A NEW PROOF FOR THE NONEXISTENCE OF A [15, 6; (r =) 3] CODE ${ }^{*}$

Veselin Vl. Vavrek

It is proved that a linear code of length 15 , dimension 6 and covering radius 3 cannot exist. This proof differs considerably from a geometry based proof by Simonis.

1. Introduction. In [1] a special improved back-tracking algorithm is used to prove the nonexistence of $[17,6 ;(\mathrm{r}=) 4]$, $[17,8 ;(\mathrm{r}=) 5]$, $[18,7 ;(\mathrm{r}=) 4]$, $[18,7 ;(\mathrm{r}=) 4]$, $[19,7 ;(\mathrm{r}=) 4],[20,8 ;(\mathrm{r}=) 4]$ and $[21,7 ;(\mathrm{r}=) 5]$ codes. Here, $[n, k ;(\mathrm{r}=) f]$ denotes a linear code with length n, dimension k and covering radius f (we enclose the " r " in brackets, to distinguish it from a variable r). However, the proofs presented in [1] were accomplished by making use of computer computations. In [4] the nonexistence of a 15,$6 ;(\mathrm{r}=) 3$] code is proved, by applying "geometrically inspired arguments", like using hyperplanes, and also by applying the Mac Williams identities.

In this paper we shall give a proof based on the algorithm presented in [5, Chapter $3.2]$. We remark that our result is also a corollary of [2]. By C^{\perp} we denote the dual of a linear code C. This is the set of all binary vectors which are orthogonal to all codewords of C. It is well-known, that if C is an $[n, k]$ code, then C^{\perp} is an $[n, n-k]$ code.
2. Preliminaries. Let C_{0} be the set (linear code), consisting of all even codewords of length Δ. We shall denote by $q_{\Delta}(r)$ the minimal number of spheres - with center in C_{0} and radius r - which cover all odd vectors, i.e all vectors in $G F(2)^{\Delta}$ which have an odd weight.

The following proposition holds.
Proposition 1. Let C be an $[n, k ;(\mathrm{r}=) r]$ code, and let $\mathbf{c} \in C^{\perp}$ be a codeword of weight Δ. Let H be the restriction of the generator matrix of C to the columns j, for which $c_{j}=0$. Let H^{\perp} be the generator matrix of the code dual to the code generated by the rows of H, and let $\mathbf{v} \in G F(2)^{n-\Delta-k}$ be any vector of length $n-\Delta-k$. If \mathbf{v} cannot be presented as a sum of i columns (and if it can be presented as a sum of $i+1$ columns) of H^{\perp}, then we can present \mathbf{v} as a sum of at most $r-1$ columns of H^{\perp} in at least $q_{\Delta}(r-1-i)$ ways, $r \geq i+1$, with $i \geq-1$, and where we define the empty sum as 0.

The proof can be found in [5]. To apply this proposition we also need $q_{\Delta}(4) \geq 1 ; q_{\Delta}(3) \geq 1 ; q_{\Delta}(2) \geq 2 ; q_{\Delta}(1) \geq 2$.

[^0]Proposition 1 is a generalization of the following well-known property.(cf. [3, Theorem 2.1.9])

Proposition 2. The $[n, k]$ code C has covering radius r, if and only if every vector from $G F(2)^{n-k}$ can be presented as a sum of at most r columns of a generating matrix of C^{\perp}.
3. Proof of the nonexistence. We call the code generated by the matrix H in Proposition 1 a "residue" code, although strictly speaking a residue code is defined with respect to a codeword of C itself, whereas here \mathbf{c} is taken from C^{\perp}.

Let us suppose that we have a $[15,6 ;(\mathrm{r}=) 3]$ linear code C. First, we must find a minimal weight Δ of the code C^{\perp}. If $\Delta>4, C^{\perp}$ is a $[15,9 ;(\mathrm{d}) \geq 5]$ linear code (which means, a linear code with minimal distance ≥ 5). Such a code does not exist. Let $\Delta<4$. Then a (15×9)-generator matrix of the dual code can be presented in the form

$$
T^{\perp}=\left(\begin{array}{l|lll}
\overbrace{11 \ldots 1}^{\Delta} & 00 & \ldots & 0 \\
\hline & & &
\end{array}\right),
$$

and from Proposition 2 we have that any vector $\mathbf{v}=\left(1 \mathbf{v}_{1} \mathbf{v}_{2} \ldots \mathbf{v}_{8}\right)^{t}$ can be presented as a sum of at most 3 columns of T^{\perp}. The total number of such vectors \mathbf{v} is 256 , while the number of all combinations of $t \leq 3$ vectors such that the first component equals 1 is:

$$
\binom{\Delta}{3}+\Delta\left(\binom{15-\Delta}{2}+\binom{15-\Delta}{1}+\binom{15-\Delta}{0}\right) .
$$

