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In this article, we follow the history of statistics in the last 100 years. We begin
with the work of Karl Pearson and the concept of the significance test. Next, we
pass to Student and his distribution and we reach R.A. Fisher’s concept of likelihood
which is presented and we discuss the influence of Fisher’s books. Sampling is next
as it emerged from the works of Neyman and Pearson. Decision theory and Wald’s
ideas come next, with the extension of Savage. Recent developments are also treated,
such as computational methods, Bayesian methods, sequential analysis, stochastic
processes and experimental design.

Suppose that each number of replicated observations can fall into one of the n classes
and that, according to (same) theory, Ei is the number expected in class i. Then a

are observed that fall into that class, Pearson proposed using
∑

i

(Oi − Ei)

Ei

, to test the

adequacy of the theory or, as we say nowadays, to test the hypothesis. Large values
of k2 would lead one to suspect the theory. In the last decade of the 19th century,
two English statisticians, Karl Pearson (1857–1936) and his student G. U. Yule (1871–
1951), did further (research) work in showing how to use statistics to come to definite
conclusions about the relationships between several quantities. Pearson obtained the
approximate distribution of χ2 when the theory was true, the null hypothesis. The ap-
proximation, especially with minor changes, has turned out to be remarkably accurate. It
is usual to select a small probability a, to use this distribution to calculate x2(a) satisfying

p(x2 > x2(a)) = a and eject the null hypothesis if the criterion
∑

i

(Oi − Ei)

Ei

exceeded

x2(a). Thus Pearson produced a typical example of a tail-area significance test, in which
a is rejected if the tail of the null distribution beyond the observed value is less than a
prescribed, small number. In 1893, Pearson developed the so called χ-square statistics as
a way of measuring the relationship between two quantities. χ-square has many useful
properties, for example, under many circumstances it is additive. It can easily incorpo-
rate composite hypothesis wherein the Ei are only partially specified. Today Pearson’s
test is greatly used and widely accepted as sound by almost all theories. In 1908 Stu-
dent, the pseudonym of W. S. Gosset obtained another distribution that was to endure.
Suppose that n replicated observations ki, measurements now, not counts, were, on some
theory, supposed to have meaning M . It had been common since the time of Gauss,
to use the arithmetic meaning of the data x, and compare it with µ by the criterion
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√
n(x − µ)

σ
, where σ is the standard deviation of an individual, so that

σ√
n

is that of x.

With large samples this was known to be normally, distributed, with zero meaning if the
theory was true, and unit standard deviation. In the agricultural work that concerned
Student, there are two difficulties: first, the samples were small, second σ was unknown.

The latter could be overcome by estimating σ2 by s2 =
∑

i

(xi − xi)
2

n − 1
and replacing σ by

s obtaining the criterion today almost always denoted by t =

√
n(x − µ)

s
. The difficulty

Student faced was that now, the distribution of t was unknown, especially for small n.
He found the exact distribution though the proof was not rigorous and he had a stroke of
luck. But with the distribution, he could construct a tail-area significance test, just like
Pearson’s, a test that is widely used today. Student’s paper was important because it
inaugurates the field of small sample statistics, in which the earlier asympotics (u → ∞)
were replaced by exact probabilities. Since then considerable mathematical skill has gone
into the determination of exact distributions. In 1915, R. A. Fisher obtained the dis-
tribution of the correlation coefficient using sophisticated, geometrical ideas. There are
historians who believe that events are determined by individuals. In the 1920s in Statis-
tics, this belief was proved to be true, with R. A. Fisher utterly changing the subject. In
rapid succession he published numerous papers and two books, all containing brilliant,
operational ideas. One of these was likelihood. The model that is commonly employed in
modern statistics supposes the data x are governed by a probability distribution, which
is known apart from a finite set of real numbers measure, there is a probable density
p(x/θ), where p is known, x will be a finite set of real numbers, thus with respect to
some dominating measure these are the observations, but the parameter θ remains un-
known, congruency inferences are to be made about it as function of x for fixed θ, p is

positive, its total integral is one and

∫
A

p(x/θ)dx is the probability that x belongs to a

set A. As a function of x for fixed θ, p is positive but its integrals

∫
ω

p(x/θ)dθ have no

meaning. This function is the like hood (f(θ), given x). The value of θ that minimizes

this function, denoted θ̂(x), or θ̂ is the maximum likelihood (m.h.) estimate of θ. Fisher
showed that has many desirable properties: it is typically superior to other methods of
estimation and has an easily-calculated variance and asymptotic distribution. Fisher also
introduced the enduring concepts of sufficiency and efficiency.

