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RUNGE-KUTTA METHODS FOR AGE-STRUCTURED
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We present Lotka-McKenrick’s model which describes the evolution in time of the
age structure of a population. An alternative way for solving it in terms of the
Runge-Kutta methods applied on the Renewal equation and the equation with the
Age profile is discussed and we show the connection between Lotka’s model and these
two equations. Our approaches are based on a biologically significant case, i.e. when
the species are with a finite life-span, which creates additional difficulties for the
numerical treatment of the problem.

1. Lotka-McKendrick’s model, Renewal equation and the equation with
the Age profile. Let us consider the linear Lotka-McKendrick’s model (known also
as McKendrick-von Foerster’s), i.e. we have a single population; individuals are neither
with sex differences, nor dependent on their size, but they are structured by age:

(1.1)






∂p

∂t
+

∂p

∂a
+ µ(a)p = 0, a ∈ [0, a+], t > 0

p(0, t) =

∫ a+

0

β(a)p(a, t) da = B(t), t > 0

p(a, 0) = p0(a), a > 0

We have used the following notations:
p(a,t) – the age density of the population, where a ∈ [0, a+] and t ≥ 0 (a+ is the
maximum age).

p(a,0) – the initial age distribution of the population.
β(a) – age specific fertility.
µ(a) – age specific mortality.

π(a) = e−
R

a

0
µ(τ)dτ – survival probability.

B(t) – the birth rate i.e. the number of offspring in one time unit.
In order to allow the mathematical treatment of (1.1), we need to specify some more

conditions:

– we want a+ < +∞;

– we consider the total birth rate B(t) =

∫ a+

0

β(a)p(a, t)da;

– we want π(a) = e−
R

a

0
µ(τ)dτ vanishes at a+, i.e. π(a+) = 0;

– p0 ∈ L1(0, a+), p0(a) ≥ 0 in [0, a+];
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–

∫ a+

0

µ(τ)dτ = +∞ (it is necessary for π(a+) = 0)

Integrating the governing equation in (1.1) along the characteristic lines (see [1]), we
have:

(1.2) p(a, t) =





p0(a − t)
π(a)

π(a − t)
, a ≥ t

B(t − a)π(a), a < t

It can be shown (see [1]) that problem (1.1) is equivalent to the following Volterra
integral equation of second kind (Renewal equation):

(1.3) B(t) =





F (t) +

∫ t

0

K(t − a)B(a) da, t ≤ a+

∫ t

t−a+

K(t − a)B(a) da, t > a+

where

(1.4)
F (t) =

∫ a+

t

β(a)p0(a − t)
π(a)

π(a − t)
da, t ≤ a+

F (t) = 0 , t ≥ a+

K(a) = β(a)π(a)

Once we have the solution of the Renewal equation, i.e. the value of B(t) for t ∈ [0, T ]
and substituting it in (1.2), we can obtain the solution of the previous problem.
Another way to look at the solution of Lotka-McKendrick’s equation is via the equation
with the Age profile. Let us consider the following variables:

(1.5)





w(a, t) =
p(a, t)

P (t)
(age profile)

P (t) =

∫ a+

0

p(a, t)da (total population)

By the definition of w(a,t) and P(t) itself and by differentiating the expression p(a, t) =
w(a, t)P (t) and then substituting in (1.1) (see [1]), we get the following equations:

(1.6)





wt(a, t) + wa(a, t) + µ(a)w(a, t) + α(t)w(a, t) = 0

w(0, t) =

∫ a+

0

β(a)w(a, t)da
∫ a+

0

w(a, t)da = 1

w(a, 0) = w0(a)

(1.7)





d

dt
P (t) = α(t)P (t)

P (0) = P0

where:

(1.8) w0(a) =
p0(a)∫ a+

0 p0(τ)dτ
, P0 =

∫ a+

0

p0(τ)dτ
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and

(1.9) α(t) =

∫ a+

0

[β(τ) − µ(τ)]w(τ, t)dτ

When we obtain the solution of (1.6), we can find the solution of the former initial-
boundary value problem by using formulas (1.5), (1.7) and (1.8). In that case the leading
equation in the model above is much more complicated (it is an hyperbolic, nonlinear
equation) than the Lotka-McKendrick’s one and the Renewal equation, because here are
nonlinearities to deal with. But the most useful property of (1.6) is that its solution is
bounded (see [1]) and it follows that the numerical schemes developed for it will have
better long time behavior.

