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ON AN INTERGRID TRANSFER OPERATOR BETWEEN

NONNESTED ISOPARAMETRIC SPACES

Todor D. Todorov

A second order elliptic problem on a curved domain is considered. An isoparametric
approach is used for obtaining a sequence of regular triangulations. A bijection from
one approximating domain to another is found. On this basis a new intergrid transfer
operator is constructed. The stability and the saturation property of the considered
operator are proved. The application of the new operator for obtaining of a nonnested
multigrid method is discussed.

Introduction. Multigrid methods are among the most efficient methods for sol-
ving elliptic partial differential equations. In the most papers multigrid methods, which
use a sequence of nested finite element spaces are considered. However, there are many
problems where one has to deal with nonnested spaces, e.g., in the cases of some mixed
finite element methods, some C1 finite elements, non-quasi-uniform or degenerate tri-
angulations, noninherited bilinear forms, curved boundaries etc. Many authors consider
nonnested multigrid methods for various elliptic problems [1–3, 8–15, etc.]

The determining of the intergrid transfer operator is a basic step for constructing of
nonnested multigrid methods. The intergrid transfer operator should have two important
properties to be applied for compiling of a multigrid algorithm, namely stability and
saturation property. These properties are thoroughly proved in the present paper.

Most of the known results are obtained by the piecewise linear elements, i.e. lowest
rate of convergence is obtained. Even those of the authors who consider problems on
curved domains have not used up to now isoparametric approach for finding a multigrid
solution (see for example [2, 10, 11]). However, there exist many problems, where the
usage of linear elements leads to divergence of the approximate solutions (see, e.g., [4,
Chapter 8.2]). Therefore the application of the isoparametric approach for constructing
of multigrid methods is well motivated.

Let Ω be a curved bounded domain in R2 with a Lipschitz-continuous boundary Γ.
As usual, we denote the real Sobolev space for n nonnegative integer by Hn(Ω). The
space Hn(Ω) is provided with the norm ‖ · ‖n,Ω and the seminorm | · |n,Ω. Let us define

the space H1
0 (Ω) = {v ∈ H1(Ω) | v = 0 on Γ}, the energy scalar product a(u, v) =∫

Ω
a(x)∇u · ∇v + b(x)uv dx and the L2 inner product (u, v) =

∫
Ω
uv dx, u, v ∈ H1

0 (Ω).

Assume that a ∈ C1(Ω), b, f ∈ C(Ω) and there exist positive constants a, a, b, b, such
that a ≤ a(x) ≤ a, b ≤ b(x) ≤ b, ∀x ∈ Ω.
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Consider the following model problem:

(P) :

{
Find a function u ∈ V that satisfies
a(u, v) = (f, v), ∀v ∈ V

.

Isoparametric finite element discretizations. Let τ0 be an initial triangulation
of the domain Ω with finite elements of degree m ≥ 2. We assume that all finite elements
in the triangulation τ0 of the domain Ω are isoparametric equivalent to one finite element
(K̂, P̂ , Σ̂) called finite element of reference with K̂ = {(x̂1, x̂2) | x̂1≥0, x̂2≥0, x̂1+x̂2≤1} is
the canonical 2-simplex; P̂ = Pm(K̂), where Pm is the space of all polynomials of degree

not exceeding m; Σ̂ =

{
â = (â1, â2) | â1 =

i

m
, â2 =

j

m
; i+ j ≤ m; i, j ∈ N ∪ {0}

}
is

the set of all Lagrangian interpolation nodes.

t

t

t

t

t

t

t

t

t

t

h

h

h

h

h

h

h

h

h

h

t

t

t

t

t

t

t

t

t

t

t
t

t

t

t

t
t

t

t
t

t

t

t
t

t

t
K1

t

t

t

t

t

t

t

tK5

t

t

t

t

t t

tt
K2

t

t

t

t

t
t

t
t

a1,K

a3,K

a331,K

a113,K

a2,K

a123,K

a112,K

a221,K

a223,K

a332,K

K3

K7

K9

K4

K6

K8

◦ – nodes belonging to Nk−1,

• – nodes belonging to Nk,

� – nodes belonging to eNk ∩ Γ

Fig. 1. The finite element K ∈ τk−1 and the corresponding
Sm2

i=1
Ki, Ki ∈ τk, m = 3

An arbitrary finite element K ∈ τ0 is defined by K = FK(K̂), where FK ∈ P̂ 2 is
an invertible transformation. We use not only straight elements but also isoparametric
elements with one curved side for getting a good approximation of the boundary Γ. Thus
we obtain a domain Ω0 =

⋃
K∈τ0

K, which approximates the domain Ω.

