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The theory of quasivector spaces has been applied for a class of zonotopes in the
plane defined as positive combinations of basic centered segments. This leads to an
implicit presentation of the zonotopes by means of two vectors: one for the center
and one for the centered zonotope obtained by translation of the original zonotope
in the origin. Using this presentation, the order relation inclusion of zonotopes in
the plane has been studied. More specifically, sufficient conditions for inclusion have
been stated in terms of the implicit presentation.

1. Introduction. Certain practically important systems, such as various classes of
convex bodies, zonotopes, intervals, interval vectors and functions, stochastic numbers,
etc., are abelian cancellative monoids with respect to addition (in Minkowski sense).
With respect to multiplication by scalars they satisfy the axioms of a linear space with
one exception: the second distributive law is weakened up to a so-called quasidistributive
law, stating that distributivity must hold only for equally signed scalars. These spaces
naturally involve a partial order relation — inclusion, which is isotone with respect to
both addition and multiplication by scalar. Every such space can be embedded into an
abelian additive group. The latter, when equipped with multiplication by scalars, turns
into a so-called quasivector space.

Every quasivector space is a direct sum of a vector space and a quasivector space
of symmetric elements called symmetric quasivector space [2], [3]. In the finite case
every vector space is isomorphic to (Rn, +, R, ·) and every symmetric quasivector space
is isomorphic to a similar canonic space (Rk, +, R, ∗) which differs from a vector space
by its multiplication by scalars “∗”. In practice this means that intervals and zonotopes
are naturally presented by their centers and symmetrical (origin centered) parts. Using
such presentation, we discuss the computation with zonotopes in the plane, and more
specifically, the inclusion relation between zonotopes in the plane. Our purpose is to use
only the implicit presentation of zonotopes as Minkowski sums of linear segments [1],
[4]. Within such frames using ideas from the theory of quasivector spaces, we formulate
sufficient conditions for inclusion (containment) of a class of zonotopes in the plane. In
Section 2 we briefly introduce some notation and give some properties of quasivector
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spaces. Section 3 is devoted to the presentation of zonotopes, and Section 4 – to the
inclusion of zonotopes in the plane.

2. Quasivector Spaces. By R we denote the set of reals; we use the same notation
for the linearly ordered field of reals R = (R, +, ·,≤). For any integer n ≥ 1 denote by R

n

the set of all n-tuples (α1, α2, . . . , αn), where αi ∈ R. The set R
n forms a vector lattice

Vn = (Rn, +, R, ·,≤) under addition, multiplication by scalars and the partial order “≤”.
We recall that (α1, α2, . . . , αn) ≤ (β1, β2, . . . , βn) means αi ≤ βi for all i = 1, . . . , n.

Quasivector spaces are defined as follows [2], [3]: A quasivector space (over R),
denoted (Q, +, R, ∗), is an abelian group (Q, +) with multiplication by scalars “∗”: R ×
Q −→ Q, such that for a, b, c ∈ Q, α, β, γ ∈ R: γ∗(a+b) = γ∗a+γ∗b, α∗(β∗c) = (αβ)∗c,
1∗a = a, (α+β)∗c = α∗c+β∗c, if αβ ≥ 0. The last property is called quasidistributive
law.

Let a be an element of a quasivector space (Q, +, R, ∗), a ∈ Q. The operator ¬a
= (−1)∗a is called negation. We write a ¬ b = a+(¬b). Due to the quasidistributive law
a ¬ a = 0 may not hold, thus generally negation is different from opposite. An element
a ∈ Q with a ¬ a = 0 is called linear. An element a ∈ Q with the property ¬ a = a is
called centered or (origin) symmetric.

The canonic symmetric quasivector space. Consider the set R
k, k ≥ 2, of all

k-tuples (α1, α2, . . . , αk), αi ∈ R, with the following operations:

(α1, α2, . . . , αk) + (β1, β2, . . . , βk) = (α1 + β1, α2 + β2, . . . , αk + βk),

γ ∗ (α1, α2, . . . , αk) = (|γ|α1, |γ|α2, . . . , |γ|αk), γ ∈ R.

It is easy to check that the space Sk = (Rk, +, R, ∗) thus defined is a quasivector
space over R. Negation ¬(α1, α2, . . . , αk) = (α1, α2, . . . , αk) is the same as identity,
which means that all elements of Sk = (Rk, +, R, ∗) are symmetric. Due to this the space
Sk = (Rk, +, R, ∗) is called symmetric quasivector space. The opposite operator in Sk is:
opp (α1, α2, . . . , αk) = (−α1,−α2, . . . ,−αk).

