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ON THE AUTOMORPHISM GROUP OF THE
HYPOTHETICAL 2-(40,10,3) DESIGN*

Ivan N. Landjev, Kristian K. Haralambiev

In this paper, we prove that the full automorphism group of the hypothetical qua-
siresidual 2-(40,10,3) design is a 2-group or the trivial group.

1. Preliminaries. We assume that the reader is familiar with the general notions
and results from design theory [1,3,6]. In this paper, we consider the automorphisms of
the hypothetical quasiresidual 2-(40,10,3) design. This is one of the smallest parameter
sets (with respect to the number of points) for block design for which the existence
question is still undecided [5]. The coresponding symetric 2-(53,13,3) does not exist by
the Bruck-Ryser-Chowla Theorem. It has been proved by Topalova [7] that the only
prime divisors of the full automorphism group of a design with the above parameters are
2 and 3. In this paper, we rule out the possibility of an automorphism of order 3.

2. Some general results. We start by a theorem related to the Fisher inequality.

Theorem 2.1. Let D be a 2− (v, k, λ) design with an automrphism σ of prime order

p, where p|λ, p 6 |k and p 6 |r. Let further f be the number of fixed points and g – the

number of fixed blocks of D under σ. Then f ≤ g.

Proof. Denote by T the part of the incidence matrix of D corresponding to the
fixed points and the fixed blocks. Since the number of fixed blocks containing a fixed
point (resp., a pair of fixed points) is ≡ r (mod p) (resp., ≡ λ (mod p)), T satisfies the
equality

(1) TT t = (r − λ)I + λJ (mod p),

where I is the unit matrix of order v and J is the all-one matrix of order v. From (1), we
get detTT t = rk(r − λ)v−1 which implies that det(TT t) 6= 0 considered as an element
of Fp. Hence

g ≥ rankpT ≥ rankpTT t = f.

Let A be the (point-by-block) incidence matrix of a 2− (v, k, λ) design. The intersec-
tion matrix S = AtA = (sij) is defined as the matrix which has in its (i, j)-th position
the number of common points of the i-th and j-th block. The following inequality is due
to Connor [2].

Theorem 2.2. [2]

−(r − λ − k) ≤ sij ≤
2λk + r(r − λ − k)

r
.
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Further, we make use of a simple observation by Connor [2], used also by Hall, Roth,
van Rees and Vanstone [4] in the investigation of the parameters 2 − (22, 8, 4). It allows
us to prove restrictions on the intersection numbers of a given design D. Again, let A
be the incidence matrix of the 2− (v, k, λ) design D and let S be its intersection matrix.
Clearly,

S2 = At(AAt)At = At((r − λ)I + λJ)A = (r − λ)S + λk2J.

The projection matrix C of D is defined by

C = r(r − λ)I + λkJ − rS.

It is easily checked that C2 = r(r − λ)C. Therefore, C corresponds to a positive semi-
definite quadratic form and no principal minor of C can have a negative determinant.

3. The hypothetical 2 − (40, 10, 3) designs. Let D be a 2-(40,10,3) design.
Applying the results from the previous section, we obtain the following properties of
such designs:

(A) two blocks of D meet in at most 4 points, i.e. sij ≤ 4;

(B) there cannot exist three blocks Bi, i = 1, 2, 3, in D with |Bi ∩ Bj | = 4, for any
pair (i, j);

(C) two fixed blocks intersect in 0 or 3 fixed points.

For the intersection numbers, one gets the system:
4∑

i=0

ni = 51,

4∑

i=1

ini = 120,

4∑

i=2

ini = 90,

which has the following solutions:

(2)

n0 n1 n2 n3 n4

1 0 30 20 0
0 3 27 21 0
0 2 30 18 1
0 1 33 15 2
0 0 36 12 3

Let σ be an automorphism of order 3 of D. Denote by s (resp. t) the number of
nontrivial point (resp. block) orbits under σ. Obviously f + 3s = 40 and g + 3t = 52.
By Theorem 1, we have f ≤ g.

Denote by M = (mij) the orbit matrix of D with respect to σ. Let ti be the number of
fixed blocks containing the points of the i-th point orbit; similarly, let tcd be the number
of fixed blocks containing the point orbits with numbers c and d. The following identities
are proved by a straightforward counting:
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∑

j

mij = r − ti,(3)

∑

j

mij(mij − 1) = (p − 1)(λ − ti),(4)

∑

j

mcjmdj = p(λ − tcd), c 6= d.(5)

Theorem 3.1. g ≤ 10.

Proof. The orbit matrix M can be represented in the form

M =

(
T U
V W

)

,

where T corresponds to the fixed points and blocks; U – to the fixed point and nontrivial
block orbits; V – to the nontrivial point orbits and the fixed blocks and W – to the
nontrivial point and block orbits. By (3–5), a row in W has one of the following five
forms (up to a permutation):

(3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, . . . , 0), (2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, . . . , 0),

(2, 2, 1, . . . , 1
︸ ︷︷ ︸

8

, 0, . . . , 0), (2, 1, . . . , 1
︸ ︷︷ ︸

9

, 0, . . . , 0), (1, . . . , 1
︸ ︷︷ ︸

10

, 0, . . . , 0).

