
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2005

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2005

Proceedings of the Thirty Fourth Spring Conference of

the Union of Bulgarian Mathematicians

Borovets, April 6–9, 2005

ON TWO ADAPTIVE SYSTEMS FOR DOCUMENT

MANAGEMENT
*

Vanyo G. Peychev, Ivo I. Damyanov

In this article we observe two document/contents management systems. We discuss
the role of XML in development of loose-coupled multi-tier applications. A simple
approach involving XML is presented.

Introduction. Software development always starts from a set of incomplete, impre-
cise, and sometimes self-contradicting requirements. Adaptability, flexibility and main-
tainability are important features that ensure a fruitful life of software growth [1]. Very
often Small and Medium Enterprises (SMEs) need fast rather sophisticated solutions
with small budget for development and maintenance. In this article two case studies for
development of adaptive document/contents management systems are discussed.

Multi-tier architectures have grown to be standard solutions in various application
domains in the last couple of years. The classic solution separates applications into back-
end services (database the layer), business services (application layer) and user interface
(presentation layer) [5]. This architecture promotes reuse and simplifies maintenance. At
the same time designing multi-tier applications without proper separation, emphasizes
the problems with adding support for new data.

With the introduction of XML [2] and its subsequent adoption by the major players
of the software industry, data can live its own life.

According to W3C (World Wide Web Consortium), XML is a universal format for
structured documents and data on the Web. XML is a text format and makes use of
tags and attributes [4]. eXtensible Stylesheet Language (XSL) transformation can be
used with the XML document to present the data in web browser. XML and XSL allow
Web developers to separate data and presentation. XML is ideally suited for the next
generation of Internet applications.

A lot of work has been done in the database community on mapping of XML data into
and out of relational database systems, specifically, the query processing over such data.
XML documents can be exploited to build adaptive systems. In an adaptive system,
careful design though is given to isolate objects from one another and isolate data from
the behavior.

Adaptive web document system. The first case study provided in the paper
demonstrates simple web-based document management system that holds the data ma-
nipulated by the objects in a parallel universe. Results of this case study were used in
the development of a real document management system deployed to local SME.

*Key words: document management, loose coupling, web application and XML

185



Adaptive Programming as a name was introduced around 1991. By definition a pro-
gram is called adaptive if it changes its behavior according to its context [3]. Applications
need to be able to communicate with and adapt to one another transparently. Moreover,
compound applications (especially distributed ones) need to be designed to anticipate
changes – changes in their components and in the way these components interface with
other applications. How can we achieve adaptiveness? A generic mechanism to achieve
adaptiveness is to use collaborating views, which are loosely coupled. Adaptive software,
as currently implemented, is specified by complementary, collaborating views, each one
addressing a different concern of the application (structure or behavior).

Multi-tier architecture physically separates the presentation layer or GUI, business
processing and database logic. The reasons for developing multi-tier applications are:
scalability, application partitioning and enhanced performance, improved reliability, reusa-
bility and integration, multi-client support.

There is a great demand to deploy business applications on the web. This demand
is somehow stimulated and made possible by the services the web provides and at the
same time drives the web’s development. Web-based applications are applications that
rely on the web as the application infrastructure to perform their functionality and have
significant complexity in logic processing. They rely on web browsers and web protocols
to provide the user interface in the form of web pages, delivered and connected to the
rest of the application. Families of technologies such as CGI, Server side scripting, Client
side scripting and series of revisions of HTTP have been developed, and innovation has
been conducted to enhance the web for its new role – an application platform. Thus the
web-based applications provide interface granularity which is much harder to be achieved
in classical UI applications.

When designing adaptive, client/server applications, it is important to design the
application as extensible and dynamic as possible. This is important for the separation
of data from behavior, scalability, adaptability and maintainability.

Let us state the requirements for our document/contents management system: The
main purpose of the system will be to manage documents with different complexity
and size. (A) Adaptive document management system should manage different types of
documents with non-editable and editable contents. (B) Some of the editable content
is coming from nomenclature. (C) Editable contents of the documents should be stored
in a manner to enable aggregation and better search. (D) Client (for editing document
contents) should be web-based. (E) Non-editable (and set of editable) contents can be
changed over time as well, since already stored documents should still be rendered as
they were made. (F) Adding management of new documents should not reflect on server
side code. (G) System maintenance should not require extra knowledge.

Design and implementation highlights. We will not emphasize the proprietary
extensions of neither SQL servers nor Server side scripting. We assume that the used
SQL server has facilities to return records set as XML document and has ability to store
row that was passed as XML document. Such facilities are available in most popular
SQL Servers. If they are missing we can use some adapters to provide these features to
the application.