If we define in Sk = (Rk, +, R, ∗) a multiplication by scalars “·” by means of:

γ · α =

{

γ ∗ α, if γ ≥ 0,
γ ∗ opp(α), if γ < 0,

for α = (α1, . . . , αk) ∈ R
k, γ ∈ R, then we obtain the familiar vector (linear) space

Vk = (Rk, +, R, ·). Thus, we see that a symmetric quasivector space differs from a linear
space only by the definition of multiplication by scalar.

Consider the direct sum Vl
⊕

Sk of an l-dimensional vector space Vl = (Rl, +, R, ·)
and a k-dimensional symmetric quasivector space Sk = (Rk, +, R, ∗). The elements of
Vl

⊕

Sk are denoted as a = (a′; a′′) with (a′; 0) ∈ Vl, (0; a′′) ∈ Sk. For a, b ∈ Vl
⊕

Sk,
γ ∈ R, we define:

a + b = (a′; a′′) + (b′; b′′) = (a′ + b′; a′′ + b′′),(1)

γ ∗ a = γ ∗ (a′; a′′) = (γ · a′; γ ∗ a′′) = (γa′; |γ|a′′).(2)

It is immediately checked that Vl
⊕

Sk is a quasivector space (in general, neither
linear, nor symmetric). Negation in Vl

⊕

Sk is ¬(a′; a′′) = (−a′; a′′) and opposite
is: opp (a′; a′′) = (−a′;−a′′). The composition of negation and opposite is a new
automorphic transformation (involution) called conjugation (dual operator): (a′; a′′)

−

= ¬opp(a′; a′′) = ¬(−a′;−a′′) = (a′;−a′′).
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We use the notation a− = ¬opp(a) = opp(¬a) for the dual operator in a general
quasivector space. The relations ¬opp(a) = opp(¬a) = a− imply opp(a) = ¬(a−)
= (¬a)−, shortly opp(a) = ¬a−. Thus, the symbolic notation ¬a− can be used instead
of opp(a), and, for a ∈ Q we can write a ¬ a− = 0, resp. ¬a− + a = 0.

Assume that Q is a quasivector space. The subsets of linear and centered elements
Q′ = {a ∈ Q | a ¬ a = 0}, resp. Q′′ = {a ∈ Q | a = ¬a} form subspaces of Q. The
subspace Q′ is a vector space. The space Q′ = {a ∈ Q | a ¬ a = 0} is called the linear
subspace of Q and the space Q′′ = {a ∈ Q | a = ¬a} is called the symmetric subspace or
centered subspace of Q.

Theorem 1. [2] For every quasivector space Q we have Q = Q′
⊕

Q′′. More
specifically, for every x ∈ Q we have x = u + v with unique u = (1/2) ∗ (x + x−) ∈ Q′,
and v = (1/2) ∗ (x ¬ x) ∈ Q′′.

Theorem 1 implies that computation in a quasivector space Q = Q′
⊕

Q′′ is reduced
by means of (1), (2) to computation in the spaces Q′ and Q′′. All vector space concepts,
such as subspace, sum and direct sum, linear combination, basis, etc., are extended to
symmetric quasivector spaces [2]. As we know, if the vector space Q′ is finite, spanned
over n basic vectors, then it is isomorphic to Vn. A similar result holds true for a
symmetric quasivector space as follows.

Theorem 2. [2] Any symmetric quasivector space over R, with a basis of k elements,
is isomorphic to Sk = (Rk, +, R, ∗).

3. Computation with Zonotopes in the Plane. Centered zonotopes. A
centrally symmetric convex body with center at the origin is called centered convex body
(cf. [5], p. 383).

In what follows we restrict ourselves to 2D-zonotopes, that is zonotopes in the Euclid-
ean plane E2 with a fixed coordinate system Oxy. Zonotopes are special convex bodies
and have several different presentations. In this work we shall make use of the presenta-
tion based on the Minkowski sum of segments. The latter presentation is in accordance
with the general theory of quasivector spaces.

