A LOWER BOUND FOR THE DIMENSION DIAMETERS OF CERTAIN SETS WITH RESPECT TO ESSENTIAL SYSTEMS

Vladimir T. Todorov

Let $\mathcal{E}=\left\{\left(A_{i}, B_{i}\right)\right\}, i=1, \ldots, n$ be an essential system in the normal space X. We prove in this paper, that if \mathcal{U} is a finite open covering of X and ord $\mathcal{U} \geq n$, then some element of \mathcal{U} intersects two opposite faces of \mathcal{U}. Various consequences of this result are discussed.

1. Basic concepts and definitions. Let \mathcal{U} be an open covering of the normal space X and $Y \subset X$. We say that the n-dimensional diameter $d_{n}(Y)$ of Y is greater than \mathcal{U}, (the notation is $d_{n}(Y) \geq \mathcal{U}$), if the order of every refinement \mathcal{V} of the restriction \mathcal{U}_{Y} is greater than $n+2$: ord $\mathcal{V} \geq n+2$.

If X is a metric space, then the n-dimensional diameter $d_{n}(Y)$ of the subset Y is the number $\inf \left\{\operatorname{mesh}\left(\mathcal{U}_{Y}\right)\right\}$, where \mathcal{U} runs the set of all open coverings of X with $\operatorname{ord}\left(\mathcal{U}_{Y}\right) \leq$ $n+1$.

Note that some authors refer to d_{n} as $d_{n+1}([2],[1])$. In this papers d_{n} is called an n-dimensional degree. Here we follow the terminology which is adopted in [3].

For a metric space (X, ϱ), the inequality $d_{n}(X)>0$ means that the metric dimension μ - $\operatorname{dim} X$ of X is not less than $n+1$ [5]. Clearly, for compact metric spaces, $d_{n}(X)=0$ if and only if $\operatorname{dim} X \leq n$.

Definition 1.1. [3] Let n be an integer and \mathcal{U} be an open covering of X. The normal space X is referred as (n, \mathcal{U})-connected between the closed sets P and Q if $d_{n-2}(C)>\mathcal{U}$ for an arbitrary partition C between P and Q in X.

In the case of metric space (X, ρ) we shall say that X is (n, ε)-connected between P and Q if $d_{n-2}(C) \geq \varepsilon($ clearly, here $\varepsilon>0)$.

Furthermore, suppose that the system $\mathcal{E}=\left\{\left(A_{1}, B_{1}\right) ;\left(A_{2}, B_{2}\right) ; \ldots ;\left(A_{n}, B_{n}\right)\right\}$ consists of n disjoint pairs of closed subsets of X.

Definition 1.2. The system \mathcal{E} is essential (or n-defining [5]) if for any closed sets P_{i}, $i=1, \ldots, n$, separating A_{i} and B_{i} (partitions), the intersection $\bigcap_{i=1}^{n} P_{i}$ is nonempty.

Obviously, the essential system is an analogue of the system of opposite faces of the n-dimensional cube $I^{n} ; I=[0,1]$. Because of that, we call A_{i} and B_{i} faces of \mathcal{E}. An important tool in this note is the following Lemma, which seems to have an independent meaning.

Lemma 1.3. Let \mathcal{E} be an essential system in the normal space X and \mathcal{U} be a locally finite open covering of X with ord $\mathcal{U} \leq n$. Then, some element of \mathcal{U} intersects two opposite faces of \mathcal{E}.

Proof. Suppose that no element of \mathcal{U} intersects opposite faces of \mathcal{E}. According to [4] (p. 119, Assertion 8), \mathcal{U} can be refined by a closed n-discrete locally finite covering \mathcal{C} of X. In other words there is an n discrete locally finite refinement \mathcal{C} of \mathcal{U}

$$
\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \cdots \cup \mathcal{C}_{n},
$$

where \mathcal{C}_{i} is a discrete family of closed subsets of X for every i. Let us put for every i $(1 \leq i \leq n)$:

$$
A_{i}^{\prime}=A_{i} \cup \bigcup\left\{C \in \mathcal{C}_{i} \mid C \cap A_{i} \neq \emptyset\right\} \text { and } B_{i}^{\prime}=A_{i} \cup \bigcup\left\{C \in \mathcal{C}_{i} \mid C \cap A_{i}=\emptyset\right\}
$$

According to our hypothesis, the sets A_{i}^{\prime} and B_{i}^{\prime} are disjoint (and obviously, closed). The space X is normal, hence for every i one can find a closed partition P_{i} between A_{i}^{\prime} and B_{i}^{\prime} in X. Clearly, P_{i} is at the same time a partition between A_{i} and B_{i} because $A_{i} \subset A_{i}^{\prime}$ and $B_{i} \subset B_{i}^{\prime}$. Since the system \mathcal{E} is essential, one has $P_{0}=\bigcap_{i=1}^{n} P_{i} \neq \emptyset$. On the other hand, this is impossible, since $P_{0} \cap \bigcup \mathcal{C}_{i}=\emptyset$ for every i. Thus we have obtained the desired contradiction. The above lemma proves also the proposition, stated in the abstract. In what follows some definitions and applications of the preceding lemma are present.