Assume g ≥ 16, i.e. t ≤ 12. The scalar product of two rows of W is > 6 and, therefore,
no fixed block contains two nontrivial point orbits. Count the triples (P, Q, B), where P
and Q are fixed points and B is a fixed block that contains P and Q, one gets

(
f
2

)

· 3 ≥ 16

(
7
2

)

,

i.e. f ≥ 16. By Theorem 2.1, f = 16.
From f = g we get that any two fixed blocks meet in 0 or 3 fixed points. Hence, there

exist two possibilities:
(a) any fixed block contains 7 fixed points
(b) 15 fixed blocks contain 7 fixed points and one fixed block has 10 fixed points.
Assume that the fixed point P is in 10 fixed blocks. Then, the number of the triples

(P, Q, B), where Q is a fixed point, B is a fixed block and P, Q ∈ B is ≥ 10 · 6 = 60.
Hence f ≥ 1 + (60/3) = 21, a contradiction. Therefore, each fixed point is in ≤ 7 fixed
blocks and case (b) is impossible.

Furthermore, note that exactly 8 pairs of fixed points do not appear in fixed blocks.
Now case (a) is ruled out by counting the number of nontrivial block orbits containig
fixed points. Their number is t ≥ 16 · 2 − 8 = 24, a contradiction.

Now, let g = 13 and count as above the triples (P, Q, B), where P and Q are fixed
points, B is a fixed block and P, Q ∈ B. As before, a fixed block cannot contain two

nontrivial point orbits. Hence,

(
f
2

)

· 3 ≥

(
7
2

)

· 13, i.e. f > 13, a contradiction to

Theorem 2.1.

Theorem 3.2. The case f = 10, g = 10 is impossible.
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Proof. For a given fixed point x, denote by rx the number of fixed blocks containing
x. Obviously, rx ≡ 1 (mod 3). It is impossible to have rx = 10, since then ry = 1 for
all other fixed points. It is impossible to have also a fixed point x with rx = 7. Since
every two fixed blocks intersect in 0 or 3 fixed points, the intersection of two fixed blocks
containing x is exactly 3. Then the matrix













30 −9 −9 −9 −9 −9 −9
−9 30 −9 −9 −9 −9 −9
−9 −9 30 −9 −9 −9 −9
−9 −9 −9 30 −9 −9 −9
−9 −9 −9 −9 30 −9 −9
−9 −9 −9 −9 −9 30 −9
−9 −9 −9 −9 −9 −9 30













is a principal minor of C and has a negative determinant. If there is a point x with
rx, we can prove that there exist five fixed blocks every two of them meeting in three
points. Again, this gives principal minor of negative determinant. Thus, every fixed
point appears in exactly one fixed block and T = I10.

By the fact that the Ramsey number K(3, 4) = 9 there exist either four nontrivial
point orbits every two of which meet in a fixed block, or three such orbits no two of which
meet in the fixed part. The first alternative is clearly impossible since the corresponding
four rows do not have a common zero position in the nonfixed part. For the second
alternative, there exist four rows in W that are equivalent to one of





1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 1 1 1 1 0 0 1 0 0



 ,





1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 1 1 1 0 1 1 0 0 0



 .

Now, consider a point orbit which is contained in the unique fixed block not containing
the three disjoint point orbits. The corresponding row in W has scalar product 9 with
the first two rows and 6 with the third. This is clearly impossible.

Theorem 3.3. If f = 1 then g ≤ 4, i.e. the cases f = 1, g = 7 and f = 1, g = 10
are impossible.

Proof. Every two fixed blocks intersect in 1 or 4 points. Hence the intersection
numbers for any fixed block satisfy n1 + n4 ≥ 6, a contradiction to (2).

Theorem 3.4. The cases f = 7, g = 10 and f = 4, g = 10 are impossible.

Proof. We are going to sketch the proof for f = 7, g = 10. The case of f = 4, g = 10
is proved analogously. It is readily seen that all fixed contain exactly one fixed point.
Moreover, one of the fixed points, say a, is contained in four fixed blocks while the
remaining fixed points are contained in exactly one fixed block each. Let B1, . . . , B4 be
the fixed blocks containing a and B6, . . . , B10 be the remaining fixed blocks. For every
1 ≤ i ≤ 4 and every 5 ≤ j ≤ 10, we have |Bi ∩ Bj | = 3 since it is impossible to have
n0 + n1 + n4 ≥ 4 for some block, cf. (2). Now |Bi ∩ Bj| = 1 for every 1 ≤ i < j ≤ 4.
The number of nontrivial point orbits in the blocks B1, . . . , B4 is 12, a contradiction to
f = 7.
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For designs with f, g ≤ 7, all the possibilities for the matrices T , U and V are easily
constructed. It turns out (computer check) that they cannot be extended to a matrix
that satisfies equations (3–5). Consequently, designs with parameters 2-(40,10,3) and an
automorphism of order 3 do not exist. Thus we have the following result.

Theorem 3.5. There exist no 2-(40, 10, 3) designs with an automorphism of order 3.
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ВЪРХУ ГРУПАТА ОТ АВТОМОРФИЗМИ НА ДИЗАЙНИТЕ С
ПАРАМЕТРИ 2-(40,10,30)

Иван Н. Ланджев, Кристиян К. Хараламбиев

В тази статия доказваме, че пълната група от автоморфизми на хипотетичния
квазиоостатъчен 2-(40,10,3) дизайн е 2-група или тривиалната група.
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