Concurrently with these theoretical advances, Fisher wrote a marvelous book, Statis-

tical Methods for Research Workers , in which fairly simple, yet efficient, methods were
put forward for problems of small samples. This book was widely appreciated by the sci-
entists for whom it was intended and the techniques came into general use of it. The book
lays less happily with mathematicians who found the explanations imprecise and regret-
ted the lack of theorems. In fact, an industry developed out of trying to interpret Fisher
rigorously. Except on of the matter of fiducial probability, he was always correct. The
technique of least squares had been widely used since the time of Gauss. Fisher extended
the idea by breaking up the variation presented in the data into additive components.
For example, in an agricultural trial involving varieties and treatments, variations due
to variety, to treatments and to evidential errors could be separated. The first two could
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be compared with the last by a distribution and a test he introduced, which are now
notationally named after him, the F -distribution and test. By this means, the apparent
differences in treatments or varieties could be assessed as real, or accountable by tech-
nique error. This analysis of variance technique, mathematically based on a Pythagorean
breakdown of sums of squares, stimulated many mathematical extensions of least squares.
The distributions χ2, t and F were all known to earlier writers. It was their contexts,
and appreciations of their importance that were new.

Fisher’s second book was also remarkable for the novelty of its ideas. The Design of
Experiments after a brilliant chapter about a lady tasting tea, deals with the problem
of how scientists should experiment, demonstrating that it is more efficient to vary all
the factors at a time. The designs were enthusiastically adopted in agriculture and later
in biology and medicine, but largely ignored by physical scientists who relied on big
experiments. Mathematicians delighted in Fisher’s designs because they used known,
combinatorial results and stimulated new ones. For example, R.C. Bose achieved to be
on the front page of the New York Times by constructing two orthogonal Latin squares
of Side 22, thus proving Euler’s conjecture false. The analysis of variance was basic to the
interpretation of the data resulting from such experiments, the balances in the designs
being reflected in the orthogonal ties of the components of variance. By 1935 the face
of statistics had been dramatically changed by Fisher. A year before, a statistician from
Poland, Neyman, Rad investigated a different type of experimentation, sampling from a
population , and had established optimum ways of stratifying. He came to England and
continued to produce important work, both on en his own and in co-operation with E.
Pearson, Karl’s son. It had never been felt adequate merely to provide a point estimate
f(x) of a parameter θ, at least one requiring a measure of variability, such as Fisher had
given for the m.l. estimate, although this was only approximate. The new concept of a
confidence interval appeared to provide a better resolution. Confining ourselves to the
real line for ease of exposition, although the idea is more general, {t1(x), t2(x)} is a
confidence interval at level α for θ if

(1) p(t1(x) < θ < t2(x)/θ) = α for all θ

The probability here is derived from p(x/θ) above. Notice that in (1), θ is fixed and
x is the random element to which the probability refers. The interpretation of (1) is
that the random interval includes the parameter with probability α whatever the value
of θ Confidence intervals are widely used though, as we will see, some statisticians judge
them to be flawed. Their construction stimulated much mathematics, in particular, in
the requirement that (1) hold for all θ, the existence of similar regions or sets having the
same probability for all θ.

Neyman and Pearson developed a theory of tail-area significance tests. The research
was stimulated by asking whether popular tests, like χ2 and t, were the best that could be
found and generally what was meant by an optimum test and how could it be constructed.

Answers were found which depended on a different attitude to inference from that
adopted by most statisticians at the time, including Fisher.

The new concept was to look at inductive behavior, rather than inductive inference:
to emphasize action, rather than thought. They referred to the actions of rejecting or
accepting a hypothesis. Basic concepts were the two types of error, rejecting a hypothesis
when it was true, and accepting it when false. In terms of reduction of errors a theory
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of optimum tests was developed. Tests based on t and F were found to be optimum but
this result did as much to bolster the new theory as it did to enhance the two tests were
well-established.