Let X be a normal space with $\operatorname{dim} X \geq n$. Then X contains an essential n-system \mathcal{E} (the Eilenberg - Otto characterization of dimension). Next, to every index i we associate an open covering $\mathcal{U}_{i}=\left\{X \backslash A_{i}, X \backslash B_{i}\right\}$.

Corollary 1.4. Let $\mathcal{U}_{i}=\left\{X \backslash A_{i}, X \backslash B_{i}\right\}$ and $\mathcal{V}=\bigwedge_{i=1}^{n} \mathcal{U}_{i}$ be the intersection of the coverings $\left\{\mathcal{U}_{i}\right\}$. Then the space X is (n, \mathcal{V})-connected between every pair $\left(A_{i}, B_{i}\right)$ of opposite faces of \mathcal{E}.

Proof. We confine ourselves to the case $i=1$. Note that if P is a partition between A_{1} and B_{1}, then the restriction $\mathcal{E}_{P}=\left\{\left(A_{2} \cap P, B_{2} \cap P\right) ; \ldots ;\left(A_{n} \cap P, B_{n} \cap P\right)\right.$ is an essential $(n-1)$-system in the normal space $P \cup \bigcup_{i=2}^{n}\left(A_{i} \cup B_{i}\right)$.

Now, suppose that (X, ρ) is a metric space, and let

$$
\mathcal{E}=\left\{\left(A_{1}, B_{1}\right) ;\left(A_{2}, B_{2}\right) ; \ldots ;\left(A_{n}, B_{n}\right)\right\}
$$

be an essential system in X for which $\delta_{i}=\rho\left(A_{i}, B_{i}\right)>0, i=1, \ldots, n$. If P is a partition between some pair $\left(A_{i}, B_{i}\right)$, then $d_{n-2}(P) \geq \min _{i}\left\{\delta_{i}\right\}$.

Definition 1.5. The subset L of X is cutting X between the closed subsets P and Q, if for every closed subset Y of X, which is connected between $Y \cap P$ and $Y \cap Q$, we have $Y \cap L \neq \emptyset$.

Next we use the following result from [7]:
Lemma 1.6. Suppose that L cuts the normal space X between the disjoint closed nonempty sets P and Q. Then every open neighborhood O of L contains a (closed in X) partition C between P and Q.

Using the preceding Lemma makes evident that the following assertation holds true:

Corollary 1.7. If $d_{n-2}(L)<\mathcal{V}$, then L cuts X between A_{i} and B_{i} for no i.
2. The \boldsymbol{n}-dimensional cube. Next, suppose that (X, ρ) is a metric space. For the following theorem suppose also that $X=\bigcup_{i=1}^{\infty} F_{i}$, where F_{i} is a closed subset of X for every i.

Theorem 2.1. If X is a compact n-dimensional space, then there are constants $\varepsilon_{X}>0$ and $\delta_{X}>0$ such that if $d_{n-1}\left(F_{i}\right)<\varepsilon_{X}$ for every i, then the inequality

$$
d_{n-2}\left(\bigcup_{i \neq j}\left(F_{i} \cap F_{j}\right)\right) \geq \delta_{X}
$$

holds. Hence, $\mu-\operatorname{dim}\left(\bigcup_{i \neq j}\left(F_{i} \cap F_{j}\right)\right) \geq n-1$.
Proof. Let $\mathcal{E}=\left\{\left(A_{1}, B_{1}\right) ;\left(A_{2}, B_{2}\right) ; \ldots ;\left(A_{n}, B_{n}\right)\right\}$ be an essential system in X and put $\varepsilon_{X}=\max _{i} \rho\left(A_{i}, B_{i}\right)=\rho\left(A_{i_{0}}, B_{i_{0}}\right)$. Then no set F_{i} intersects both $A_{i_{0}}$ and $B_{i_{0}}$. On the other hand, X is $\left(n, \delta_{X}\right)$-connected between $A_{i_{0}}$ and $B_{i_{0}}$. Now, suppose that for $M=\bigcup_{i \neq j}\left(F_{i} \cap F_{j}\right)$ the inequality $d_{n-2}<\delta_{X}$ holds. Then, $X \backslash M$ is connected between $A_{i_{0}}$ and $B_{i_{0}}$ and, hence, the complement of M contains a continuum K, which connects the faces in question. Thus $K=\bigcup_{i=1}^{\infty}\left(K \cap F_{i}\right)$ and the summands are proper closed subsets of K, which contradicts to the well known Sierpinski theorem [6].

