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Generation of sample paths in branching processes with random number of ancestors
has its important role in studying the properties of the parametric estimators. Using
different types of generated realizations and the asymptotic normality of some popular
offspring mean estimators their robust modification is obtained. When the offspring
distribution is considered to belong to the class of PSOD, robust estimators, based
on several sample paths, are studied.

1. Introduction. We assume that on some probability space there exists a set of
i.i.d. r.v. {ξi(t, n)} with values in the set of nonnegative integers N = {0, 1, 2, . . .}
and that {ξi(t, n), i ∈ N} are independent of Z0(n). Then for each n = 1, 2, . . .
Z(n) = {Zt(n), t = 0, 1, . . .} is a Bienayme-Galton-Watson process having a random
number of ancestors Z0(n) ≥ 1, where

Zt(n) =






Zt−1(n)∑

i=1

ξi(t, n) if Zt−1(n) > 0, t = 1, 2, . . .

0, otherwise

Such a process is denoted by BGWR.
Our main concern in this paper is the robust parametric estimation of a BGWR

process with power series offspring distribution (PSOD) based on a sample {Z0(n), . . . ,
Zt(n)} as both n and t tend to infinity (and thus Z0(n) in some sense). Naturally, the
relative speed, at which n and t → ∞, comes into play for all values of the offspring
mean m : 0 < m < ∞.

Let {pk} be the common offspring distribution, i.e. pk = P (ξ = k) ≥ 0,
∑

pk = 1,
p0 + p1 < 1 and put m = Eξ, σ2 = V ar(ξ). We assume throughout that 0 < σ2 < ∞.

The individual distribution is said to belong to the class of power series offspring

distributions, if pk = P (ξ = k) =
akθk

A(θ)
, θ > 0, ak ≥ 0, where A(θ) =

∑
akθk is a

positive function.
Yakovlev and Yanev (1989) noted that branching processes with a large and often

random number of ancestors occur naturally in the study of cell proliferation. Such is
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also the case in applications to nuclear chain reactions. Results about the nonparametric
estimation of the offspring mean m and variance σ2 in the BGWR process have been
announced in [3], [2], the proofs of several results about the Harris estimator of the

offspring mean m̂t(n) =
Z1(n) + · · · + Zt(n)

Z0(n) + · · · + Zt(n)
are given in [4]. A sequel to this work is

the paper of [5], where the nonparametric m.l.e. and a family of l.s.e. for σ2 are concerned
and consistency and asymptotic normality of these estimators are obtained for all values
of the mean m, 0 < m < ∞.

Further on, we suppose that n = n(t) → ∞ as t → ∞ and use the following

Condition A. m > 1 or m = 1, t/n → 0 or m < 1, nmt → ∞.

We use a robust extension of the maximum likelihood estimators (MLE) that pos-
sesses a high breakdown point, which was introduced in [9] and [10], the so called
Weighted Least Trimmed estimator in order k (WLT(k)). As a measure of robustness
we consider the Finite Sample Breakdown Point (BP), defined as the largest fraction of
oservations from the original data, which can be replaced by arbitrary values (see [8], [1]
and the references therein).

2. Robust modified nonparametric estimators. We apply the concept of
the WLT(k) estimators for estimating the offspring mean in the BGWR processes. The
study is focused on the well known estimators of Lotka-Nagaev and Harris using the
technique for the classical Bienayme-Galton-Watson (BGW) process described in [6].
Let us suppose that we have a set of sample paths of a branching process. Using this set
and the estimators mentioned above we can obtain a number of values for the offspring
mean (for any sample path we have one offspring mean estimator). It is well known that,
under certain conditions, these values are asymptotically normally distributed. If these
conditions are not satisfied the estimated value is far from the real value of the offspring
mean. The aim is to apply the theory of robustness in order to eliminate the cases, which
do not satisfy these conditions, and to obtain an estimator of the offspring mean closer
to the real value. The study of the robustness of the estimates of the offspring mean is
based on the breakdown properties of the WLT (k) estimators.