But in case when $\Delta=1,2$ or 3 , the above sum is less than 256 , and we have contradiction.
It remains to consider the case $\Delta=4$ (the most difficult case).
The following matrix appears to be a suitable generator matrix of $C_{\text {res }}$ satisfying all conditions of Proposition 1

$$
G\left(C_{\mathrm{res}}\right)=\left(\begin{array}{ccccccccccc}
0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

This matrix was found by computer search. However we are not going to use it. Instead, we start from a (9×15)-generator matrix of C^{\perp} in the form

$$
T^{\perp}=\left(\begin{array}{c|c}
0000 & \tag{1}\\
\vdots & H^{\perp} \\
0000 & \\
\hline 1111 & 00 \ldots 0 \\
0100 & \\
0010 & G \\
0001 &
\end{array}\right),
$$

Let us consider the (5×11)-matrix H^{\perp}. It is a generator matrix of the dual "residue" code of C. Let $\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{11}$ be the columns of the matrix H^{\perp} and let us (for conve150
nience) define $\mathbf{h}_{0}:=\mathbf{0}$. For every vector $\mathbf{v} \in G F(2)^{5}$, we define

$$
H_{\mathbf{v}}:=\left\{(i, j) \mid 0 \leq i<j \leq 11, \mathbf{h}_{i}+\mathbf{h}_{j}=\mathbf{v}\right\}
$$

Let $\mathbf{0}_{5}$ be a column vector of height 5 , which contains only zeros. Let us define the functions:

$$
\begin{gathered}
\mathcal{A}_{2}(\mathbf{v}):= \begin{cases}\left|H_{\mathbf{v}}\right|, & \mathbf{v} \neq \mathbf{0}_{5} \\
1+\left|H_{\mathbf{v}}\right|, & \mathbf{v}=\mathbf{0}_{5}\end{cases} \\
\mathcal{R}_{2}(\mathbf{v}):= \begin{cases}2, \mathbf{v} \neq \mathbf{0}_{5} \\
1, & \mathbf{v}=\mathbf{0}_{5}\end{cases} \\
\mathcal{E}_{2}(\mathbf{v}):=\mathcal{A}_{2}(\mathbf{v})-\mathcal{R}_{2}(\mathbf{v})
\end{gathered}
$$

We call these functions all presentations (giving the number of ways \mathbf{v} can be presented as sum of 0,1 or 2 columns of H^{\perp}), required presentations and extra presentations of vector \mathbf{v}. The last name is due to the inequality

$$
\begin{equation*}
\mathcal{E}_{2}(\mathbf{v}) \geq 0, \forall \mathbf{v} \in G F(2)^{5} \tag{2}
\end{equation*}
$$

which follows from Proposition 1 with $r=3$ and $i=1$ respectively $i=0$ and from $q_{4}(2) \geq 2, q_{4}(1) \geq 2$.

Let us consider the sum

$$
S(H):=\sum_{\mathbf{v} \in G F(2)^{5}} \mathcal{E}_{2}(\mathbf{v})
$$

This is the total number of extra presentations. For a putative $[15,6 ;(\mathrm{r})=3]$ code C we can calculate this number $S=S(H)$ without knowing the specific structure of such a code (cf. Lemma 1). If we next can prove that such a C has more than S extra presentations, we can conclude that this C does not exists.

The first step is to calculate the exact value of $S(H)$.

Lemma 1.

$$
S(H)=4
$$

Proof. We have

$$
\begin{aligned}
S(H) & =\sum_{\mathbf{v} \in G F(2)^{5}} \mathcal{E}_{2}(\mathbf{v})=\sum_{\mathbf{v} \in G F(2)^{5}}\left(\mathcal{A}_{2}(\mathbf{v})-\mathcal{R}_{2}(\mathbf{v})\right) \\
& =1+|\{(i, j) \mid 0 \leq i, j \leq 11, i \neq j\}|-\sum_{\mathbf{v} \in G F(2)^{5}} \mathcal{R}_{2}(\mathbf{v}) \\
& =1+\binom{12}{2}-\left(2.2^{5}-1\right)=4
\end{aligned}
$$

To prove the nonexistence, we consider the generator matrix T^{\perp} (cf. (1)). We label the columns of H^{\perp} as $\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{11}$, as before, and the columns of G as $\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{11}$. We assume that $\mathbf{h}_{0}:=\mathbf{0}_{5}$ and $\mathbf{g}_{0}=\mathbf{0}_{3}$.