Let Nk, k ∈ N, be the set of all nodes of the triangulation τk and Ñk = Nk \ Nk−1.
Let Ωk be an approximate domain of the domain Ω corresponding to the triangulation
τk and Γk = ∂Ωk. The triangulation τk is obtained from τk−1 by dividing each element

into m2 elements of degree m (see Fig. 1). We can see that the nodes in Ñk ∩ Γ do not
belong to Γk−1 (see Fig. 1).

We define the unique affine map F̃K satisfying the conditions F̃K(âi) = ai,K , K ∈ τk,

where ai,K , i = 1, 2, 3, are the vertex nodes of the finite element K. Denote K̃ =

F̃K(K̂) , hK = diam(K̃) , ∀K ∈ τk, hk = maxK∈τk
hK .
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Suppose that he following hypotheses are valid.
H1 The boundary Γ is piecewise Cm+1.
H2 The triangulation τk consists of isoparametric elements of degree m ≥ 2.
H3 The triangulation τk is m-regular in the sense of Ciarlet and Raviart [6].
H4 The sets of the nodes of two consecutive triangulations are connected by Nk−1 ⊂

Nk (see Fig. 1).

H5 All the nodes ai ∈ Nk ∩ Γk belong to Γ too. Usually the nodes ai ∈ Ñk

⋂
Γk do

not belong to Γk−1.
Define a finite element space Vk associated with a triangulation τk by Vk = {v ∈

C(Ωk) | v(x) = 0, x ∈ Γk; v|K ∈ PK , K ∈ τk}, where PK = {p : K → R | p =

p̂ ◦ F−1
K , p̂ ∈ P̂}.

Since the domain Ω is bounded there exists an open set Ω̃, which satisfies Ω ⊂ Ω̃, Ωk ⊂
Ω̃ for all considered triangulations τk. We define the function ã(x) as a smooth extension

of the coefficient a(x) and functions b̃(x), f̃(x) as continuous extensions of f(x), b(x) on

Ω̃. Then, we introduce the approximating bilinear form by

ak(u, v) =

∫

Ωk

ã(x)∇u · ∇v + b̃(x)uv dx , ∀u, v ∈ H1
0(Ωk).

The L2-scalar product in Vk is defined by (u, v)k =
∫
Ωk

uv dx , ∀u, v ∈ Vk . Suppose
that the following hypothesis is valid.

H6 The bilinear forms ak(·, ·) are uniformly Vk-elliptic.

Prolongations and restrictions. In this section we define an intergrid transfer
operator Ik from Vk−1 to Vk. The operator Ik plays an essential role in the nonnested
multigrid algorithm. For that reason we investigate the properties of Ik.

We introduce the map χk : Ωk−1 −→ Ωk by χk = Φ−1
k ◦Φk−1, where Φk : Ωk −→ Ω

is the map defined by Lenoir [7]. Define the intergrid operator Ik : Vk−1 7−→ Vk by
Ikv = v ◦ χ−1

k .

Consider the eigenpairs (λ
(k)
i , ψ

(k)
i ) of the problem

ak(ψ
(k)
i , v) = λ

(k)
i (ψ

(k)
i , v)k , ∀v ∈ Vk,

i = 1, 2, . . . , Nk = dimVk. Without loss of generality we suppose that the eigenfunctions
are normalized by the following way

(ψ
(k)
i , ψ

(k)
j )

k
= δij , ak(ψ

(k)
i , ψ

(k)
j ) = λ

(k)
i δij ,

where δij is the Kronecker symbol. For each v in Vk we have the following representation

v =
∑Nk

i=1 ciψ
(k)
i . Define the norm ||| · |||s,k by |||v|||2s,k =

∑Nk

i=1 c
2
i

(
λ

(k)
i

)s

, s ≥ 0.

