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TO PLAY WITH ε AND δ
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In this note we consider several problems involving definitions of some basic math-
ematical concepts using the so called (ε, δ)-language. The results can be used by
lecturers in mathematics.

Introduction. The language of (ε, δ) (or, briefly, LED) is a common tool in
defining basic concepts in Mathematical Analysis such as limits and continuity. In this
note we consider some issues in the definition of continuity by using LED and their
possible application in teaching of mathematics. We also consider some not very popular
concepts of limits and derivatives for functions defined on countable or even finite sets.

The definition of continuity. In this section we deal with the standard definition
of continuity using the language of (ε, δ). For simplicity we shall consider functions
f : T → R, where the set T ⊂ R is non-empty (but may not be an interval). To
avoid trivial results we can further assume that T contains at least two points. Also, for
convenience of the reader, we recall the definitions of continuity.

Definition 1. The function f is said to be: 1) continuous at the point x0 ∈ T if for
any ε > 0 there exists δ = δ(x0, ε) > 0 such that for all x ∈ T the inequality |x− x0| ≤ δ
implies |f(x) − f(x0)| ≤ ε, and continuous on T if it is continuous for all t ∈ T ; 2)
uniformly continuous on T if for any ε > 0 there exists δ = δ(ε) > 0 such that for all
x, x0 ∈ T the inequality |x − x0| ≤ δ implies |f(x) − f(x0)| ≤ ε.

Let us “slightly” change the definition of uniform continuity, see also [1].
Let F1, F2 and F3 be the sets of functions f such that, respectively: (i) for any

ε > 0 there exists δ = δ(ε) such that for all x, x0 ∈ T the inequality |x − x0| ≤ δ
implies |f(x) − f(x0)| ≤ ε; (ii) for any ε there exists δ = δ(ε) > 0 such that for all
x, x0 ∈ T the inequality |x− x0| ≤ δ implies |f(x) − f(x0)| ≤ ε; (iii) for any ε > 0 there
exists δ = δ(ε) > 0 such that for all x, x0 ∈ T the inequality |f(x) − x0| > δ implies
|x − f(x0)| ≤ ε.

In (i) we have “forgotten” the inequality δ > 0, while in (ii) we missed the inequality
ε > 0 – such errors may often be found in a student exam paper. In (iii) it seems like
someone has exchanged f(x) and x and replaced ≤ δ by > δ. The result of these changes
is described below.

(i) The set F1 consists of all functions. (ii) The set F2 is empty. (iii) If the interval T
is finite, then F3 is the set of bounded functions.
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To prove (i) for ε > 0 choose δ = −1. Then inequality |x − x0| ≤ δ = −1 is never
fulfilled and implies anything, including |f(x) − f(x0)| ≤ ε.

(ii) For f ∈ F2 and ε = −1 choose the corresponding δ > 0. Then for x = x0 we have
0 = |x − x| ≤ δ and this implies 0 = |f(x) − f(x)| ≤ −1 which is impossible.

(iii) Let B be the set of bounded functions T → R and denote m := sup{|x| : x ∈ T }.
For f ∈ F3 and ε > 0 choose the corresponding δ > 0. We shall show that |f(x)| ≤
m + ε + δ for all x ∈ T . Indeed, suppose the opposite, i.e. that there is x0 ∈ T such that
|f(x0)| > m + ε + δ. Then, taking x = x0, we get

|f(x) − x0| = |f(x) − x| ≥ |f(x)| − |x| > m + ε + δ − m = ε + δ > δ.

At the same time we also have |x−f(x0)| = |x−f(x)| > ε+δ > ε, which is a contradiction
to the definition of F3. Hence f is bounded, i.e. F3 ⊂ B.

Conversely, suppose that f is bounded, i.e. |f(x)| ≤ M < ∞ for all x ∈ T . For any
ε > 0 take δ := M+m. Then |f(x)−x0| ≤ |f(x)|+|x0| ≤ M+m = δ. Hence the iniquality
|f(x) − x0| > δ cannot be satisfied and implies whatever, including |x − f(x0)| ≤ ε.
Therefore B ⊂ F3 and we have proved (iii).

Consider now the following definition.

The function f : T → R is uniformly continuous on T if for any ε > 0 there is a
quantity δ = δ(ε) > 0 such that for all x, x0 ∈ T the inequality |x − x0| ≤ δ implies
f(x) − f(x0) ≤ ε.

This definition seems to be faked compared with proposition 2) in Definition 1 since
we have the inequality f(x) − f(x0) ≤ ε instead of |f(x) − f(x0)| ≤ ε. But things are
in fact OK: it suffices to change the arguments x and x0, satisfying |x − x0| ≤ δ. Then
f(x) − f(x0) ≤ ε and f(x0) − f(x) ≤ ε which is equivalent to |f(x) − f(x0)| ≤ ε.

