
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2005

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2005

Proceedings of the Thirty Fourth Spring Conference of

the Union of Bulgarian Mathematicians

Borovets, April 6–9, 2005

ADAPTIVE GENETIC OPTIMIZATION ALGORITHM FOR

THE JOIN ORDERING PROBLEM

Stoyan M. Vellev

The problem of finding the optimal join ordering executing a query to a relational
database management system is a combinatorial optimization problem, which makes
deterministic exhaustive solution search unacceptable for queries with a great number
of joined relations. In this work an adaptive genetic algorithm with dynamic popu-
lation size is proposed, which outperforms in a series of experiments several classic
genetic algorithms and proves to be a viable alternative to existing non-deterministic
optimization approaches.

1. Introduction. Queries in a relational database management system (RDBMS)
are defined in a declarative, non-procedural language, such as SQL. This raises the need
to transform the declarative query into a procedural, effective plan for its execution. This
is done by a dedicated RDBMS module, called the Query Optimizer.

Due to the high processing cost, the evaluation of joins and their ordering are the
primary focus of query optimization. Traditionally, the optimization of such expressions
is done by complete traversal of the solution space (probably utilizing some pruning
techniques). This is a possible approach for most of the classic database applications,
where the size of the query (the number of joined relations) rarely exceeds 8-10, but it is
completely inapplicable to modern databases (Object-Oriented Databases, Multimedia
Databases) and database applications such as Decision Support Systems (DSS), Online
Analytical Processing (OLAP), Data Warehousing, Geographical Information Systems
(GIS), etc. Queries for such applications may involve tens or even hundreds of joined
relations.

This paper is focused on the optimization of a particular type of queries – single flat
conjunctive queries, also known as selection-projection-join (SPJ) queries.

2. The problem. Each query Q against a relational database defined by some data
dictionary D with a set of relations R is represented by the ordered tuple (Rq, P q), where
Rq = {Ri|Ri is referenced in Q}, Rq ⊆ R and P q = {pi(R

i
j , R

i
k)|pi is a join predicate in

Q, Ri
j , Ri

k ∈ Rq}.
A query execution plan (QEP) of Q is a binary tree, in which the internal nodes

represent join operator implementations (join methods), e.g. nested-loop join, merge
join or hash join, and the leaves are base relations. Unlike the query itself (that has only
declarative semantics), the query execution plan contains the procedural information
about how to obtain the query result. Each execution plan has a cost that reflects the
computational resources needed to evaluate it.

213

The problem is, given a query Q to find the execution plan (from the set of all
equivalents) with the lowest cost that evaluates it (the global optimum). Since the
combinatorial explosion makes the exhaustive solution search impossible, the aim will be
restrained to finding a good local optimum.

Given a query Q of n relations against a database supporting a set S of different join

methods, there are
1

n

(

2(n − 1)

n − 1

)

possible QEP tree structures, for each of it its n leaves

can be ordered in n! different ways and each internal node is selectable from s different
join methods, where s = |S|. In this work we limit our considerations to the space of
left-recursive solutions (containing all trees for which it holds that each of their nodes
has a base relation for a right successor), but there are still n!sn−1 different solutions.
The join ordering problem is NP-complete.

3. Related work. Due to the inapplicability of classic deterministic optimization
algorithms (different variations of the classic dynamic optimization with pruning) to the
join ordering problem for large queries (where large is usually defined as queries with
10 or more joins), the problem has been approached by two classes of non-deterministic
algorithms – randomized and genetic.

Two well-known randomized algorithms have been applied to the problem of opti-
mizing large join queries – Iterative Improvement (II) and Simulated Annealing (SA), as
well as a combination of the two [6]. Though the effectiveness of randomized algorithms
strongly depends on shape of the solution space, they generally prove to be a possible
alternative to deterministic algorithms for large queries.

The comparison between randomized and genetic algorithms is definitely in favor of
the latter for large-size problems [2].

Genetic algorithms have been first applied to query optimization in [5] and [4]. The
fitness function used requires backward transformation from chromosome to tree repre-
sentation, which is complex and with high computational cost. The chosen crossover
operators have a serious flaw – they disrupt the chromosome structure, transforming
two valid parent chromosomes into an invalid one, which then needs to be “repaired” to
become correct solution encoding. Despite these shortcomings, the achieved results are
promising. Later in [3] some of these disadvantages have been overcome.

Currently there is only one non-experimental genetic SQL query optimizer – the
GEQO (GEnetic Query Optimizer) in the Postgres (PostgreSQL) RDBMS. It consid-
ers only left-recursive solutions, implements an Elitist selection operator, a simple edge
recombination crossover and does not apply mutation. The population size is fixed.

Recently, self-adaptation in genetic algorithms (population size adaptation in partic-
ular) is receiving great attention [1]. However, no adaptive genetic algorithm has been
applied so far to database query optimization.

4. The algorithm. We introduce an adaptive genetic algorithm as an efficient
solution to the optimal join ordering problem.