Following [6], let us define a robust estimator of the unknown parameter θ over the
set of sample paths Z = {Z(1)(n), . . . ,Z(r)(n)}, where Z(r)(n)} is a single realization of
a BGWR process with PSOD, r = 1, 2, . . . , as

(1) M̄(θ) = argmin
θ∈R

k∑

i=1

−wif(Est (Z(ν(i))(n), θ)),

where k is the trimming factor, f(x) is the logarithm of the density function of the stan-
dard normal distribution, ν is a permutation of the indexes, such that f(Est (Z(ν(1))(n), θ))
≥ f(Est (Z(ν(2))(n), θ)) ≥ · · · ≥ f(Est (Z(ν(r))(n), θ)), Est(Z(i)(n), θ) is the transforma-
tion of the estimator of θ, which gives us asymptotic normality.

In the case of Lotka-Nagaev estimator Est(Z(i)(n), µ) can be presented as follows:

Est (Z(i)(n), µ) =

√
Z

(i)
ti

(n)

σ
(m̄

(i)
ti

(n) − µ), µ ∈ R

where m̄
(i)
ti

(n) is Lotka-Nagaev estimator for the i−th sample path. Here Z
(i)
ti

(n) are the

number of individuals in ti-th generation in the sample path Z(i)(n). The fixed parameter
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σ represents the variance of the offspring distribution. By analogy, in the case of Harris
estimator, we have

Est (Z(i)(n), µ) =

√
U

(i)
ti

(n)

σ
(m̂

(i)
ti

(n) − µ), µ ∈ R

where U
(i)
ti

(n) = Z
(i)
0 (n)+ · · ·+Z

(i)
ti−1(n). And, finally, for the offspring variance one gets:

Est (Z(i)(n), σ) =

(
ti

2σ4

) 1
2

(σ̂
2,(i)
ti

(n) − σ2),

where

ˆσ2
ti

(n) =
1

ti

ti−1∑

k=0

Zk(n)

(
Zk+1(n)

Zk(n)
− m

)2

is the estimator of the individual variance and m is the true value of the individual mean
if it is known, or the Lotka-Nagaev or Harris estimators of the mean if it is unknown.

Est(Z(i)(n), σ) is asymptotically normal if Condition A holds, Eξ4 < ∞ and
Z0(n)

n

→

d ν

(see [5]).

Proposition 1. The estimator M̄(µ), defined by (1), exists and its BP is not less

than (r − k)/r if r ≥ 3, (r + 1)/2 ≤ k ≤ r − 1. �

The proof is omitted because it is similar to the case of the classical BGW process
(see [6]).

Proposition 2. The estimator M̄(σ), defined by (1), exists and its BP is not less

than (r − k)/r if r ≥ 3, (r + 1)/2 ≤ k ≤ r − 1.

Proof. To prove this proposition we have to find out the index of fullness of
the set F = {f(Est(Z(i)(n), σ)), i = 1, · · · , r}. Let us consider the function g(σ) =
f(Est(Z(i)(n), σ)) for a given sample path Z(i)(n). The study of the function g(σ̂2)
shows that it can be presented as follows:

g(σ̂2,i
ti

(n)) = log
1√
2π

− C2(σ̂2,i
ti

− σ2)2

σ4
,

where C =

√
ti
2

. It is obvious that g(σ̂2) tends to minus infinity when σ2 tends to

zero and has an asymptote as σ2 tends to infinity. It does not satisfy the conditions of
the criterion for subcompactness , but is still subcompact in the sense of the theory of
the generalized d-fullness and its breakdown point is not less than (r − k)/r if r ≥ 3,
(r + 1)/2 ≤ k ≤ r − 1. �

One should notice that the reliability of the robust estimator depends extremely on
the rate of convergence to the limiting distribution of the initial estimator. We have
simulated 100 sample paths of a 50 generations BGW process with individual Poisson
distribution with mean 1.2 (the supercritical case) and have calculated the estimators of
the offspring distribution when the mean is known. Our aim was to test the normality of
the obtained sample of transformations Est(Si, σ). We performed a Jarque-Bera test for
goodness-of-fit to a normal distribution. It showed that the normality assumption could
be rejected even at significance level 0.5. This can be seen at the normal probability plot
shown bellow (Fig. 1). The normal probability plot performs like those of the heavy-
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tailed distributions. For instance, we have compared it with the normal probability plot
of the Cauchy distribution (Fig. 2).

