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The operational calculus of Heaviside-Mikusiński [1] is used successfully for solving the
initial value problem (IVP) for some types of differential equations reducing them to
algebraic equations. An extention of the Heaviside algorithm for obtainig of periodic
solutions of linear ordinary differential equations (LODE) with constant coefficients
(CC) and of systems of such equations is presented. Using the computer algebra
system (CAS) Mathematica, the periodic solutions are obtained in closed form.

1. Heaviside algorithm for solving IVP for LODE with CC. The main idea
of the Operational Calculus (OC) of Oliver Heaviside was the conversion of differential
equations in algebraic equations by treating the differentiation operator as an algebraic
object [1]. This idea was inspired by physical considerations and Heaviside did not
establish a sound mathematical theory. The first justification of his approach was done
by means of the Laplace transform. Later J. Mikusiński [2] developed a direct algebraic
approach to the Heaviside OC.

Mikusiński started from the classical Duhamel convolution

(1) (f ∗ g) =

∫ t

0

f(t − τ)g(τ)dτ ,

considering the space C[0,∞) of the continuous functions on [0,∞) as a ring on R or
C. Further, he used the classical Titchmarsh theorem that the operation (1) has no
divisors of zero. In the same way, as the ring Z of the integers is extended to the field Q

of the rational numbers, Mikusiński extended the ring (C[0,∞), ∗) to the smallest field
M containing the initial ring. We name and denote it by M, as Mikusiński’s field.

The basic operator in the Mikusiński approach is the integration operator

(2) lf(t) =

∫ t

0

f(τ)dτ .

In fact, l is the convolution operator l = {1} ∗. The elements of M are convolution
fractions

f

g
=

{f(t)}

{g(t)}
.
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Further, the algebraic analogon of the differentiation operator D =
d

dt
is the convo-

lution fraction

(3) s =
1

l
.

The basic formula of the Heaviside-Mikusiński OC is given by

(4) {f ′(t)} = s {f(t)} − f(0),

when f ∈ C1[0,∞) and where f(0) is considered as a “numerical operator”.

Let us consider how the Mikusiński’s approach is applied for solution of IVP for
ordinary LDE with constant coefficients.

Let P (λ) = a0λ
n + a1λ

n−1 + · · · + an−1λ + an be a non-zero polynomial of degree
n = deg P . Consider the following linear differential equation with given initial values:

(5) P

(

d

dt

)

y = f(t), y(0) = α0, y′(0) = α1, · · · , y(n−1)(0) = αn−1.

Using formula (4), the problem (5) is reduced to the following single algebraic equation
of 1st degree:

P (s)y = f + Q(s) with Q(λ) =
n
∑

j=1

(

n
∑

k=j

an−jαk−j

)

sj−1.

Here deg Q < deg P.

The formal solution of the above equation has the form

(6) y =
1

P (s)
f +

Q(s)

P (s)
.

Further, we can decompose 1/P (s) and Q(s)/P (s) in elementary fractions and these
fractions can be interpreted as functions using formulae such as:

1

(s − a)n
=

{

tn−1

(n − 1)!
eat

}

, n = 1, 2, . . .

After applying these formulae, we obtain the functions

1/P (s) = G(t), Q(s)/P (s) = H(t)

thus obtaining the solution in the form y = G(t) ∗ f(t) + H(t).

Example 1.

y(4)(t) − 5 y′′(t) + 4 y(t) = t2

y(0) = 0, y′(0) = 0, y′′(0) = 0, y(3)(0) = 0

The algebraization process leads to: (4 − 5s2 + s4)y(t) = t2

After performing the considered operations, we get the following solution:

y(t) =
1

24
(15 + 6t2 − 16 cosh(t) + cosh(2t)).

All computations are made using the CAS Mathematica.

2. Extension of the Heaviside algorithm to a class of BVP for LODE with

CC. Let us consider the BVP

(7)

P

(

d

dt

)

y = f(t), 0 ≤ t ≤ T

∫ T

0

y (τ) dτ = α0, y(k)(T ) − y(k)(0) = αk+1, k = 0, 1, . . . n − 2.
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Dimovski and Grozdev [5, 6] consider (7) with T = 1 not for its own sake, but as an
intermediate step in obtaining of periodic solutions of LODE with CC, which is reduced
to the problem

(8)
P

(

d

dt

)

y = f(t)

y(k) (T ) − y(k) (0) = 0, k = 0, 1, . . . n − 1

for the period interval [0, T ] of the periodic function f(t).

The extension of the Heaviside algorithm, used here, is proposed by Dimovski and
Grozdev [3–6]. The following BVP is considered:

(9)

P

(

d

dt

)

y = f(t), 0 ≤ t ≤ T

∫ T

0

y (τ) dτ = α0 =
1

Tan

∫ T

0

f (τ) dτ

y(k)(T ) − y(k)(0) = 0, k = 0, 1, . . . n − 2,

assuming that an 6= 0.