Every unit vector e = (cosϕ, sin ϕ) ∈ E
2, ϕ ∈ [0, π), defines a centered segment ẽ

with endpoints −e and e: ẽ = conv{−e, e} = {λe | λ ∈ [−1, 1]}, where “conv” means
the convex hull, see [5]. In the sequel Ov denotes the line passing through the origin
and the point v and ṽ (or ṽ ) denotes the centered (origin symmetric) segment on the
line Ov comprising the points between −v and v, that is ṽ = conv{−v, v}. Note that v
is a vector, v ∈ R

2, whereas ṽ is a centered linear segment. The latter is the simplest
example (together with a point) of a zonotope. The sum of two (centered) segments
αi ∗ ẽ(i) + αj ∗ ẽ(j) is a (centered) parallelogram in the plane.

For ρ ∈ R denote s = ρe. Multiplication of a unit centered segment ẽ by a scalar
ρ ∈ R is:

s̃ = ρ ∗ ẽ = (ρe)̃ = conv{−s, s} = {λρe | λ ∈ [−1, 1]}.

Multiplication of a centered (not necessarily unit) segment (ρe)̃ by a scalar γ ∈ R satisfies
γ ∗ (ρe)̃ = ((γρ)e)̃ = (γρ) ∗ ẽ. Note that −1 ∗ s̃ = s̃; more generally, −ρ ∗ s̃ = ρ ∗ s̃ (for
comparison, ρs 6= −ρs). Thus the “quasivector” multiplication by scalars “∗” is different
from the linear multiplication by scalars “∗”, both operations coinciding for nonnegative
scalars.
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Assume that we are given a mesh of k numbers (angles) ϕi in the interval [0, π), such
that

0 ≤ ϕ1 < ϕ2 < · · · < ϕk < π.(3)

A system of the form (3) is called regular. Every ϕi defines a unit vector e(i)

= (cosϕi, sin ϕi), respectively a centered unit segment: ẽ(i) = conv{−e(i), e(i)}. The
induced systems of unit vectors, resp. segments:

e(1), e(2), . . . , e(k), ẽ(1), ẽ(2), . . . , ẽ(k),(4)

are also called regular. The elements of the systems (4) are cyclically anticlockwise
ordered; the point e(1) lies on the Ox axis of the plane coordinate system Oxy.

In the sequel we shall assume that k is an integer ≥ 2. For αi ≥ 0, i = 1, . . . , k, the
vectors αie

(i) = (αi cosϕi, αi sinϕi) induce centered segments αi ∗ ẽ(i) = (αie
(i))̃ . The

positive combination of unit centered segments

c =

k
∑

i=1

αi ∗ ẽ(i), αi ≥ 0,(5)

is a centered zonotope. By adding a translate vector v we obtain a translated zonotope
z = v + c.

The sum of the segments si = αi ∗ ẽ(i) is understood in Minkowski sense (vector sum):
k

∑

i=1

si = {

k
∑

i=1

γie
(i) | γi ∈ [−αi, αi]}.(6)

The zonotope (5) has 2k vertices: v(1), v(2), . . . , v(k), −v(1),−v(2), . . . ,−v(k) [5]; sym-
bolically we have z = conv{v(1), v(2), . . . , v(k),−v(1),−v(2), . . . ,−v(k)}, where

v(1) = α1e
(1) + α2e

(2) + · · · + αk−1e
(k−1) + αke(k),

v(2) = −α1e
(1) + α2e

(2) + · · · + αk−1e
(k−1) + αke(k),

. . . . . . . . . . . . . . . . . . . . ,

v(i) = −α1e
(1) − · · · − αi−1e

(i−1) + αie
(i) + · · · + αke(k),(7)

. . . . . . . . . . . . . . . . . . . . ,

v(k) = −α1e
(1) − α2e

(2) + · · · − αk−1e
(k−1) + αke(k).

The vertices v(1), v(2), . . . , v(k) given by (7) are lying in ciclic order anticlockwise in a
half-plane between the vectors v(1) and v(k) = −v(1) + 2αke(k).