Consider finally one more set defined in terms of LED.

Let F4 be the set of functions f such that for any ε > 0 there exists δ = δ(ε) > 0
such that for all x, x0 ∈ T the inequality |f(x) − f(x0)| ≤ δ implies |x − x0| ≤ ε.

Then the set F4 consists of functions having uniformly continuous inverse.

For f ∈ F4 the inequality x 6= x0 implies f(x) 6= f(x0). Indeed, suppose the opposite,
i.e. that f(x) = f(x0). Take ε := |x − x0|/2. Then 0 = |f(x) − f(x0)| ≤ δ(ε) implies
|x − x0| ≤ ε = |x − x0|/2 and x = x0 which is a contradiction. Hence the function
g := f−1 : f(T ) → T exists. Setting y := f(x), y0 := f(x0) we see that for y, y0 ∈ f(T )
the inequality |y − y0| ≤ δ implies |x − x0| = |g(y) − g(y0)| ≤ ε which means that g is
uniformly continuous.

Consider now a function f : T → R which has a uniformly continuous inverse g :
f(T ) → T . Then for any ε > 0 there exists δ = δ(ε) > 0 such that for y, y0 ∈ f(T ) the
inequality |y − y0| = |f(x) − f(x0)| ≤ δ implies |g(y) − g(y0)| = |x − x0| ≤ ε.

More examples, which are actually plays with (ε, δ)-definitions, can be found in [1].

Strange limits and derivatives. In this section we assume that X, Y are Banach
spaces over R or C, the set U ⊂ X contains at least two points, and f : U → Y is a given
function.

As a rule, limits for f are defined when U has non-empty interior and in particular
when U is open. Furthermore, when a limit of f at x0 ∈ X is defined, then usually only
values f(x) for x 6= x0 are used, i.e. the argument x is prevented from reaching x0. And
while this is natural for x0 /∈ U , it is still possible to allow x = x0 when x0 ∈ U .
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Generally, it is accepted that the case x = x0 must be excluded for being “noninter-
esting”. Wheather this is really the case is, however, not very clear, see e.g. [2]. Anyway,
from purely didactical reasons, one can consider the possibility x = x0 as an exercise in
the course of Mathematical Analysis.

In order to deal with different concepts of limits, we need the next definition.

Definition 2. The point x0 ∈ X is an accumulation point for U ⊂ X if for any ε > 0
there exists x ∈ U such that 0 < ‖x − x0‖ ≤ ε. Further on, x0 ∈ U is an isolated point
of U if it is not an accumulation point for U . An accumulation point x0 ∈ X\U is a
singular point for the function f : U → Y .

Denote by U the closure of U . Each x ∈ U is either an element of U or a singular
point for f . Next we recall the definition of a limit using LED.

Definition 3. The function f has a limit y0 ∈ Y at the accumulation point x0 ∈ X
for U if for any ε > 0 there exists δ = δ(x0, ε) > 0 such that for all x ∈ U the inequality
0 < ‖x − x0‖ ≤ δ implies ‖f(x) − y0‖ ≤ ε.

There are three strict inequalities in Definition 3, namely 0 < ‖x − x0‖, δ > 0 and
ε > 0, and we shall see what happens when we delete them one by one thus obtaining
“strange” limits.

The requirement that x0 is accumulation point for U is connected with the inequality
0 < ‖x − x0‖. Indeed, if x0 ∈ U is an isolated point of U , then in Definition 3 one
may choose δ = d/2, where d > 0 is the distance between x0 and the set U\{x0}. Then
relations x ∈ U and 0 < ‖x−x0‖ ≤ d/2 are contradictory and imply everything, i.e. any
y ∈ Y should be considered as limit of f at x0. Also, if the function f has a limit at
certain point, then the set U is at least countable.

Definition 4. The function f has pseudolimit I y1 ∈ Y at the point x0 ∈ U if for any
ε > 0 there exists δ = δ(x0, ε) > 0 such that for all x ∈ U the inequality ‖x − x0‖ ≤ δ
implies ‖f(x) − y1‖ ≤ ε.

Definition 4 differs from Definition 3 by deleting the reqirement that x0 is accumula-
tion point for U , and by allowing x to become x0. Thus the possibility to take the limit
x → x0 is not preassumed.

Definition 5. The function f has pseudolimit II y2 ∈ Y at the point x0 ∈ U if for
any ε > 0 there exists δ = δ(x0, ε) ≥ 0 such that for all x ∈ U the inequality ‖x−x0‖ ≤ δ
implies ‖f(x) − y2‖ ≤ ε.

Here we go one step further in comparison with Definition 4 allowing the quantity
also δ to become zero.