Instead of the convolution (1), we use the convolution

(10) (f ∗ g)(t) =
f(t)

T

∫ T

0

g(τ) dτ +
g(t)

T

∫ T

0

f(τ) dτ

−
1

T

∫ t

0

f(t − τ) g(τ) dτ −
1

T

∫ T

t

f(t + T − τ) g(τ) dτ

and the right inverse operator l of d/dt:

(11) lf(t) =

∫ t

0

f(τ)dτ −
1

T

∫ T

0

(T − τ)f(τ)dτ .

It is the convolution operator

l =

{

t −
T

2

}

∗ .

Further, convolution fractions of the form f/g with f, g ∈ C[0, T ], in the case when
g is not a divisor of 0 of operation (10), are considered.

The algebraic analogon of d/dt is the convolution fraction

s =
1

l
and the basic formula of the corresponding OC is

{f ′(t)} = s {f(t)} −
1

T

∫ T

0

f(τ)dτ .

Here
1

T

∫ T

0

f(τ)dτ is considered as a constant function.

As in the previous section, the problem (9) reduces to P (s)y = f + Q(s).

The solution can be obtained in the form

y =
1

P (s)
f +

Q(s)

P (s)
, deg Q ≤ deg P
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provided P (s) is not a divisor of 0. After decomposing of 1/P (s) and Q(s)/P (s) in
elementary fractions, the following formulae are to be used for interpretation of the
“algebraic solution” [5]:

1

(S − λ)m
=

{

(−1)m

λm
+

T

(m − 1)!

∂m−1

∂λm−1

(

eλt

eλt − 1

)}

, m = 1, 2, . . .

1

S2 + λ2
=

{

1

λ2
− T

cosλ
(

t − T
2

)

2λ sin λT
2

}

Example 2. The computations are made using Mathematica again.

y′′(t) + π2 y(t) = sin(2 π t) T = 1, α0 =
1

π2

∫ 1

0

sin(2πt) dt

The algebraization process leads to:
(

π2 + s2
)

y = sin(2 π t)

The received closed form solution is: − sin(2πt)/(3π2)

Comments. For another approach to periodic solutions of LODE with CC using
finite Fourier transforms see Kaplan [7].

3. Remarks on the resonance cases. A special attention should be paid to the
so-called “resonance” case, i.e. when P (s) is a divisor of zero. It is the case, when some

of the roots of the polynomial P (λ) are of the form
kπı

T
with k ∈ Z. Then, from (10) it

is seen that the solution, when it exists, is not unique. In order such a solution to exist
it is necessary the condition

[f + Q(s)]
{

e
kπı

T

}

= 0, k = ±1,±2, . . .

to be satisfied for all the resonance roots
kπı

T
of P (λ). It is equivalent to the requirements

1

T

∫ T

0

(1 − e
kπı

T )f(t)dt = 0, k = ±1,±2, . . .

All these conditions are sufficient for a solution of the problem (9) to exist in the
corresponding resonance case.

4. The use of the CAS Mathematica. Capabilities of the CAS Mathematica

allow the Heaviside algorithm and the modified Heaviside algorithm to be implemented
in a convenient way. A collection of functions is defined to provide computation and
visualization of the periodic solutions of LODE with CC and of systems of such equations.
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[2] J. Mikusiński. Operational Calculus. Oxford-Warszawa, 1959

[3] I. Dimovski. Convolutional Calculus, Kluwer Academic Publishers, Dordrecht, 1990

[4] I. Dimovski. Nonlocal operational calculi. Proc. of the Steklov Institute of Mathematics,
203 (1994), 53–65.

194



[5] S. Grozdev, I. Dimovski. Direct operational method for obtaining periodic solutions
of linear ordinary differential equations with constant coefficients. Mathematics and Math.

Education, 8 (1979), 187–196 (in Bulgarian).
[6] S. Grozdev, I. Dimovski. Bernoulli operational calculus. Mathematics and Math. Educa-

tion, 9 (1980), 30–36 (in Bulgarian).
[7] W. Kaplan. Operational Methods for Linear Systems, Addison-Wesley Series in Mathe-
matics, USA, 1962.

Margarita Spiridonova
Inst. of Math. and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria
e-mail: mspirid@math.bas.bg

НАМИРАНЕ НА ПЕРИОДИЧНИ РЕШЕНИЯ НА

ДИФЕРЕНЦИАЛНИ УРАВНЕНИЯ ЧРЕЗ ПОДХОДА НА

ОПЕРАЦИОННОТО СМЯТАНЕ

Маргарита Н. Спиридонова

Операционното смятане на Хевисайд-Микусински може да се използува за ре-

шаване на задачи с начални условия за някои типове диференциални уравнения,

чрез трансформирането им в алгебрични уравнения. Разгледано е едно разшире-

ние на алгоритъма на Хевисайд-Микусински, с цел неговото прилагане за нами-

ране на периодични решения на линейни диференциални уравнения с постоянни

коефициенти и на системи от такива уравнения. С използване на системата за

компютърна алгебра Mathematica решенията се представят в символен вид.
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