It only needs a slight change of language to present this theory of tests as part
of decision theory. A. Wald working in United States, extended the idea in his book
Statistical Decision Functions (1950). Herein we encounter a basic theorem that lies at
the heart of modern statistics and is new to the 20th century. Let us look at it first in
Wald’s form. Take the same parametric model, p(x/θ), for data x und parameter θ, but
include also decisions d. The task is to observe x and use the result to select d. This
requires a decision function δ(x) mapping x into d. Wald supposed that d and θ could
be related by a loss function L(d, θ) that measured the loss in choosing d when θ obtains
(for example, the loss in rejecting when the hypothesis θ = θ0 is true).

A natural quantity to consider is the expected loss using decision function δ(x), namely

(2)

∫
L(δ(x), θ)p(x)θ)dx = R(δ, θ)

called the risk function. This cannot be minimized since θ is unknown but can be used to
eliminate δ2 in favor of δ1 if R(δ1, θ) ≤ R(δ2, θ) for all θ, with strict inequality for some
θ. This partial ordering leads to a complete class of decision functions, namely those δ2

for which no such δ1 exists. Wald found the complete class.

Let p(θ) be a density for θ that is, it is positive and integrates to one. Then we may
calculate an expected risk

(3)

∫
R(δ, θ)p(θ)dθ.

Wald’s result, loosely stated, is that the complete class is the class of δ’s that minimize
(3) as p(θ) ranges over all densities. Such are called Bayes solutions, and the result is
that the Bayes class and the complete class are essentially the same. The small gap
between the two gives rise to difficulties that will be considered later. The reason for
the terminology is that if the definition of R in (2) is inserted into (3) and the orders of

integration reversed, we need to minimize

∫∫∫
L(δ(x), θ)p(θ/x)dθp(x)dx. This can be

done for each x separately by selecting to minimize

(4)

∫
L(d, θ)p(θ/x)dθ

Here p(θ/x) is the density of θ, given x, obtained from p(x/θ) and p(θ) by Bayes

theorem, p(θ/x) = p(x/θ)
p(θ)

p(x)
and p(x) =

∫
p(x/θ)p(θ)dθ is the marginal density of

x, (4) is the expected loss, where the expectation is over θ, not x as in (2). Savage in
his book The foundations of statistics (1954), significantly extended Wald’s result. He
took a very general and abstract position involving decisions d and unknown states of
the world θ.

With axioms that reflect reasonable requirements of decision-making (for example, if
you prefer d1 to d2, both θ = θ1 and when θ = θ2, then you prefer d1 to d2 when you are
uncertain whether θ is θ1 or θ2) he demonstrated the existence of numerical measures of
uncertainty obeying the rules of the probability calculus, the existence of a loss function
(though be called it utility function) and the optimality of minimizing expected loss (4).
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Notice that probability, loss and expectation emerge as deductions, not as part of the
system of axioms. He set out with a view to providing a sound, mathematical basis for
all standard, statistical practice. In fact, his work showed that much of this practice was
unsound, though it was a while before this was appreciated.

The appreciation came about largely because of work by Bitnbaum in 1962 on the
likelihood principle. The minimization of expected loss (4) is equivalent by Bayes to min-

imization of

∫
L(d, θ)p(x/θ)p(θ)dθ in which the data only enter through the likelihood

function p(x/θ). Hence the likelihood principle which says that data sets x1, x2 with the
same likelihood should result in the same decisions or inferences. Tail-area significance
tests and confidence intervals (1) violate the principle because they involve integration
over x, which (4) does not. Clearly one can produce situations in which the likelihood is
the same for two values of x but which differ when other values are included and used in
the required integration. Birnbaum justified the principle on grounds of conditionality
and sufficiency, two ideas commonly accepted by statisticians. It owed nothing to Sav-
age’s approach. Savage theorem was not entirely new. It had been given by Ramsey in
1926, developed in an inferential context by Jeffreys in 1939 and over a period of years by
de Finetti, beginning in the 1930s. Its implications split statisticians in two groups that
still exist today. Those that accept the theorem as relevant are termed Bayesians, be-
cause of the basic role played by Bayes theorem. They claim that probability is the only
sound measure of uncertainty both for data and parameter. Thus a tail area significance
test should be replaced by the calculation of the probability that the null hypothesis is
true, given the data. A confidence interval (1) should be replaced by the distribution of
θ, p(θ/x). Non-Bayesians object to the use of a probability for θ, p(θ).