2. Numerical schemes. During the last years many direct methods for McKen-
drick-von Foerster’s equation have been proposed (see [4], [5], [6]), but no approaches via

the Renewal equation and the equation with the Age profile have been demonstrated. In
this section we will propose Runge-Kutta schemes for these equations.

Let h > 0 be the discretization step and h =
a+

N
, where N is the total number of

subintervals (we assume that the mesh size in time and in age is equal), i.e. we have
{(ai, t

n) : xi = ih, i = 0, . . .M ; tn = nh, n = 0, . . .N}.

a) A forth order Runge-Kutta scheme for the Renewal equation. Let us
have a Volterra integral equation of second kind and let we present it in the following
form:

(2.1) y(t) = F (t) +

∫ tn

0

K(t, s)y(s) ds +

∫ t

tn

K(t, s)y(s) ds = Fn(t) +

∫ t

tn

K(t, s)y(s) ds

Note: In our concrete case, the kernel K(t, s) = K(t − s).

In the following we present the only existing explicit, 4-stage and 4-th order RK
formula of Pouzet type (see [2]) (it is analogues to the forth order one that is most used
for ODE’s) applied on the equation (1.3):

(2.2)

Y n
1 = F̃n(tn)

Y n
2 = F̃n

(
tn +

h

2

)
+

h

2
K

(
h

2

)
Y n

1

Y n
3 = F̃n

(
tn +

h

2

)
+

h

2
K(0)Y n

2

Y n
4 = F̃n (tn + h) + hK

(
h

2

)
Y n

3

Bn+1 = F̃n(tn + h) +
h

6

[
K(h)Y n

1 + 2K

(
h

2

)
Y n

2 + 2K

(
h

2

)
Y n

3 + K(0)Y n
4

]

where F̃n(tn) is an approximation of the lag term Fn(t).

b) A second order Runge-Kutta scheme for the equation with the Age
profile. Here we consider equation (1.6) and we approximate it with a second order
method. This implies that for the approximation of the integral terms we have to use a
second order method (for example the trapezoidal rule which is a second order accurate).
It requires an evaluation of the integrated function at the right endpoint a+ of the
interval. This represents a problem for the model (1.6) since lim

a→a+

µ(a) = ∞. To avoid
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this problem we make the substitution:

(2.3) v(a, t) = π−1(a)w(a, t)

and we assume that:

(2.4) supa∈[0,a+]µ(a)π(a) ≤ µ∗ < ∞

After the substitution (2.3), (1.6) transforms into:

(2.5)





1) vt(a, t) + va(a, t) = −v(a, t)A(t)

2) v(0, t) =
∫ a+

0 β(a)π(a)v(a, t)da

3)

∫ a+

0

π(a)v(a, t)da = 1

4) v(a, 0) = π−1(a)w0(a) = v0(a)

where, for simplicity, we have denoted A(t)=

∫ a+

0

[β(τ) − µ(τ)]π(τ)v(τ, t)dτ .

Let V n
i be an approximation of v(ai, t

n). Then, we propose an explicit second order
RK scheme combined with the use of trapezoidal rule and midpoint rule as follows:

(2.6)





V n+1
i+1 = V n

i + K2, i = 0, . . .N − 1; n ≥ 0

K1 = −hAnV n
i , i, n ≥ 0

K2 = −An+ 1
2

(
V n

i +
K1

2

)
, i, n ≥ 0

By these formulas we find the solution for the new time level tn+1 at the grid points
a1 . . . aN . For the boundary points we apply the trapezoidal rule and thus we obtain:

(2.7) V n+1
0 =

h

(2−hβ0π0)

[
2β1π1V

n+1
1 +2β2π2V

n+1
2 +· · ·+2βN−1πN−1V

n+1
N−1+βNπNV n+1

N

]

As it can be seen, the use of this scheme is not trivial, because in order to find V n+1
i+1

first we need to find An and An+ 1
2 which are unknown values. So, we add the following

complimentary condition:

(2.8) An =
h

2
[(β0 − µ0)π0V

n
0 + 2

N−1∑

i=1

(βi − µi)πiV
n
i + (βN − µN )πNV n

N ],

where we have assumed that µNπN is a finite number.