Definition 5 is very narrow since for each x0 ∈ U the function f has pseudolimit II
f(x0). Moreover, if x0 ∈ U\U is a singular point of f , then any y2 is a pseudolimit II of
f at x0. Indeed, for ε > 0 choose δ = 0. Then relations x ∈ U and ‖x − x0‖ = 0 give
x = x0 ∈ U which is impossible since x0 /∈ U . Hence the inequality ‖f(x) − y2‖ ≤ ε has
not to be checked.

Replacing the inequality ε > 0 by ε ≥ 0 in Definition 5, we come to the definition of
pseudolimit III of f at x0. It can be shown that pseudolimits II and III coincide.

It seems reasonable to relax the inequality δ ≥ 0 when x /∈ U . Thus we come to the
next concept.
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Definition 6. The function f has pseudolimit II-a y2 ∈ Y at the point x0 ∈ U if for
any ε > 0 there exists δ = δ(x0, ε) ≥ 0, satisfying δ(x0, ε) > 0 for x0 ∈ U\U , and such
that for all x ∈ U the inequality ‖x − x0‖ ≤ δ implies ‖f(x) − y2‖ ≤ ε.

When x0 ∈ U the pseudolimit II-a of f at x0 is f(x0). If x0 ∈ U\U then pseudolimit
II-a and pseudolimit I are equivalent.

Replacing the inequality ε > 0 by ε ≥ 0 in Definition 6, we can define pseudolimit
III-a y3 ∈ Y of f a x0.

For x0 ∈ U the pseudolimit III-a of f at x0 is f(x0). If, however, x0 /∈ U , then we
can take ε = 0. Then f(x) = y3 for all x ∈ U satisfying 0 < ‖x − x0‖ ≤ δ.

Now it is clear that if a limit and a pseudolimit simultaneously exist at certain point,
they may be different.

It is instructive to draw the attention of the students to the following facts, summa-
rized in a theorem.

Theorem 1. Let x0 ∈ U . Then the following assertions take place: 1) if f has limit
y0 at x0 and y0 = f(x0) then f is continuous at x0; 2) if f has pseudolimit I y1 at x0

then y1 = f(x0) and f is continuous at x0; 3) the function f has pseudolimits II, II-a
and III-a, and all they are equal to f(x0).

Statement 1 is the definition of continuity at an accumulation point. However, one has
to postulate that f is continuous at isolated points. To prove 2 recall that according to
Definition 4, for any ε > 0 there is δ > 0, such that for x ∈ U the inequality ‖x−x0‖ ≤ δ
implies ‖f(x) − y1‖ ≤ ε. Taking x = x0 we get ‖f(x0) − y1‖ < ε and since ε > 0 is
arbitrary, it follows that f(x0) = y1. Statement 3 follows directly from the definitions.

Next we shall consider the interconnection between limits and pseudolimits.
It follows from the definitions that a function f has no limit at an isolated point

x0 ∈ U , but has pseudolimits I, II, II-a and III-a, all equal to f(x0), at such a point. So
it remains to analyze the case when x0 ∈ U is an accumulation point for U .

Let us first suppose that x0 ∈ X\U . If f has a limit y0 at x0, then it has also
pseudolimit I y0 at x0. Indeed, here we should assume x 6= x0 and ‖x − x0‖ > 0. But
then we come to the definition of a limit. At the same time any element y2 ∈ Y is
pseudolimit II of f at x0.

Suppose now that x0 ∈ U , i.e. that the quantity f(x0) is defined. We already know
that f has pseudolimits II, II-a and III-a f(x0) at x0.

If f has a limit y0 at x0, then we have two possibilities. First, if y0 = f(x0) (i.e.
if f is continuous at x0), then f has also pseudolimit I at x0, equal f(x0). Second, if
y0 6= f(x0) (i.e. if f has a removable discontinuity at x0), then the function f cannot
have pseudolimit I at x0 because it is not continuous at this point.

Let us now assume that f has no limit at the accumulation point x0 ∈ U for U but
has there pseudolimit I y1. The lack of limit means that for some ε > 0 and all δ > 0
there exists x ∈ U , such that 0 < ‖x − x0‖ < δ and ‖f(x) − y1‖ ≥ ε. But this is a
contradiction to the assumption that y1 is pseudolimit I of f at x0. Hence pseudolimit I
of f at x0 does not exist.

The above results can be summirazied below.

Theorem 2. The following assertions take place.