Fig. 1. Estimates of σ Fig. 2. Cauchy distribution

The robust modification of the variance estimator of a BGW process proposed here
can be used, but to obtain good results, as in the case of offspring mean estimators, one
has to use a large data set with thousands of generations, which is often not useful from
a practical point of view.

3. Robust parametric estimation. In this section we construct robust estimators
of the parameter of the BGWR process with PSOD, based on the entire family tree and
on the generation sizes. We use results from [7], where the BP of these models is studied
according to the properties of the processes.

Let us first consider the situation, when we are able to observe the entire family tree.
Let ϑk be the number of particles with k offspring. Then, if M is the total progeny, the

log likelihood has the form LM (θ) =

(
a0θ

0

A(θ)

)ϑ0

·
(

a1θ
1

A(θ)

)ϑ1

· · · · ·
(

aNθN

A(θ)

)ϑN

.

In order to check the properties of the proposed estimators, BGWR processes have
to be simulated, where the whole family trees are observed. On the graphics below we
have shown simulations of some family trees with one ancestor and different offspring
distributions:

In the next model we are not able to observe the entire family tree and information
only about the generation sizes is available. The proposed method for constructing
robust estimators uses several sample paths over the process. Let us have at our disposal
r independent realizations Z(i)(n), i = 1, . . . , r, from a BGWR process with one and the
same PSOD and number of generations, equal to ti. Then the likelihood function, based
on all r realizations, has the form:

Lr(θ) =

r∏

i=1

P(Z
(i)
0 (n))

r∏

l=1






t1∏

i=1




∑

s1+···+s
Z

(l)
i−1

(n)
=Z

(l)
i

(n)

Z
(l)
i−1∏

j=1

asj










r∏

i=1

θ

tiP
j=1

Z
(i)
j

(n)

(A(θ))

ti−1P
j=0

Z
(i)
j

(n)

.

The behaviour and the properties of WLT(k) estimators, based on this model, are
studied in [7]. Let l be the number of sample paths with extinction at time 1. There is
shown, that in the case of Poisson offspring distribution the WLT(k) estimator, based on
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Bi(10;0,14) Bi(10;0,18)

Ge(1/22) Po(1,5)

r realizations, exists, possesses BP not less than (r − k)/r if r ≥ 3(l + 1), (r + l + 1)/2 ≤
k ≤ r− l−1 and is consistent if m(i) < ∞ and Z

(i)
0 (n)

P→ ∞ or σ2
(i) < ∞, Z

(i)
0 (n)/n.

d→ ν
and Condition A holds for i = 1, . . . , r.

We have simulated 10 sample paths of BGW processes with Poisson offspring distri-
bution and offspring mean values shown in the first rows of the tables given below and
with 5 outliers with Poisson offspring distribution with mean 2 (supercritical situation
on Table 1) and mean 0.5 (subcritical on Table 2).

It is easy to be seen that the estimated value of the unknown parameter is close to
the generated one. The estimator is stable to the presence of outliers in the data.

offspring mean estimate

0.8 0.8139
0.9 0.9500
1.0 1.1020
1.1 1.1257
1.3 1.2169
1.5 1.4103
1.8 1.8052

Table 1

offspring mean estimate

0.7 0.7222
0.9 0.8657
1.1 1.0597
1.5 1.4726
1.8 1.8227

Table 2
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АЛГОРИТМИ ЗА ГЕНЕРИРАНЕ И РОБАСТНО ОЦЕНЯВАНЕ НА
РАЗКЛОНЯВАЩИ СЕ ПРОЦЕСИ СЪС СЛУЧАЕН БРОЙ

НАЧАЛНИ ЧАСТИЦИ

Весела Стоименова, Димитър В. Атанасов, Николай М. Янев

Генерирането на траектории разклоняващи се процеси със случаен брой начални

частици играе важна роля в изучаването на свойствата на параметричните и

непараметричните оценки. Получени са модификации на някои известни оценки

на индивидуалните средно и дисперсия като е използвана тяхната асимптотична

нормалност и различни типове генерирани реализации. Когато индивидуалното

разпределение принадлежи на класа на разпределенията тип степенен ред са

разгледани робастни оценки, базирани на една и няколко извадъчни траектории.
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