Furthermore, we define the property

$$
P_{i, j, k, l} \Leftrightarrow \mathbf{h}_{i}+\mathbf{h}_{j}+\mathbf{h}_{k}+\mathbf{h}_{l}=\mathbf{0}_{5} \wedge \mathbf{g}_{i}+\mathbf{g}_{j}+\mathbf{g}_{k}+\mathbf{g}_{l} \neq \mathbf{1}_{3}
$$

for $i, j, k, l \in\{0,1, \ldots, 11\}$.

Lemma 2. If for $\mathbf{v} \in G F(2)^{5} \backslash\{\mathbf{0}\}$ we have $\mathcal{E}_{2}(\mathbf{v})=0$, which implies

$$
\mathbf{v}=\mathbf{h}_{i}+\mathbf{h}_{j} \text { and } \mathbf{v}=\mathbf{h}_{k}+\mathbf{h}_{l},\{i, j\} \neq\{k, l\}
$$

then $\mathbf{g}_{i}+\mathbf{g}_{j}+\mathbf{g}_{k}+\mathbf{g}_{l}=\mathbf{1}_{3}$.
Proof. From Proposition 2 we have that each vector of length 9 can be presented as a sum of at most three column vectors of T^{\perp}. Let us consider the vector (v 1000$)^{t}$. This vector can be presented as a sum of two columns $\alpha=\left(\mathbf{h}_{i} 0 \mathbf{g}_{i}\right)$ and $\beta=\left(\mathbf{h}_{j} 0 \mathbf{g}_{j}\right)$ and one column γ from the first four columns of T^{\perp}.

Let $\alpha+\beta=(\mathbf{v} 0 \mathbf{u})^{t}$. Choosing various γ, we can cover a subset S^{\prime} of $S=\{(\mathbf{v} 1 \boldsymbol{a}) \mid \boldsymbol{a}$ $\left.\in G F(2)^{3}\right\}$, and thus the corresponding \boldsymbol{a} are contained in a sphere with center \mathbf{u} and radius 1 . As it can be easily seen, the remaining vectors of $G F(2)^{3}$, which correspond to $S \backslash S^{\prime}$, can be covered by a sphere of radius 1 if and only if the center of this sphere is $\mathbf{1}_{3}+\mathbf{u}$.

Thus, from the second representation of $\mathbf{v}=\mathbf{h}_{k}+\mathbf{h}_{l}$ it follows $\mathbf{g}_{k}+\mathbf{g}_{l}=\mathbf{g}_{i}+\mathbf{g}_{j}+\mathbf{1}_{3}$.
Lemma 3. If for some vector \mathbf{v} we have $\mathcal{E}_{2}(\mathbf{v})>0$, i.e.

$$
\mathbf{v}=\mathbf{h}_{i}+\mathbf{h}_{j}=\mathbf{h}_{k}+\mathbf{h}_{l}=\mathbf{h}_{m}+\mathbf{h}_{n},\{i, j\} \neq\{h, l\} \neq\{m, n\},
$$

then $P_{i, j, k, l}$ or $P_{i, j, m, n}$ or $P_{k, l, m, n}$.
Proof. If we suppose that all P. are false, then from Lemma 2 we have

$$
\mathbf{g}_{i}+\mathbf{g}_{j}+\mathbf{g}_{k}+\mathbf{g}_{l}=\mathbf{1}_{3}, \mathbf{g}_{i}+\mathbf{g}_{j}+\mathbf{g}_{m}+\mathbf{g}_{n}=\mathbf{1}_{3}, \mathbf{g}_{k}+\mathbf{g}_{l}+\mathbf{g}_{m}+\mathbf{g}_{n}=\mathbf{1}_{3},
$$