In accordance with Theorem 1 zonotopes in V2 ⊕ Sk will be presented as z = u + v
= (z′; 0) + (0, z′′), where z′ is the translate vector (center) in the plane V2 and z′′ is the
symmetric zonotope from Sk. Thus every zonotope z ∈ V2 ⊕ Sk can be presented in the
form:

z =
k

∑

i=1

zk
′e(i) +

k
∑

i=1

z′′k ∗ ẽ(i),(8)

that is z = (z′; z′′), where the k-tuple z′ = (z1
′, . . . , zk

′) ∈ R
k presents the translating

vector z′ =
∑k

i=1 zk
′e(i) and z′′ = (z′′1 , . . . , z′′k ) ∈ R

k presents the symmetric zonotope

z′′ =
∑k

i=1 z′′k ∗ẽ(i). The form z = (z′; z′′) = (z1
′, . . . , zk

′; z′′1 , . . . , z′′k ) will be further called
M -presentation or M -decomposition to remind that this form is used in the Minkowski
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sum (6).

Relation (8) can also be written in the form z =
∑k

i=1 zi, where

zi = (zi
′; z′′i ) = zk

′e(i) + z′′k ∗ ẽ(i), i = 1, . . . , k,(9)

are segments on the line Oe(i) centered at zk
′e(i) and having a centered part z′′k ∗ ẽ(i).

Given a k-tuple γ = (γ1, . . . , γk) ∈ R
k the expression v =

∑k

i=1 γie
(i) presents a

vector (point) in E2.

For simplicity w. l. o. g. we assume below that the mesh (3) is uniform, that is
ϕi = π(i − 1)/k, i = 1, . . . , k; in this case the respective systems (4) are also called
uniform.

4. Sufficient Conditions for Inclusion of Zonotopes. Consider a class of
centered zonotopes in the plane E2 with coordinate system Oxy with a basis of k uniform
regular unit segments. Define the more general class of all zonotopes in the plane that
are translates of centered zonotopes by means of vectors (points) of the plane E. Every
zonotope z in the plane is a Minkowski sum z = v + c of a vector v and a centered
zonotope c and hence can be presented implicitly by two k-tuples: one for the translate
vector v using its M -presentation, and one for the symmetric part c, which is an element
of Sk = (Rk, +, R, ∗). The following propositions are straightforward.

Proposition 1. For two centered zonotopes c = (0; c′′), s = (0; s′′) we have c′′

≤ s′′ =⇒ cs.

Proposition 2. In the case of n-dimensional intervals y = (y′; y′′), z = (z′; z′′) the
inclusion order y ⊆ z is equivalent to |z′ − y′| ≤ z′′ − y′′, that is

(10) |z′ − y′| ≤ z′′ − y′′ ⇐⇒ yz.

Considering the situation in the plane E2 we shall make use of Proposition for n = 1
and n = 2. We next look for generalizing (10) for zonotopes in the plane.

Note that the points (7) are vertices of the zonotope (5) and hence are included
(contained) in the zonotope z, v(i)z, i = 1, . . . , k.

Lemma 1. For every α = (α1, . . . , αk) ∈ R
k, α ≥ 0, the point p =

∑k

i=1 ±αie
(i) is

included (contained) in the zonotope z defined by (5), pz.

Proof. All points of the form
∑k

i=1 ±αie
(i), which are not vertices of z, are interior

points of z. This follows from the fact that every point of the form ±αie
(i) is an endpoint

of the segment si = αi ∗ ẽ(i) and thus participates in the Minkowski sum (6). �

Using that αi ∗ ẽ(i) = |αi| ∗ ẽ(i), we can reformulate Lemma 1 as follows:

Lemma 2. For a given k-tuple γ = (γ1, . . . , γk) ∈ R
k every point v =

∑k

i=1 γie
(i) is

included (contained) in the zonotope z =
∑k

i=1 γi ∗ ẽ(i), symbolically vz.

Remark. Note that in Lemma 2 we do not require γ ≥ 0.

Our next task is to examine the inclusion of 2D-zonotopes in the space V2 ⊕ Sk

assuming that k ≥ 2. To examine the relation ab for two zonotopes a, b ∈ V2 ⊕ Sk we
start with the case when a is a point in the plane (translate vector) and b is a centered
zonotope. Note that both the points in the plane and the centered zonotopes are special
case of zonotopes as elements of V2 ⊕ Sk.
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According to (5), (7) the vector t(1) = α1e
(1) + α2e

(2) + · · · + αk−1e
(k−1) + αke(k),

αi ≥ 0, is a vertex of the centered zonotope (5): z =
∑k

i=1 αi ∗ ẽ(i). Considered as
zonototope itself, the vertex t(1) is contained in (5), that is we have t(1) ⊆ z. An M -
presentation of t(1) is: t(1) = (α1, . . . , αk; 0, 0, . . . , 0). The M -presentation of z in Sk is
(0, 0, . . . , 0; α1, . . . , αk). Thus we have

t(1) = (α1, . . . , αk; 0, 0, . . . , 0) ⊆ (0, 0, . . . , 0; α1, . . . , αk) = z.(11)

Relation (11) suggests the following formulation of Lemmas 1 and 2.