Solution representation (Coding). The coding operator Θ transforms an indi-
vidual ξi into a vector of genes, each gene being an ordered tuple of a relation number
and a join method number:

Θ(ξi) = Θ(Ri1⊲⊳p1Ri2⊲⊳p2 · · · ⊲⊳pn−2Rin−1⊲⊳pn−1Rin) → ((i1, p1), (i2, p2), . . . , (in, pn))

214

Mutation. The mutation operator M transforms an individual ξi into a new individ-
ual ξ′i by swapping two randomly selected genes γx and γy and changing the join method
of another randomly chosen gene γm:

M(ξi) = M(((i1, p1), . . . , (ix, px), . . . , (im, pm), . . . , (iy, py), . . . , (in, pn))) →

(((i1, p1), . . . , (iy, py), . . . , (im, p′m), . . . , (ix, px), . . . , (in, pn)));

x, y, m ∈ {1, 2, . . . , n}, x 6= y, pm 6= p′m

The mutation rate µ is the probability of an individual ξi to mutate on each generation,
i.e. M(ξi) ≡ ξi with probability (1 − µ). The mutation operator is never applied to the
individual with maximum fitness in the population.

Crossover. The crossover operator X combines the chromosomes of two generation-g
individuals ξg

i and ξg
j to obtain two new generation-(g + 1) individuals ξg+1

i and ξg+1

j .
Random locus x is chosen, the two parent chromosomes are split at that locus and each
of the two offspring receives a whole fragment from one of the parents (the first child
– the left and the second child – the right in relation to the locus) and the rest of the
chromosome is filled up with the missing genes in the order they are encountered in the
second parent. This guarantees both structural and functional similarity of the children
with both their parents.

X(ξg
i , ξg

j) = X(((i1, p1), . . . , (ix, px), (ix+1, px+1), . . . , (in, pn)), ((j1, q1), . . . , (jx, qx),

(jx+1, qx+1), . . . , (jn, qn))) → {((i1, p1), . . . , (ix, px), (j′x+1, p
′

x+1), . . . , (j
′

n, q′n)),

((i′1, p
′

1), . . . , (i
′

x, p′x), (jx+1, qx+1), . . . , (jn, qn))}, x ∈ {1, 2, . . . , n}

Each individual ξi in the population selects a crossover partner from its neighborhood,
defined as its k neighbors by index in the population vector, k = const. The probability of
an individual ξj from the neighborhood to be chosen for a mating partner is proportional
to its fitness φ(ξj).

Selection. The selection operator Σ transforms one population ξ into another pop-
ulation ξ′ ⊆ ξ:

Σ(ξ) = Σ({ξ1, ξ2, . . . , ξk}) = {ξi1, ξi2, . . . , ξim}, m ≤ k.

We propose an algorithm called probabilistic selection with adaptive population size.
If ξi ∈ ξ, then ξi ∈ ξ’ with probability pi = φ(ξi)/φ∗, where φ(ξi) is the fitness
of ξi and φ∗ is the maximum fitness within the population. Then the expected size
of the population after selection can be roughly approximated by the sum of survival
probabilities of each individual in the population. The ratio c between the current average
and the current maximum fitness is used as a measure for the convergence degree of the
population. The desired population size is defined as s0c+3N(1−c), where s0 is the initial
population size, N is the current size and c is the convergence degree. The individual
survival probability pi is then scaled up or down depending on the ratio between the
desired and the expected population size. In case the population size drops below s0 on
some generation, new random individuals are generated to fill it up to size s0.

5. Conclusions and future work. In this work an adaptive genetic optimization
algorithm is proposed for the join ordering problem. It outperforms the canonical genetic

215

algorithm with classic fixed-size population selection operators such as the Elitist and
the Roulette selection, both by speed and by quality of the generated solutions. The
results of these experiments will be presented in a further paper.

One direction for future work would include experimenting with adaptive mutation
and crossover operators. It is reasonable to expect further performance improvements,
as it is suggested by a number of recent researches. The proposed algorithm can also be
used as a basis for a hybrid optimization algorithm incorporating certain domain-specific
heuristics and randomized local search techniques.

REFERENCES

[1] A. Eiben, E. Marchiori, V. Valkó. Evolutionary Algorithms with on-the-fly Population
Size Adjustment. Proc. of the 8th International Conference on Parallel Problem Solving From
Nature, 2004.
[2] T. Haynes. A comparison of random search versus genetic programming as engines for
collective adaptation. Proc. of the ACM Symposium on Applied Computing, 1997.
[3] M. Stillger, M. Spiliopoulou. Genetic programming in database query optimization.
Proc. of the 1st Annual Conference on Genetic Programming, 1996.
[4] M. Steinbrunn, G. Moerkotte, A. Kemper. Optimizing join orders. Report MIP 9307,
Universität Passau, 1993.
[5] K. Bennett, M. Ferris. Y. Ioannidis. A genetic algorithm for database query optimiza-
tion. Proc. of the 4th International Conference on Genetic Algorithms, 1991.
[6] Y. Ioannidis, Y. Kang. Randomized algorithms for optimizing large join queries. Proc. of
the ACM, 1990.

Stoyan Miltchev Vellev
7, Raiko Alexiev Str, bl. 30
1113 Sofia, Bulgaria
e-mail: stoyan.vellev@sap.com

АДАПТИВЕН ГЕНЕТИЧЕН АЛГОРИТЪМ ЗА ЗАДАЧАТА ЗА

ПОДРЕЖДАНЕ НА СЪЕДИНЕНИЯ

Стоян Милчев Велев

Намирането на оптималния ред на съединенията при изпълнение на заявка към

релационна база от данни представлява комбинаторна оптимизационна задача,

за която детерминистичното търсене с пълно изчерпване е неприемливо за заявки

с голям брой съединени релации. В настоящата работа се предлага адаптивен

генетичен алгоритъм с динамичен размер на популацията, който превъзхожда в

редица експерименти няколко класически генетични алгоритми и доказва, че е

жизнеспособна алтернатива на съществуващите недетерминистични подходи.

216