but this is impossible, since the sum of all left-hand sides is zero.
Lemma 4. $P_{i, j, k, l}$ implies $\mathcal{E}_{2}\left(\mathbf{h}_{i}+\mathbf{h}_{j}\right)>0, \mathcal{E}_{2}\left(\mathbf{h}_{i}+\mathbf{h}_{k}\right)>0$ and $\mathcal{E}_{2}\left(\mathbf{h}_{i}+\mathbf{h}_{l}\right)>0$.
Proof. From the definition of the P., we have that $\mathbf{h}_{i}+\mathbf{h}_{j}=\mathbf{h}_{k}+\mathbf{h}_{l}$. If for example $\mathcal{E}_{2}\left(\mathbf{h}_{i}+\mathbf{h}_{j}\right)=0$, then from Lemma 2 it follows that $\mathbf{g}_{i}+\mathbf{g}_{j}+\mathbf{g}_{k}+\mathbf{g}_{l}=\mathbf{1}_{3}$. This contradicts the definition of the property P. .

Lemma 5. If H^{\perp} is in standard form, then a submatrix which contains exactly 2 lines, must be of the form, up to permutations of the columns,
 where $\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}$ are the nonzero vectors of the vector space $G F(2)^{2}$.

Proof. Let us assume, that the submatrix consists of the last two rows of H^{\perp}. The first step is to calculate the number of all sums of 0,1 or 2 column vectors, ending at two zeros, or at some \mathbf{d}_{i}. Suppose we have a_{0} vectors ending at $\mathbf{0}_{2}$, and a_{i} vectors ending at $\mathbf{d}_{i}, i=1,2,3$, in matrix T^{\perp} (cf. (1)). Then we have

$$
n_{0}:=1+a_{0}+\sum_{i=0}^{3} \frac{a_{i}\left(a_{i}-1\right)}{2} \text { combinations yielding } \mathbf{0}_{2},
$$

and

$$
n_{i}:=a_{i}+a_{i} a_{0}+a_{j} a_{k} \text { combinations yielding } \mathbf{d}_{i}
$$

where $\{i, j, k\} \equiv\{1,2,3\}$ in the last relation.
From Proposition 1 and Lemma 1 it follows that $15 \leq n_{0} \leq 19$ and $16 \leq n_{i} \leq 20$, for $i \in\{1,2,3\}$. In the next table we consider all possibilities for the combinations $a_{0}, a_{i}, a_{j}, a_{k}$, and we indicate when some value of n gives a contradiction (remember that $a_{0} \geq 3$, since H^{\perp} is in standard form).

a_{0}	a_{i}	a_{j}	a_{k}		a_{0}	a_{i}	a_{j}	a_{k}		a_{0}	a_{i}	a_{j}	a_{k}	
3	3	3	2	$n_{0}=14$	4	3	2	2		5	3	2	1	$n_{k}=12$
3	4	3	1			4	3	3	1	$n_{k}=14$	5	4	$*$	$*$
3	4	2	2	$\left(n_{i}=20\right)$	4	4	2	1	$n_{k}=24$					
3	5	$*$	$*$	$n_{i}>20$	5	2	2	2		6	$*$	$*$	$*$	$n_{0}=21$

The case $(3,4,3,1)$ must be considered separately. It can be treated similarly as filling the matrices, at the end of this proof (cf. [5]). The case ($3,4,2,2$) is impossible, since from Lemmas 1,3 and 4 it follows that there exist three column vectors with extra presentations the sun of which must be equal to $\mathbf{0}_{5}$.

Proposition 3. A linear $[15,6 ;(\mathrm{r}=) 3]$ code does not exist.
Proof. First, we consider the case when we have an extra presentation $\left(\mathcal{E}_{2}(\mathbf{v})>0\right)$ only for the zero vector $\mathbf{v}=\mathbf{0}$. Then we choose four vectors $\mathbf{h}_{i}, \mathbf{h}_{j}, \mathbf{h}_{k}, \mathbf{h}_{l}$ such that $\mathbf{h}_{i}=\mathbf{h}_{j}, \mathbf{h}_{k}=\mathbf{h}_{l}$, and $\mathbf{h}_{i}+\mathbf{h}_{k} \neq 0, \mathcal{E}_{2}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) \geq 2$. Contradiction.