There are various consequences of Lemma 1.3. We shall confine ourselves to the question of calculating the dimensional diameters of the n - dimensional unit cube $I^{n}=$ $[0,1]^{n}$ and to establish the degree of connectedness of I^{n}. We consider the n-dimensional cube I^{n} equipped with the "maximum" metric $r(x, y)=\max \left|y_{i}-x_{i}\right|$. The corresponding dimensional diameter will be denoted by d_{k}^{r}.

Theorem 2.2. $d_{k}^{r}\left(I^{n}\right)=1$ for every $k=1, \ldots, n-1$.
Proof. The diameter of I^{n} under the "maximum" metric is equal to 1 . Hence, $d_{0}^{r}\left(I^{n}\right)=1$. On the other hand, by Lemma 1.4 it follows directly that $d_{n-1}\left(I^{n}\right)=1$. Now, it remains to note that for every k we have $d_{0}(X) \leq d_{k}(X) \leq d_{n-1}(X)$ (under arbitrary metric and for every space X).

Theorem 2.3. Suppose that F_{i} for every i is a proper closed subset of I^{n} and that $I^{n}=\bigcup_{i=1}^{\infty} F_{i}$. Then $\mu-\operatorname{dim}\left(\bigcup_{i \neq j}\left(F_{i} \cap F_{j}\right)\right) \geq n-1$.

Proof. The sets F_{i} are proper and, hence, at least two of them have non-void interiors. Clearly, one may suppose that these sets are F_{1} and F_{2}. Let $Q_{1} \subset F_{1} \backslash F_{2}$ and $Q_{2} \subset F_{2} \backslash F_{1}$ be two subsets, which are homeomorphic copies of I^{n-1} and are parallel for example to A_{1} (and B_{1}). It is easy to see that we may include Q_{1} and Q_{2} as opposite faces of some n-defining system. It follows from Corollary 1.7 that for some $\varepsilon>0, I^{n}$ is (n, ε)-connected between Q_{1} and Q_{2}. Now, put $M=\bigcup_{i \neq j}\left(F_{i} \cap F_{j}\right)$ and then suppose that $d_{n-2}(M)<\varepsilon$. As in Theorem 2.1, one arrives to a contradiction to the Sierpinski theorem. Hence $d_{n-2} M \geq \varepsilon$, which implies $\mu-\operatorname{dim} M \geq n-1$.

Theorem 2.3 (under the hypothesis $\left.\operatorname{dim}\left(\bigcup_{i \neq j}\left(F_{i} \cap F_{j}\right)\right) \geq n-1\right)$ is contained in [8].

REFERENCES

[1] P. S. Urysohn. Memoire sur les multiplicites Cantoriennes (I), Fundam. Math., 1925, 7, 30-139.
[2] Y. Sternfeld. Extesion of mappings of Bing spaces into ANRs, Topology and Appl., (1996), 80, 189-194.
[3] P. S. Alexandroff. Die Kontinua $\left(V^{p}\right)$ - eine Verschärfung der Cantorshen Mannigfaltigkeiten, Monatsh. Math., Bd. 61, H. 1, (1957), 67-76.
[4] P. Alexandroff, B. Pasinkov. An introduction to the Dimension Theory, (1973), Moscow, Nauka (in Russian).
[5] K. Nagami. Dimension Theory, (1970), Academic Press, New York and London.
[6] W. Sierpinski. Sur les ensenbles connexes et non connexes, Fundam. Math., (1921), 2, 81-95.
[7] V. T. Todorov. Decompositions of finite dimensional compacta, Compt. rend. Acad. bulg. Sci., (to apper).
[8] N. G. Hadjiivanov. The n-dimensional cube can not be represented as a sum of countable many proper closed sets which pair-wise intersections are no more than ($n-2$)-dimensional, Compt. Rend. Acad. Sci. of USSR, 195, No 1, (1970), 43-45 (in Russian).

V. T. Todorov

Department of Mathematics
UACEG, 1 Hr. Smirnenski Blvd.
1421 Sofia, Bulgaria
e-mail: vttp@yahoo.com

ДОЛНА ГРАНИЦА НА РАЗМЕРНОСТНИТЕ ДИАМЕТРИ НА НЯКОИ ПОДМНОЖЕСТВА НА СЪЩЕСТВЕНИ СИСТЕМИ

Владимир Т. Тодоров

Нека $\mathcal{E}=\left\{\left(A_{i}, B_{i}\right)\right\}$ е съществена система в нормалното пространство X. Всяка дизюнктна двойка (A_{i}, B_{i}) от срещуположните стени на \mathcal{U} поражда отворено покритие $\mathcal{U}=\left\{X \backslash A_{i}, X \backslash B_{i}\right\}$. В тази бележка доказваме, че за някое $i_{0},(n-$ 1)-мерният диаметър на $d_{n-1}(X)$ е по-голям от $\mathcal{U}_{i_{0}}$. Обсъждат се също така различни следствия от този резултат.

