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ON AN INTERGRID TRANSFER OPERATOR BETWEEN
NONNESTED ISOPARAMETRIC SPACES

Todor D. Todorov

A second order elliptic problem on a curved domain is considered. An isoparametric
approach is used for obtaining a sequence of regular triangulations. A bijection from
one approximating domain to another is found. On this basis a new intergrid transfer
operator is constructed. The stability and the saturation property of the considered
operator are proved. The application of the new operator for obtaining of a nonnested
multigrid method is discussed.

Introduction. Multigrid methods are among the most efficient methods for sol-
ving elliptic partial differential equations. In the most papers multigrid methods, which
use a sequence of nested finite element spaces are considered. However, there are many
problems where one has to deal with nonnested spaces, e.g., in the cases of some mixed
finite element methods, some C! finite elements, non-quasi-uniform or degenerate tri-
angulations, noninherited bilinear forms, curved boundaries etc. Many authors consider
nonnested multigrid methods for various elliptic problems [1-3, 8-15, etc.]

The determining of the intergrid transfer operator is a basic step for constructing of
nonnested multigrid methods. The intergrid transfer operator should have two important
properties to be applied for compiling of a multigrid algorithm, namely stability and
saturation property. These properties are thoroughly proved in the present paper.

Most of the known results are obtained by the piecewise linear elements, i.e. lowest
rate of convergence is obtained. Even those of the authors who consider problems on
curved domains have not used up to now isoparametric approach for finding a multigrid
solution (see for example [2, 10, 11]). However, there exist many problems, where the
usage of linear elements leads to divergence of the approximate solutions (see, e.g., [4,
Chapter 8.2]). Therefore the application of the isoparametric approach for constructing
of multigrid methods is well motivated.

Let © be a curved bounded domain in R? with a Lipschitz-continuous boundary T.
As usual, we denote the real Sobolev space for n nonnegative integer by H™(€2). The
space H"((2) is provided with the norm | - [[,, o, and the seminorm |- |, . Let us define
the space H}(Q) = {v € HY(Q) | v = 0 on I'}, the energy scalar product a(u,v) =
Joa(x)Vu - Vv + b(z)uv dz and the L? inner product (u,v) = [, uvdz, u,v € H}(Q).
Assume that a € C'(Q), b, f € C(Q) and there exist positive constants a, @, b, b, such
that a < a(z) <@, b < b(x) <b, Vo € Q.

2000 Mathematics Subject Classification: 65N30, 65F10
202



Consider the following model problem:

Find a function u € V that satisfies
{ a(u,v) = (f,v), YveV

Isoparametric finite element discretizations. Let 7y be an initial triangulation
of the domain ) with finite elements of degree m > 2. We assume that all finite elements
in the triangulation 7y of the domain € are isoparametric equivalent to one finite element
(k, ]5, f]) called finite element of reference with K = {(&1,22) | £1>0,22>0,Z1+22<1}is
the canonical 2-simplex; pP=r, (K ), where P, is the space of all polynomials of degree

not exceeding m; 3 = {&: (G1,a2) | a1 = i, as = i; i+j<m;i,j€ NU{O}} is
m m

(P)

the set of all Lagrangian interpolation nodes.

@) nodes belonging to N _1,
e — nodes belonging to N,
O - nodes belonging to N N T

Fig. 1. The finite element K € 7,1 and the corresponding U;’fl K, Kiem, m=3

An arbitrary finite element K € 7y is defined by K = FK(K), where Fg € P? s
an invertible transformation. We use not only straight elements but also isoparametric
elements with one curved side for getting a good approximation of the boundary I'. Thus
we obtain a domain Qo = |J Ker, K, which approximates the domain Q.

Let Ny, k € N, be the set of all nodes of the triangulation 7, and NVj, = Nj \ Ny_1.
Let ) be an approximate domain of the domain € corresponding to the triangulation
7, and I'y = 0Qp. The triangulation 75 is obtained from 7;_; by dividing each element
into m? elements of degree m (see Fig. 1). We can see that the nodes in N NT do not
belong to 'y, (see Fig. 1).

We define the unique affine map Fy satisfying the conditions Fy (6:) = aix, K €1,
where a; x, © = 1,2,3, are the vertex nodes of the finite element K. Denote K =
Fr(K), hg =diam(K), VK € 7, hp = maxger, hi.
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Suppose that he following hypotheses are valid.

H1 The boundary T is piecewise C™ 1.

H2 The triangulation 73 consists of isoparametric elements of degree m > 2.

H3 The triangulation 75, is m-regular in the sense of Ciarlet and Raviart [6].

H4 The sets of the nodes of two consecutive triangulations are connected by Nj,_1 C
N (see Fig. 1).

H5 All the nodes a; € N NI belong to I' too. Usually the nodes a; € ./\7k AT do
not belong to I'y_1.