Proposition 3. Given a point v ∈ V2 with an M -presentation v = (v′; 0), v′ ∈ R
k,

and a centered zonotope c = (0; c′′) ∈ Sk, if |v′| = c′′, then vc.

Proof. According to Lemma 1 we have
∑k

i=1 ±c′′i e(i)c, hence v =
∑k

i=1 v′ie
(i)

=
∑k

i=1 ±c′′i e(i)c. �

Proposition 4. Assume that v ∈ V2 with M -presentation v = (v′; 0), v′ ∈ R
k, and

s = (0; s′′) ∈ Sk. Then |v′| ≤ s′′ =⇒ vs.

Proof. According to Proposition a point v = (v′; 0) is included in the centered
zonotope c = (0; c′′), with c′′ = |v′|, resp. c′′i = |v′i|, i = 1, . . . , k. Hence v is included in
every zonotope s = (0; s′′) which contains the zonotope c. According to Proposition such
is every s = (0; s′′), satisfying the condition s′′ ≥ c′′, which is equivalent to s′′ ≥ |v′|. �

Proposition 5. Assume v = (v′; 0) and z = (z′; z′′). If v′, z′ are M -presentations,
such that |z′ − v′| ≤ z′′ then vz.

Proof. Translate both v and z by the vector (z′; 0). The translated zonotope c =
z − (z′; 0) = (z′ − z′; z′′) = (0; z′′) is centered. According to Proposition the translated
vector v − (z′; 0) = (v′ − z′; 0) belongs to c if |v′ − z′| ≤ c′′, which, due to c′′ = z′′, is
equivalent to |z′ − v′| ≤ z′′. �

Theorem 3. Let the zonotopes a, b ∈ V2 ⊕ Sk have M -presentations

a =

k
∑

i=1

ai =

k
∑

i=1

(ai
′; a′′

i ), b =

k
∑

i=1

bi =

k
∑

i=1

(bi
′; b′′i ).

If ai ⊆ bi, for i = 1, . . . , k, then a ⊆ b.

Proof. Assume ai ⊆ bi, i = 1, 2, . . . , k. From the inclusions ai ⊆ bi, i = 1, . . . , k, and
(9), using the inclusion isotonicity of addition, it follows a =

∑k

i=1 ai ⊆
∑k

i=1 bi = b. �

Concluding remarks. Zonotopes are a suitable tool for bounding regions of un-
certainty, enclosing medical images, objects in robotics and technical sciences, etc. To
simplify computations, it is desirable to consider zonotopes from a finite-parametric fam-
ily, with a fixed number of parameters; such a natural family of regular basic vectors has
been used in the paper. Our study of the presentation and computation with zonotopes
has been guided by the theory of quasivector spaces. As every quasivector space is a
direct sum of a linear subspace and a symmetric quasivector subspace, we concentrate
on the space of centrally symmetric zonotopes centered at the origin (centered zono-
topes) which can be presented as Minkowski sums of centered segments. Our approach
is alternative to the approach of support functions, extensively used in the literature on
convex bodies. Using such special implicit presentation, we study the inclusion relation
between zonotopes in the plane. Within such frames, using ideas from the theory of
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quasivector spaces, we formulate several sufficient conditions for inclusion of zonotopes
from a certain class.
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ВЪРХУ РЕЛАЦИЯТА ВКЛЮЧВАНЕ НА ЗОНОТОПИ В

РАВНИНАТА

Светослав М. Марков, Антонио Н. Роша Коста, Грасализ П. Димуро

Теорията на квазивекторните пространства се прилага за един клас зонотопи в

равнината дефинирани като положителни комбинации от базови центрирани сег-

менти. Това води до неявно представяне на зонотопите като два вектора – един

за центъра и един за центрирания зонотоп получен чрез транслация на изходния

в началото. С помощта на това представяне се изследва релацията включване в

равнината. Намерени са достатъчни условия за включване формулирани в тер-

мините на неявното представяне.
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