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A SUFFICIENT CONDITION FOR PROPERNESS OF A

LINEAR ERROR-DETECTING CODE AND ITS DUAL

Evgeniya P. Nikolova∗

A sufficient condition for properness of a q-ary linear error-detecting code and its dual
code is given in terms of the code length, the minimum code distance, and the dual
minimum code distance. Examples of codes satisfying the condition are provided.

1. Introduction. A linear code C = [n, k, d] is proper for error detection on a
q-ary symmetric memoryless channel with symbol error probability ε, if the probability

of undetected error of C is an increasing function of ε ∈

[

0,
q − 1

q

]

, see [11] and [12].

In terms of the code weight distribution {A0, A1, . . . , An}, this probability is given by

(1.1) Pue(C, ε) =

n
∑

i=d

Ai

( ε

q − 1

)i

(1 − ε)n−i, ε ∈
[

0,
q − 1

q

]

,

and, in terms of the dual weight distribution {B0, B1, . . . , Bn}, by

(1.2) Pue(C, ε) = q−(n−k)
n

∑

i=0

Bi

(

1 −
qε

q − 1

)i

− (1 − ε)n, ε ∈
[

0,
q − 1

q

]

.

Examples of proper codes are the perfect codes over finite fields, the Maximum Dis-
tance Separable codes, some Reed-Muller codes, some Near Maximum Distance Sepa-
rable codes, the Maximum Minimum Distance codes and their duals, and many cyclic
codes. More examples can be found in the survey [8]. The concept of properness may
be extended to non-linear block codes. Examples of proper non-linear binary codes are
the Kerdock and the Preparata codes, and codes satisfying or achieving the Grey-Rankin
bound, see [9].

Most studies on properness of error-detecting codes involve the code weight distribu-
tion, see for example, [4–9] and [11]. However, since the computation of the code weight
distribution is an NP-hard problem [1], relatively few codes are known with their weight
distribution. Therefore, it is important to find criteria for properness which do not use
the code weight distribution. For binary linear codes such criteria have been found in
[10]. In this note we extend Theorem 1 from [10] to any prime power q by showing in
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Section 2 that if the length n, the minimum code distance d, and the dual code distance
d⊥ of a q-ary linear code C satisfy

max{ d, d⊥} ≥
(q − 1)n + 1

q
,

then the code and its dual are proper for error detection. In Section 3 we give examples
of q-ary codes which satisfy the Theorem and thus are proper, together with their dual
codes.

2. Main result. Consider a linear code C = [n, k, d]q with code weight distribution

{A0, A1, . . . , An}. Denoting εi =
i

n
, i = 1, . . . , n, we can write the derivative of the

function εi(1 − ε)n−i as

(2.1) (εi(1 − ε)n−i)
′

= nεi−1(1 − ε)n−i−1(εi − ε), i = 1, . . . , n.

As noticed yearlier ([5], [11]), the above shows that when

(2.2)
d

n
≥

q − 1

q

the function in (1.1) increases for ε ∈

[

0,
q − 1

q

]

, and C is then proper.

Recall also that the first order Pless Power Moment of C is given by

(2.3)
n

∑

i=d

iAi = (n − B1)(q − 1)qk−1,

where B1 is the number of codewords of weight one in the dual code, see [13], p. 133.

Theorem. Suppose C is a q-ary linear code of length n, minimum code distance d,

and dual minimum code distance d⊥. If

(2.4) max{ d, d⊥ } ≥
(q − 1)n + 1

q
,

then C and its dual are proper for error detection.

Proof. Suppose for definitness that d ≥
(q − 1)n + 1

q
. Then the properness of C

follows from (2.2), since
d

n
>

d − 1

n − 1
≥

q − 1

q
. From (1.2), for the derivative of Pue(C

⊥, ε)

we obtain

P ′
ue(C

⊥, ε) = −
q−(k−1)

q − 1

n
∑

i=d

iAi

(

1 −
qε

q − 1

)i−1

+ n(1 − ε)n−1, 0 ≤ ε ≤
q − 1

q
.

Put δ = 1 −
1

q(1 − ε)
, 0 ≤ δ ≤

q − 1

q
, to get from the above equation

P ′
ue(C

⊥, ε)

n(1 − ε)n−1
= 1 −

q−(k−1)

n(q − 1)

n
∑

i=d

iAi

( q

q − 1
δ
)i−1

(

q(1 − δ)
)n−i

= 1 −
qn−k

n(q − 1)

n
∑

i=d

iAi

( 1

q − 1

)i−1

δi−1(1 − δ)n−i.

(2.5)

137



For δi =
i − 1

n − 1
the condition of the Theorem implies

δi ≥
d − 1

n − 1
≥

q − 1

q
, d ≤ i ≤ n,

and, thus, we have from (2.1) that the sum in the right hand side of (2.5) is an increasing

function for 0 ≤ δ ≤
q − 1

q
. From this and (2.3) we obtain in (2.5)

P ′
ue(C

⊥, ε)

n(1 − ε)n−1
≥ 1 − max

0≤δ≤
q−1

q

qn−k

n(q − 1)

n
∑

i=d

iAi

( 1

q − 1

)i−1

δi−1(1 − δ)n−i

= 1 −
q−(k−1)

n(q − 1)

n
∑

i=d

iAi ≥ 1 −
q−(k−1)

n(q − 1)
n (q − 1) qk−1 = 0,

and the Theorem follows. �

3. Examples. We give below two examples of families of codes meeting the Griesmer
bound

n ≥

k−1
∑

0

⌈d

q

⌉

,

which are proper, together with their dual codes, by the Theorem.

1. Consider the Griesmer codes with parameters
[

n = s(qk − 1) −
m

∑

i=1

ai

qui − 1

q − 1
, k, d = s(q − 1)qk−1 −

m
∑

i=1

ai qui−1
]

,

see [2–3]. Here s ≥ 2 is an arbitrary integer and ui and ai for i = 1, . . . , m, are
integers, such that 1 ≤ ai ≤ q − 1 and k = u0 > u1 > . . . > um ≥ 1. When s > m, the
codes and their duals are proper by the Theorem, since

qd − (q − 1)n − 1 = s(q − 1) −

m
∑

i=1

ai − 1 ≥ (q − 1)(s − m) − 1 > 0.

2. Solomon and Stiffler introduced in [14] Griesmer codes with parameters

n =

k−1
∑

i=0

⌈ d

qi

⌉

+ t
qk − 1

q − 1
, k, d′ = d + t qk−1,

where t is an arbitrary positive integer. From

qd′ − (q − 1)n − 1 = t + qd − (q − 1)

k−1
∑

i=0

⌈ d

qi

⌉

− 1

and the Theorem we obtain that if

t ≥ (q − 1)

k−1
∑

i=0

⌈ d

qi

⌉

− qd + 1,

the properness of the codes follows as well from Theorem 3.7.3 of [11]
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ДОСТАТЪЧНО УСЛОВИЕ ЛИНЕЕН КОД И НЕГОВИЯТ ДУАЛЕН

ДА СА ПОДХОДЯЩИ ЗА ОТКРИВАНЕ НА ГРЕШКА

Евгения П. Николова

В термините на кодовата дължина и минималното дуално розстояние на кода е

дадено достатъчно условие q-ичен линеен код и неговият дуален да са подходящи

за откриване на грешка. Представени са примери, удовлетворяващи това условие.
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