Obviously, in Vk we have

(1) ||| · |||0,k = || · ||0,Ωk
and ||| · |||1,k = ||| · |||k ≃ || · ||1,Ωk

,

where ||| · |||k is the usual energy norm.
Further we shall use the classical denotations for the seminorms |F |n,∞,K of a n-times

differentiable map F [4, Section 4.3] and shall drop the index Ln(R2;R2) of the norms of
the Fréchet derivatives. In other words we shall write only ‖ · ‖ instead of ‖ · ‖Ln(R2;R2).
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Theorem 1. Stability. Let the hypotheses H1–H6 be valid, then

|||Ikv|||s,k.|||v|||s,k−1, ∀v ∈ Vk−1 , k ∈ N , s = 0, 1.

Proof. We estimate Ikv locally in terms of Sobolev norms

||Ikv||
2
0,χK(K) =

∫

χK(K)

(Ikv)
2
dy =

∫

K

v2 |Jχk
(x)| dx.|Jχk

|0,∞,K‖v‖2
0,K ,

∀K ∈ τk−1 and y = χk(x). Let K = Φk−1(K). Since H2 holds, we have (see e.g. [7])

(2) |Jχk
|0,∞,K.

∣∣∣JΦ−1

K

∣∣∣
0,∞,K

∣∣JΦk−1

∣∣
0,∞,K

= O(1),

(3)
∣∣χ−1

k

∣∣
0,∞,χk(K)

.|Φk|0,∞,χk(K)

∣∣Φ−1
k−1

∣∣
0,∞,K

= O(1).

Then ||Ikv||0,∞,Ωk
.||v||0,∞,Ωk−1

.

We continue with the local estimate of the first Sobolev seminorm of Ikv on χk(K)

|Ikv|
2
1,χK(K) =

∫

χK(K)

(∇Ikv)
2
dy.

∫

K

||D(v ◦ χ−1
k )||

2
|Jχk

(x)| dx

. |Jχk
|0,∞,K

∣∣χ−1
k

∣∣2
0,∞,χk(K)

∫

K

||Dv||2 dx . |v|21,K .

Thus we obtain ||Ikv||s,χK(K).||v||s,K , s = 0, 1 . Summing over all elementsK ∈ τk−1

we have for s = 0, 1

||Ikv||s,Ωk
=

(∑
K∈τk−1

||Ikv||
2
s,χK(K)

)1/2

.
(∑

K∈τk−1
||v||2s,K

)1/2

= ||v||s,k−1.

Using the norm equivalence (1) we complete the proof. �

Theorem 2. Saturation property. Let the triangulations τk satisfy the conditions

H1–H6. Then the inequality

(4) |||w − Ikv|||k.|||w ◦ χk − v|||k−1 , ∀v ∈ Vk−1 , ∀w ∈ Vk

holds.

Proof. Replacing w by z + Ikv, z ∈ Vk, we transform (4) into

(5) |||z|||k.|||z ◦ χk|||k−1 , ∀z ∈ Vk .

For verifying the inequality (4), it is enough to prove (5). We use the same approach as
in the proof of Theorem 1. Using again (2) and (3), we obtain

|z|21,χk(K) =

∫

χk(K)

(∇z)2 dy .

∫

K

||D(z ◦ χk)Dχ−1
k ||

2
|Jχk

(x)| dx

. |Jχk
|0,∞,K

∣∣χ−1
k

∣∣2
0,∞,χk(K)

∫

K

||D(z ◦ χk)||2 dx . |z ◦ χk|
2
1,K .
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Summing over all elements K ∈ τk−1, we have |z|1,Ωk
.|z ◦ χk|1,Ωk−1

.

Applying the norm equivalence (1) we get the validity of (5). �
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ВЪРХУ ЕДИН МЕЖДУМРЕЖОВ ТРАНСФЕРЕН ОПЕРАТОР

ОПРЕДЕЛЕН ЧРЕЗ НЕВЛОЖЕНИ ИЗОПАРАМЕТРИЧНИ

ПРОСТРАНСТВА

Тодор Д. Тодоров

Разгледна е моделна задача за елиптичен оператор от втори ред върху криво-

линейна област с непрекъсната по Липшиц граница. За получаване на редица

от регулярни триангулации е използван изопараметричен подход. Установена е

биекция между две последователни трианглуции в тази редица. На тази база е

въведен нов междумрежов трансферен оператор. За този оператор са доказани

свойствата устойчивост и сатурация, които са необходими за конструиране на

невложен многомрежов метод.
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