Our simplified approach is to use one table for the document editable contents where
each column is either reused between different document types or unique for specific doc-

186



ument. In another database table we have stored XSL/XSLT documents. They are used
to “add” non-editable contents of actual document and editable capabilities (i.e. HTML
form elements as <input>, <select>, <textarea>, etc.) if is needed. Requirement (B)
leads us to another table that contains all the nomenclature in hierarchical manner (row
records with additional info for parent/child relations) (Figure 1).

Figure 1

Processes of showing/editing document start with sending to the web tier a request
from the client with specified document ID. The business tier processes the authorization
credentials and requests from data provider XML with document editable contents, XSLT
document with non-editable contents and instructions for proper rendering (for editing
or review). Additionally, a nomenclature is requested (if necessary) and attached to the
final XML document (Figure 2).

XML Engine processes the returned document according to transformation schema
(in XSLT) and produces valid XHTML file.

After editing the document the client posts back to the web tier the document con-
tents. Web tier loop through form parameters collection and compose XML document
that is processed by database server and stored into document table. Adding new doc-
uments reflects on creating new XSLT and storing in XSL repository. If needed, some
extra columns using web interface the “wide table” is altered and the necessary columns
are added.

The proposed solution has enough flexibility to cover wide spectrum of documents.
The only disadvantage is inability to store lists. This is one of the directions for further
research to be done.

Relational model for document representation. Another way to store and
present a document structure and content is to use the relational data model. Storing
a document structure in RDBMS is not a trivial task. The usage of a relational data
model involves the addition of semantic knowledge of the document structure, which is
stored into a DB objects. The aim is for every document to be added information about
the way of its visualization on the client browser. This information is stored when the
document is created (Figure 3).

The document is considered as an ordered sequence of blocks. Each block contains
information for its place in the view of the whole document. The visual elements are
contained in blocks.

187



Figure 2

Figure 3

188



Figure 4

Concerning documents life cycle there are two important activities:

• Generate a document template (the document hierarchy is created);

• Manage a document content (from users).

The generation of a document template and its storing into the document repository
is done only by an authorized user called a document administrator. The document
template could be in two states: development and production. The administrator can
change the state. After the document template is published in a production state it could
be used by a user. The user can fill the document template with personal data. Only an
authorized user can access the document content according to the rules:

• For every user all versions of all own documents are kept;

• For every type of a document all versions are kept;

• Only an administrator can see all documents.

In general the system has the following model:
The solution allows support for a wide set of document templates for many users.

Tracking versions is very important for scalability of the solution. Some disadvantages
are connected with the complexity of the interface for the creation of document templates.

189



Conclusions. In the article we present two solutions for a document repository
and content maintenance. Both solutions are influenced by real requirements for doc-
ument management in SME. Each solution has its own advantages and disadvantages.
In our approach for developing a loosely coupled multi-tier and an adaptive web-based
application we have achieved maximum flexibility through the use of XML. Both ap-
proaches were used in the development of real document management systems deployed
to local SMEs. The implications of these approaches are important for designers of
mission-critical, enterprise-scale systems.

REFERENCES

[1] L. Osborn. Information systems lessons learned. NSF Informatics Task Force, Educating
the next generation of information specialists, Alexandria, Virginia, 1993. National Science
Foundation, 40–41.
[2] World Wide Web Consortium. Extensible Markup Language (XML) 1.0. February 1998.
(http://www.w3.org/TR/REC-xml).
[3] K. Lieberherr. Adaptive Object-Oriented Software. The Demeter Method. PWS Pub-
lishing Company, 1996.
[4] D. Hunter, K. Cagle, D. Gibbons, N. Ozu, J. Pinnock, P. Spenser. Beginning XML,
Wrox Press, 2000.
[5] K. Renzel, W. Keller. Three Layer Architecture, Software Architectures and Design
Patterns in Business Applications, TUM-I9746, 1997.

Vanyo Georgiev Peychev
Department of Computer Sciences
Faculty of Mathematics and Informatics
University of Sofia
5 James Baucher Str.
1164 Sofia, Bulgaria
e-mail: vanyo@fmi.uni-sofia.bg

Ivo Damyanov
Department of Computer Sciences
South-West University
66 Ivan Mihailov blvd.
2700 Blagoevgrad, Bulgaria
e-mail: damianov@aix.swu.bg

ДВЕ СИСТЕМИ ЗА УПРАВЛЕНИЕ НА ДОКУМЕНТИ

Ваньо Г. Пейчев, Иво Й. Дамянов

В доклада се разглеждат две системи за управление на документи/съдържание.
Обсъдена е ролята на XML в създаването на непълно алгоритмизируеми прило-
жения.

190