• Let x0 ∈ U be an isolated point of U . Then f has no limit but has pseudolimits I,
II, II-a and III-a at x0, all equal to f(x0).
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• Let x0 ∈ U be an accumulation point for U . Then:

– f has pseudolimits II, II-a and III-a f(x0) at x0;

– if f has limit f(x0) at x0 (i.e. if f is continuous at x0), then it also has
pseudolimit I f(x0) at x0;

– if f has limit y0 6= f(x0) at x0 (i.e. if f has a removable discontinuity at x0)
then pseudolimit I at x0 does not exist;

– if f has pseudolimit I at x0 then it is equal to f(x0), and f is even continuous
at x0 (and the limit f(x0) of f at x0 exists as a corollary).

• Let x0 ∈ U\U be an accumulation point for U Then:

– the limit, pseudolimit I and pseudolimit II-a are equivalent (i.e. they exist simul-
taneously at x0 and are equal, or no one of them exists);

– each y2 ∈ Y is pseudolimit II of f at x0.

– pseudolimit III-a exists at x0 if and only if there is δ > 0 such that f(x) is
identically constant for 0 < ‖x − x0‖ ≤ δ.

Next we shall briefly discuss “strange” derivatives for functions, defined on countable
or even finite sets. Although they are not strange from, say, a constructive viewpoint.
Moreover, in practical computations we actually work with rational numbers only and
hence – with strange derivatives.

Suppose that X = R and the set U ⊂ R contains at least two points. Consider the
function F : U0 → Y , defined by F (x) := (f(x) − f(x0))/(x − x0), x ∈ U0 := U\{x0}.

The standard derivative f ′(x0) ∈ Y (we identify the space of bounded linear operators
R → Y with Y ) is the limit of F at x0 whenever this limit exists. In this case x0 ∈ U
is an accumulation point of U and a singular point for F . As we already know, in this
case the limit, pseudolimit I and pseudolimit II-a of F at x0 are equivalent.

Usually, when dealing with derivatives it is supposed that the set U is an interval or
a sum of intervals. In fact, as the above definition suggests, the only requirement on U
follows from the existence of a limit: U must have an accumulation point and, hence,
must be at least countable. Examples for such sets are U = Q (the set of rationals),
U := {1/n : n ∈ N} ∪ {0} or U := {1/p : p ∈ P} ∪ {0}, where P is the set ot primes.

In computational practice one has to work with finite sets of machine numbers. Hence
it makes sense to define derivatives at isolated points of U .

Let x0 ∈ U be an isolated point of the set U containing at least two points. Then F
is well defined on U0 = U\{x0}. Denote also f0 := f(x0). In defining the derivative at
x0 we shall consider three cases.

First, suppose that x0 = inf{U}. Denote x2 := inf{U0} > x0. If x2 ∈ U define the
derivative of f at x0 as f ′(x0) := (f(x2) − f0)/(x2 − x0). If x2 /∈ U but f has limit f2

at x2, set f ′(x0) := (f2 − f0)/(x2 − x0). Finally, if x2 /∈ U and f has no limit at x2, the
derivative of f at x0 is not defined.

Second, let x0 = sup{U} and set x1 := sup{U0} < x0. We have x0 > x1. If x1 ∈ U
the derivative of f at x0 is defined as f ′(x0) := (f(x1) − f0)/(x1 − x0). If x1 /∈ U but
f has limit f1 at x1, set f ′(x0) := (f1 − f0)/(x1 − x0). Finally, if x1 /∈ U and f has no
limit at x2, then f has no derivative at x0.
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Third, suppose that x1 := sup{x ∈ U, x < x0} < x0 < x2 := inf{x ∈ U : x > x0}.
If x1 ∈ U define the left derivative of f at x0 as f ′(x0 − 0) := (f(x1) − f0)/(x1 − x0).
If x1 /∈ U but f has limit f1 at x1, set f ′(x0 − 0) := (f1 − f0)/(x1 − x0). Finally, if
x1 /∈ U and f has no limit at x1, the left derivative of f at x0 is not defined. The right
derivative f ′(x0 +0) of f at x0 is defined similarly. We can define also a derivative f ′(x0)
as f ′(x0−0) = f ′(x0 +0) whenever the latter equality holds. But this definition of f ′(x0)
is a restricted concept. Let e.g. U = {x1, x0, x2}, x1 < x0 < x2, and denote fk = f(xk).
Then f ′(x0) exists if and only if (f1 − f0)/(x1 − x0) = (f2 − f0)/(x2 − x0), which yields
f(x) = ax + b, x ∈ U .

Generalizations. The results are easily generalized to the case of (complete) metric
spaces. A further generalization to topological spaces, however, is not straightforward.
Indeed, the play with ε and δ in the form presented above requires some type of metrics.
An attempt to extend some of the results about uniform continuity may eventually involve
the concept of uniform topological spaces.
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ИГРИ С ε И δ

Михаил М. Константинов

В тази бележка са разгледани някои задачи, свързани с дефиниране на основни

математически понятия с използване на езика (ε, δ). Резултатите могат да се

използват от преподавателите по математика.
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