From Lemma 3, the condition $P_{i, j, k, l}$ is satisfied for some i, j, k, l. We assume w.l.g. that $i=1, j=2, k=3, l=4$. From the definition of $P ., \cdot, \cdot$, , we have $\mathbf{h}_{1}+\mathbf{h}_{2}+\mathbf{h}_{3}+\mathbf{h}_{4}=0$. The generator matrix H^{\perp} can be converted by changing the basis, such that if in the last equation we have 4,3 or 2 different nonzero vectors \mathbf{h}_{i}, then the left part of H^{\perp} is equal to

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { or }\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text {, respectively. }
$$

We treat the first two cases simultaneously. It is easy to show, that if in the first submatrix we replace 1 in position $(1,4)$ by 0 , then we obtain the submatrix corresponding to the second case, applying again basis changings.

From Lemmas 3 and 4, we have that any of the vectors $\mathbf{v}_{1}=(11000)^{t}, \mathbf{v}_{2}=(01100)^{t}$ and $\mathbf{v}_{3}=(10100)^{t}$ can be presented as a sum of at most 2 columns, one of which is not from $\left\{\mathbf{h}_{1}, \mathbf{h}_{2}, \mathbf{h}_{3}, \mathbf{h}_{4}\right\}$. Let these presentations be

$$
\mathbf{v}_{1}=\mathbf{h}_{w_{1}}+\mathbf{h}_{u_{1}} \mathbf{v}_{2}=\mathbf{h}_{w_{2}}+\mathbf{h}_{u_{2}} \mathbf{v}_{3}=\mathbf{h}_{w_{3}}+\mathbf{h}_{u_{3}}
$$

where $w_{i} \geq 5$, and $u_{i} \geq 0$.
The only posibilities are: 1. $w_{1}=w_{2}$, and $\mathbf{h}_{w_{1}}$ ends at $(00)^{t}, 2 . w_{1}=w_{2}$ and $\mathbf{h}_{w_{1}}$ does not end at $(00)^{t}$ and 3. $w_{1} \neq w_{2} \neq w_{3} \neq w_{1}$.

It is not possible that all w_{i} be different, since two of the corresponding $\mathbf{h}_{w_{i}}$ must end at $(00)^{t}$, and, hence, we would have 6 columns ending at $(00)^{t}$ (a contradiction to Lemma 5). With similar arguments we prove, that the situation when all vectors $\mathbf{h}_{w_{1}}, \mathbf{h}_{u_{1}}, \mathbf{h}_{w_{2}}, \mathbf{h}_{u_{2}}$ are different, and two of them end at (00) ${ }^{t}$, is impossible.

If some $\mathbf{h}_{w_{i}}$ does not end at $(00)^{t}$, then we can apply a suitable operation (a changing of the basis) to convert it to the vector $(00010)^{t}$. We can also apply similar operations, to convert the matrix in standard form, but preserving the vectors $\mathbf{h}_{1}, \mathbf{h}_{2}, \mathbf{h}_{3}$. Finally, we can fill in the last 2 rows, according to Lemma 5 (it determines how many vectors can end at $00,01,10$ or 11). We consider four cases (without any subcases), to complete the
proof. The arguments are simple, but they will not be presented here. For more details we refer to [5, Section 3.2/5].

REFERENCES

[1] T. Baicheva, V. Vavrek. On the least covering radius of binary linear codes with small lengths. IEEE Trans. Info. Theory, 49, 3 (2003), 738-740.
[2] S. Bouyuklieva. The minimal covering radius of $[16,7]$ codes. Annuaire de l'Univ. Sofia, 1988.
[3] G. Cohen, I. Honkala, S. Litsyn, A. Lobstein. Covering Codes. Amsterdam, The Netherlands: Elsevier Science B.V, North-Holland, 1997.
[4] J. Simonis. The minimal covering radius $t[15,6]$ of a six-dimensional binary linear code of length 15 is equal to 4. IEEE Trans. Info. Theory, 34, 5 (1988), 1344-1345.
[5] V. V. Vavrek. Ph.D. thesis, in preparation.

Department of Mathematics
Faculty of Information Theory and Systems
Delft University of Technology
P.O. BOX 5031, 2600 GA Delft, The Netherlands
e-mail: V.Vavrek@ewi.tudelft.nl

НОВО ДОКАЗАТЕЛСТВО НА НЕСЪЩЕСТВУВАНЕТО НА [15, 6; $(\mathrm{r}=) 3]$ КОД

Веселин Вл. Ваврек

Доказанео е несъществеването на линеен код с дължина 15 ,, размерност 6 и радиус на покритие 3. Това доказателство се различава съществено от това на Симонис използващо геометрични аргументи.

[^0]: *Partially supported by the Bulgarian NSF under Contract MM 1405/2004