Define a finite element space V|, associated with a triangulation 7, by Vi = {v €
Cu) |v(x) =0, z € T'y; g € Pk, K € 74}, where Pk = {p: K — R | p =
poFl, pe P
_ Since the domain € is bounded there exists an open set (NZ, which satisfies (2 C (NZ, Q C
() for all considered triangulations 7. We define the function @(x) as a smooth extension
of the coefficient a(z) and functions b(z), f(z) as continuous extensions of f(z), b(z) on
Q. Then, we introduce the approximating bilinear form by

ag(u,v) = / a(z)Vu - Vo + b(z)uv de, Yu,v € HY ().
Qi

The L2-scalar product in V is defined by (u,v), = ka wodzr, Yu,v € Vi . Suppose
that the following hypothesis is valid.
H6 The bilinear forms ag/(+, ) are uniformly V-elliptic.

Prolongations and restrictions. In this section we define an intergrid transfer
operator I from Vi_1 to V. The operator I plays an essential role in the nonnested
multigrid algorithm. For that reason we investigate the properties of Ij.

We introduce the map xx : Qrx—1 — Qi by xx = @;1 o®Py_1, where i : Qp — Q
is the map defined by Lenoir [7]. Define the intergrid operator I : Vi_1 — Vi by
Irv=wvo Xgl.

Consider the eigenpairs ()\gk), wz(k)) of the problem

an(@M,0) = AP v, o e vy,

1=1,2,..., Ny =dimVy. Without loss of generality we suppose that the eigenfunctions
are normalized by the following way

k k k k k
WP, o) =55, aw®, e = 2Psy,

where 6;; is the Kronecker symbol. For each v in Vj, we have the following representation

N, k 2 N, k)\°®
v = YN ey, Define the norm ||| -[l[,, by llloll®, = SN cg(Ag >) . s> 0.
Obviously, in Vi we have
(1) Mok =11 loq, and -l =11" k=1l q,

where ||| - |||, is the usual energy norm.

Further we shall use the classical denotations for the seminorms |F’ |n7007 x of a n-times
differentiable map F' [4, Section 4.3] and shall drop the index £,,(R?; R?) of the norms of
the Fréchet derivatives. In other words we shall write only || - || instead of || - |
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Theorem 1. Stability. Let the hypotheses H1-H6 be valid, then

Teolll, g SHelll, gy Y0 € Vs, kN, 5=0,1.

Proof. We estimate ;v locally in terms of Sobolev norms

2
Mol ey = |

2 2
o ) = /K 02 Ty (2] oSl sel012
XK

VK € 1,1 and y = xg(x). Let K = ®4_;(K). Since H2 holds, we have (see e.g. [7])

@) oo S| Tot ], sl o e = O,

(3) ‘Xlzl |0,oo,xk(K)'§-’|q)k|07007Xk(K) |(I)l;*11 ‘0,00JC = 0(1)

Then [[7x0[lo 000, SHV1l0,00,0 -

We continue with the local estimate of the first Sobolev seminorm of Iyv on x(K)

2 _ 2
ol = / o (T /K 1D o xg I | ()] da
K

12 2 2
S s P I LY

Thus we obtain |[Iyvl[, . () Slvll5 x> s =0,1.Summing over all elements K € 75,1
we have for s = 0,1

) 1/2 5 \1/2
el = (Zxen 002 o)) S(Srcene, 01Ek) " = ol pm
Using the norm equivalence (1) we complete the proof. O

Theorem 2. Saturation property. Let the triangulations Tj, satisfy the conditions
H1-H6. Then the inequality

(4) lw = Lol SHllw o xk = vlll—y, Yo € Vi1, Ywe Vy

holds.
Proof. Replacing w by z + Iyv, z € Vj, we transform (4) into

(5) [zl SHllz o xullly—1» V2 € Vi

For verifying the inequality (4), it is enough to prove (5). We use the same approach as
in the proof of Theorem 1. Using again (2) and (3), we obtain

2
|Z|1,Xk(K)

—1,2
|y 5 [ DG oD I (@) de
xk (K) K

1|2 2
S |JXk|0,oo,K|Xk1|0,oo,Xk(K)/K||D(20Xk)||2d$ S lzoxkli k-
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Summing over all elements K € 71, we have |z|, o Slzoxkl; o, -

Applying the norm equivalence (1) we get the validity of (5). O
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BBbPXY EAVNH MEK/TYMPE>KOB TPAHC®EPEH OIIEPATOP

OIMTPEZEJIEH YPE3 HEBJIO2KEHUW N30IIAPAMETPUYHN
ITPOCTPAHCTBA

Tonop . Tomopos

Pasrirenna e momenna 3ama4a 3a eIMOTHYEH OIEPATOP OT BTOPU Pl BbPXY KPHUBO-
JIMHEHA 00JIACT ¢ HeNMpeKbCHATa Mo Jlummwui, rpanumna. 3a moydyaBaHe Ha PeIula
OT PeryJiSspHU TPHAHTYJIAIUKA € U3I0J3BaH U30NapaMeTPUYEH IO/IX0/. YCTAHOBEHA €
OMEKIIMsT MEXK/Iy JIBe IOCJIeOBATETHU TPUAHIJIYIIMU B Tasu peauna. Ha Tasm 6a3a e
BbBEJIEH HOB MEXKIYMPEXKOB TpaHChEpeH omepaTop. 3a TO3M OMEpPATOp ca J0Ka3aHU
CBOICTBATa yCTOWYMBOCT M CaTypalds, KOUTO Ca HEOOXOAMMH 3a KOHCTPYHMPaHE Ha
HEBJIO’KEH MHOTOMPEKOB METO/I.
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