphi_{\mathbf{w}} \equiv \varphi_{z_2}$ which is a contradiction. \Box 110

Fig. 2. A Poncelet pencil

When $\mathbf{z} \in \{\omega, \overline{\omega}\}$ the map φ_z is constant, i. e. $\varphi_{\omega}(t) = \omega$ and $\varphi_{\overline{\omega}}(t) = \overline{\omega}$ for any $t \in \mathbb{R}$. The real line is an axis of symmetry for the set of all circles φ_z , $\mathbf{z} \in \mathbb{C} \setminus \mathbb{R}$. Then, taking into account the above assertion, we prove the main result in this paper.

Theorem 1. The set Σ of all one-dimensional shape subspaces φ_z , defined by (3) for $\mathbf{z} \in \mathbb{C} \setminus \mathbb{R}$, is a Poncelet pencil of circles with limit points ω and $\overline{\omega}$ excepting the radical axis (see Fig. 2)

The definition and the properties of the Poncelet pencils of circles are known from [1] and [3].

We can find the center \mathbf{w}_0 of the circle φ_z , $\mathbf{z} \in \mathbb{C} \setminus \mathbb{R}$, $\mathbf{z} \neq \omega$, $\overline{\omega}$ using the inversion $\mathbf{z} \longrightarrow \mathbf{w}_0 + \frac{R^2}{\overline{\mathbf{z}} - \overline{\mathbf{w}}_0}$, where R is the radius of φ_z . So, the point \mathbf{w}_0 is the solution of the equation $[\mathbf{w}_0, \mathbf{z}; \frac{1}{1-\mathbf{z}}, \frac{\mathbf{z}-1}{\mathbf{z}}] = \overline{[\infty, \mathbf{z}; \frac{1}{1-\mathbf{z}}, \frac{\mathbf{z}-1}{\mathbf{z}}]} = \overline{\Box}_{\mathbf{z}} \frac{1}{1-\mathbf{z}} \frac{\mathbf{z}-1}{\mathbf{z}} = \frac{\overline{\mathbf{z}}-1}{\overline{\mathbf{z}}}$. Hence $\mathbf{w}_0 = \frac{\mathbf{z} - |\mathbf{z}|^2 - 1}{\mathbf{z} - \overline{\mathbf{z}}}$. If $(x, y) \in \mathbb{R}^2$ are the Cartesian coordinates of the point $\mathbf{z} \in \mathbb{R}^2 \cong \mathbb{C}$, i. e. $\mathbf{z} = x + i.y$, then the Cartesian coordinates $(x_{\mathbf{W}_0}, y_{\mathbf{W}_0})$ of the point \mathbf{w}_0 are $\left(\frac{1}{2}, \frac{1 - x + x^2 + y^2}{2y}\right)$.

For the radius
$$R$$
 of φ_z we get

$$R = |\mathbf{z} - \mathbf{w}_0| = \left|\frac{\mathbf{z}^2 - \mathbf{z} + 1}{\mathbf{z} - \overline{\mathbf{z}}}\right| = \frac{1}{2|y|}\sqrt{(x^2 - y^2 - x + 1)^2 + y^2(2x - 1)^2}.$$

The imaginary line in $\mathbb{R}^2 \cong \mathbb{C}$, representing all right-angled triangles in the plane, has at most two common points with any circle of Σ . Therefore, the Poncelet pencil of circles Σ can be divided into three subset Σ_0 , Σ_1 and Σ_2 of one-dimensional shape subspaces, containing 0, 1 or 2 right-angled triangles, respectively. Since $R = \frac{1}{2} \Leftrightarrow y^2 = (x^2 - y^2 - x + 1)^2 + y^2(2x-1)^2 \Leftrightarrow (1-x+x^2+y^2)^2 = 4y^2 \Leftrightarrow y_{W_0} = \pm 1$ we have that Σ_1 has only two circles k_1 , k_2 with centers $c_1(1/2, 1)$ and $c_2(1/2, -1)$, respectively. These circles are the one-dimensional shape spaces associated to the isosceles right-angled triangles. Thus the centers of the circles of Σ_0 are between the points c_1 and c_2 . Otherwise, we get Σ_2 .

In [5], H. Sato does not explore the case when the triangles $\triangle abc$ are degenerated. Having in mind the previous considerations we may examine this case. If the triangle 111 $\triangle \mathbf{abc}$ is degenerated, i.e. $\triangle_{\mathbf{abc}} = \mathbf{z} \in \mathbb{R}$, then the triangle $\triangle \mathbf{a}(t)\mathbf{b}(t)\mathbf{c}(t)$ is also degenerated and

$$\mathbf{w} = \triangle_{\mathbf{a}(t)\mathbf{b}(t)\mathbf{c}(t)} = \frac{(1-t)\mathbf{z}-t}{t(\mathbf{z}-2)+1} \in \mathbb{R} \text{ for any } \mathbf{z}, \ t \in \mathbb{R}.$$

Since $t = \frac{\mathbf{z} - \mathbf{w}}{\mathbf{w}(\mathbf{z} - 2) + \mathbf{z} + 1}$, the one-dimensional shape space associated to the degenerated \triangle **abc** is either $\mathbb{R} \cup \infty$ when $\triangle_{\mathbf{abc}} = \mathbf{z} \in \mathbb{R} \setminus \{2\}$ or \mathbb{R} when $\triangle_{\mathbf{abc}} = \mathbf{z} = 2$.

Finally, we may conclude that all one-dimensional shape spaces form a Poncelet pencil of circles in the Euclidean plane with limit points ω and $\overline{\omega}$.

REFERENCES

[1] M. BERGER. Geometry I. Springer, Berlin, 1994.

[2] D. KENDALL. Shape manifolds, procrustean metric, and complex projective spaces. Bull. London Math. Soc., 16 (1984), 81-121.

[3] R. LANGEVIN, P. WALCZAK. Holomorphic maps and pencils of circles. Prépublications de l'Institut de Mathématiques de Bourgogne, No. 370, Dijon, 2004.

[4] J. A. LESTER. Triangles I: Shapes. Aequationes Math., 52 (1996), 30-54.

[5] H. SATO. Orbits of triangles obtained by interior division of sides. Proc. Japan Acad., 74 (1998), 4-9.

Faculty of Mathematics and Informatics Shumen University 115, Universitetska Str 9712 Shumen, Bulgaria e-mail: g.georgiev@shu-bg.net e-mail: r.encheva@fmi.shu-bg.net

ЕДНОМЕРНИ ШЕЙП ПРОСТРАНСТВА

Георги Хр. Георгиев, Радостина П. Енчева

Х. Сато въвежда затворена изпъкнала крива, съответна на един неизроден триъгълник, използвайки класове на еквивалентност от подобни триъгълници. В работата показваме, че тази крива е окръжност в модела на Лестър на двумерното шейп пространство. Доказваме също, че всички такива окръжности образуват сноп на Понселе.