If we take a look at the second multiplier in the third equation in (2.6), we can notice

that it is in fact an approximation of our solution for time

(
tn +

h

2

)
found by making a

half step of Euler’s method for ODEs. It implies that we know all “inner” points for time

level

(
tn +

h

2

)
. Then, we can use the midpoint rule in order to calculate our integral:

(2.9) An+ 1
2 = h

N−1∑

i=0

(
V n

i +
K1

2

)(
βi+ 1

2
− µi+ 1

2

)
πi+ 1

2

Now putting together (2.6), (2.7), (2.8) and (2.9) we complete the method.

The particular thing here is the way we calculate An+ 1
2 – by using another quadrature

formula of the same order which is much better than using extrapolations. More general
approaches to Gurtin-MacCamy’s (a generalization of the linear Lotka-McKendrick’s one)
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model based on RK methods of different order (≥ 2) are done in [3]. But for finding
the values of A(tn + cih) they have done first extrapolations followed by iterations which
increases the computational time and cost.

3. Discussion and results. Test example: We assume the maximum age a+=1;

we take the fertility β(a) = 2; the mortality µ(a) =
1

1 − a
and it follows that the

survival probability π(a) = 1 − a. The initial values are chosen in such a way that
some compatibility conditions are satisfied in order to obtain continuity of the solution
(see [4]):

(3.1) p0(a) =






(1 − 2a)3(1 − a), a ∈

[
0,

1

2

]
;

31(2a − 1)3(1 − a), a ∈

[
1

2
, 1

]
.

Considering (2.3) and formula (1.8), we can calculate v0(a) for the profile:

(3.2) v0(a) =






2(1 − 2a)3, a ∈

[
0,

1

2

]
;

62(2a − 1)3, a ∈

[
1

2
, 1

]
,

(3.3)

K(a) = 2(1 − a),

F (t) = 2

∫ 1

t

p0(a − t)da, t ∈ [0, 1]; (F (t) = 0, t > 1).

Substituting this data into the integral equation (1.3) and differentiating it in t, we
obtained a differential equation on B(t) for the first interval t ∈ [0, 1] and a differential
delay equation for B(t) in t ≥ 1. We have developed a solver for delay equations in
Mathematica (ask the authors for details) and then having the values for B(t), we have
found p(a, t) by (1.2) and w(a, t) by (1.5).
We have computed the effective order of convergence of the schemes by the formula:

(3.4) α =

ln

(
Eh

Eh

2

)

ln(2)

where Eh is the approximation error.
In the table below we have listed some results as follows: in the first column are given

the values of the the discretization step; in the next two – the approximate effective order
of convergence of the discussed RK methods for the Renewal equation and the equation

Table 1

h α(RKRenewal) ≈ α(RKAge pr.) ≈ Eh(RKRenewal) ≈ Eh(RKAgepr.) ≈

1

60
1.92 1.88 1.72E-06 3.68E-02

1

120
2.94 1.94 2.36E-07 9.98E-03

1

150
2.95 1.95 1.23E-07 6.49E-03
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with the Age profile respectively; in the last two – the absolute error of these methods.
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МЕТОДИ РУНГЕ-КУТА ЗА СТРУКТУРИРАНИ СПОРЕД

ВЪЗРАСТТА ПОПУЛАЦИОННИ МОДЕЛИ

Галена Г. Пеловска, Дойчин Т. Бояджиев, Миммо Ианелли

Разгледан е моделът на Лотка-МакКендрик, описващ еволюцията на популация,

структурирана според възрастта. Дискутиран е алтернативен начин за числе-

но решаване на този проблем посредством метода на Рунге-Кутта за “Renewal

equation” и “equation with the Age profile”. Посочена е връзката между модела

на Лотка-МакКендрик и тези две уравнения. Засегнат е биологически значим

случай, т.е. когато индивидите имат максимална възраст, която и крайно число

и това е източник на допълнителни трудности при числената интерпретация на

проблема.
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