Confidence intervals and posterior distributions provide two solutions to the central,
formal problem of mathematical statistics, that of saying something about a parameter
θ on the basis of data k. Fisher proposed a third method: f(x, θ) is called a pivot if its
distribution and is the same for all θ. This if is N(θ, 1) then x − θ is a pivot having an
N(0, 1) distribution. With a pivot p(f(x, θ) < t) is a number which can be found for any t.
For suitable f , f(x, θ) < t can be written θ < g(x, t) and so p(θ < g(x, t)) is found. This
is called the fiducial distribution for θ, given x. The method is now not highly regarded
because of inconsistencies and the existence of many pivots, leading to ambiguity in
the results. It is the only idea of Fisher’s that time has proved to be seriously flawed.
To go back in time in 1936 Hotelling had been studying the relationships between two
sets of quantities and, using linearity and normality, considered how they could best be
expressed Over the years these ideas have led to the extensive development of multivariate
statistics. Most of this has been based on the normal distribution, which is easily the
simplest to handle of distributions of high dimensionality. Impressive distributional and
inferential results have been obtained. More recently, less formal methods, such as multi-
dimensional scaling, which Dave had suggested for appreciating that it exist between large
numbers of quantities.

Historians are wary of discussing recent events because they are too close to them
for a broad appreciation. This is true of statistics, and the account of developments in
the last 40 years must necessarily be a list of separate advances. One exception is the
effect modern computers have had. At first, they merely enabled statisticians to handle
bigger data sets, using the models that had been adequate with desk calculators. More
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recently, new models that exploit the vastly increased scope of numerical work have been
introduced. Gauss’s linear model had a vector y of observations, normally distributed
with mean µ. In addition there were covariates x1, x2, . . . , xµ of which a linear function

n =
∑

βixi was supposed to influence y. In fact µ and n were the same. Generalized,

linear models introduce a link function g that connects these by n = g(µ) and extends
normality to include any member of the exponential family. Inference for these models is
performed using methods based on some form of likelihood. Many different modifications
of likelihood have been suggested which yield to modern maximalization routines.

This likelihood development has proceeded despite a surprising demonstration by
Stein in 1961 that, even in the simplest, normal case where m.I. and least squares coin-
cide, it is unsound. Treating the estimation of the normal mean as a decision function
δ, he showed that, in dimensions greater than two, a decision function better than m.I.
in the sense of the partial ordering described above, could be found. Technically m.I.,
is not a member of the complete class. Progress has been made on improvements to
m.I., for example by empirical Bayes methods which introduce p(θ) and then attempt
to estimate it. Completely Bayesian methods have produced results. Nevertheless, like-
lihood methods that ignore these matters have been widely and successfully used. The
mathematical difficulty here is that m.I. is Bayesian but only in a wide sense with p(θ)
equal to a constant. Such a function cannot, over an unbounded space, integrate to one.
This often prevents m.I. belonging to the complete class. Another way of looking at the
problem is through finitely – additive measures, in place of the sigma-additive measures
of standard probability calculus.

Advances in computational techniques have enabled Bayesian methods to develop
swiftly. Within that paradigm it is usually clear what to do. Inference about a quantity
is expressed through its probability distribution, given all the information available, and
is found using the probability calculus. Decisions are made by minimizing expected
utility. Whilst there are situations that yield to mathematical analysis, in many one
has to be content with approximations. Recently, ingenious numerical methods, like
Gibbs sampling, have provided answers. These do not give a general solution but only
results for a given data set, but this is exactly what an applied statistician requires.
Bayesian methods have the additional advantage that nuisance parameters are eliminated
by integration, a marginal density being obtained by integration of the full density.
Integration is similarly amenable to numerical methods.

Besides his work on decisions, Wald was the first to develop sequential analysis. Ear-
lier work had dealt with the case where data collection came first, followed by analysis.
Wald supposed that data came in sequence and was paralleled by analyses that included
the option of stopping collection and reaching a decision. In the case of two derisions he
developed a workable analysis, but the general case proved much harder. A reason for
this is that in sequential cases the space of possible data sets is much wider than with
a fixed size of sample, so that optimal results are much harder to find. The difficulty is
reduced if the likelihood principle is accepted since, under wide conditions, the likelihood
is the same whether the data size is fixed or determined sequentially. In Bayesian analy-
ses, the probability p(θ/x) is continually updated by Bayes theorem as the data come in,
that is, as x changes.

Another context in which sequential ideas abound is inference for stochastic processes.
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In its simplest case, the real values x1, x2, . . . , xn refer to observations gathered in time,
or space, indicated by the suffixes. Generalizations to vectors and continuous time are
possible. Typically the observations are equally spaced in time and the origin of time is
supposed fo be irrelevant – the stationary case. Interest then centers on the covariance
vs between xt and xt−s which, by stationarity, does not depend on t vs is called the
autocovariance. Alternatively analysis can take place in the frequency domain utilizing

the spectral density function, the Fourier transform f(ω) =

+∞∑
−∞

vs exp(iωs).

A natural requirement for a stochastic process is to predict its development, in its

simplest form, to predict xη+1 One way to do this is by a linear expression

n∑
i=1

βixi.

Adapting terminology from electrical engineering this is called a filter. Decisions may
also be introduced, reflecting control that may be exerted on the process so that xη+1

can be as near as possible to a target value. An important innovation is the Kalman
filter that generalizes least-squares to prediction and control. Prediction is not confined to
processes. Many statisticians feel that parameters are often nothing more than convenient
constructs and the main purpose should be to predict future data y from past data x.
Within the Bayesian framework one requires p(y/x) =

∫
p(y/θ)p(θ/x)dθ, assuming that

y and x are independent, given θ.

The development of models for stochastic processes has been fruitful. The older,
autoregressive AR and moving-average MA models combine to produce an ARMA model

p∑
j=0

ajxt−i =

q∑
j=0

bjet−j , where the process xt has an autoregressive component of order

p that equates to a moving average of random errors of order q.

An alternative system is the dynamic, linear model DLM in which there is an ob-
servation equation xt = Ftθt + vt where vt is an error usually supposed normal, Ft is a
known operator and θt describes the state of the process. This satisfies θt = Gtθt−1 +wt,
where wt is error and Gt is another known operator. Here Bayesian methods provide
convenient updating. We have seen how important parameters are in most inferences.
Attempts have been made to avoid the deficiency that parameters impose of restricting
the class of probabilities under consideration. These lead to non parametric methods
and envisage the class of all, or nearly all, distributions.

While some useful ideas have been developed, the theory and applications are limited.
The mathematical reason for this partial failure lies in the fact that it is difficult to make
constructive statements about a wide class of distributions, With θ ∈ R, p(θ < t), for all t,
enables all uncertainties about a finite vector θ to be described, and is easy to construct.
A comparable expression when θ is of infinite dimension is not available, despite the
existence of much theory concerning such spaces. Theory without such constructive
ability, is useless for applications.

There is another way around the restriction parameters impose, and which has been
more successful. Take a parametric model p(x/θ), with a loss function L(d, θ) if decision
is involved and p(θ) is working within the Bayesian framework. Then develop an inference
or decision procedure and its properties. It is possible to ask how the procedure and its
properties are affected by departure from any of the three elements above. One would
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like the procedure to be little affected by small departures, when it is termed robust.
Thus the t-test is robust, the F -test is less so. Many robust procedures have been found.
Some procedures are sensitive to outliers. These are observations that are not typical.
Hardly any data set is completely free of outliers. They have a large effect on a mean
but not on a median. The exponential family, which is popular because of the existence
of sufficient statistics, does not allow outliers because the “tails” die away exponentially,
rather the polynomially, fast. In many cases, an analysis based on a t-distribution, not
of the exponential family, is more robust than one dependent on normality, which is.

The field of experimental design has developed rapidly. New designs have been found,
often using mathematically interesting combinatorial concepts. Other designs have been
developed for specific purposes, like finding the maximum of a function, so that a pro-
duction process can be run at optimal conditions.

Statistics today are very different from what they were a century ago. Statisticians
still face real problems in the collection and presentation of data, but sophisticated
methods of analysis are available that did not exist in the 19th century.

These methods have enabled statistical inference and decision to enter almost every
field of human endeavour.
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ИСТОРИЯ НА СТАТИСТИКАТА ПРЕЗ ПОСЛЕДНИТЕ 100 ГОДИНИ

Георги Димакос, Цигони Анастасиа

Статията е опит да се проследи развитието на математическата статистика през

20 век във възможно най-сбито изложение. Авторите изхождат от теорията на

Уолд за вземане на решения и от разделението на статистиците на “байесианци”

и “небайесианци”, оказало се особено плодотворно за развитието на статистиката

както в теоретичен, така и в приложен план.

226


