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In this paper we consider a number of myths, which are popular among users of
modern computational systems and may be very misleading. We also propose a
useful heuristic rule.

1. Introduction. The invention of the digital computer in the middle of XX
century led to a significant change of the viewpoint on numerical methods and algorithms.
Moreover, it became clear that many classical computational schemes are not suitable
for implementation in finite arithmetics and, in particular, in floating-point machine
arithmetic (MA).

In order to organize a reliable computational procedure, one has to take into ac-
count the main three factors determining the accuracy of the computed solution: 1)
the properties of the MA and, in particular, the rounding unit, 2) the properties of the
computational problem and, in particular, its sensitivity, and 3) the properties of the
numerical algorithm and, in particular, its numerical stability.

Unfortunately, the accounting of these factors is not a common practice, especially
among the users and developers of mathematical software, who are not numerical
analysts. Moreover, many myths are wide spread among this category of users. These
myths deserve a special consideration. Analyses of such misconceptions have been pre-
sented in [1,2].

2. 13 myths and one heuristic rule. There are sustainable myths1, or miscon-
ceptions, in computational practice which are popular even among experienced users of
modern computer software. Below we describe some ot them and consider a number of
instructive examples.

Myth 1 Large errors in the computed solution are due to the total effect of a great

number of small round-off errors done at each arithmetic operation performed in

MA.

This is rarely true or is only partially true. Moreover, when performing a large number
of arithmetic operations there is a tendency of their mutual compensation. If there is
a large error in the computed result then most probably this is due to the performance
of a small number of critical operations (or even of a single such operation), when a

*2000 Mathematics Subject Classification: 65-01
1This is not a definable concept.
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numerical disaster has occured. Such an operation can be the catastrophic cancellation
of true digits during a subtraction of close numbers.

For example, consider the computation of e by the formula e ≈ en := (1 + 1/n)n

for n sufficiently large. The justification of this (obviuously bad) way to compute e
is that en → e for n → ∞. In MA with rounding unit ε ≈ 10−16 we obtain the
good approximation e8 with |e − e8|/e = 10−8 and the the catastrophe e17 = 1 with
|e − e17|/e = 0.6321 ≈ 1 − 1/e. The reason is not in the computing of the high power
with exponent 1016 but in the machine summation 1+10−17 which produces the result 1.

There is also a very “brave” myth which reveals simple ignorance.

Myth 2 Rounding errors are not important because they are small (a variant: because

they are completely compensated).

The believers in this myth at least have heard about rounding errors. Because some
users have not. The latter ones are maybe the happier part of users. But their happiness
cannot last long.

The next myth seems almost like a true statement [2].

Myth 3 A short computation free of cancellation, overflow and underflow, should be

accurate.

Consider the following algorithm, which transforms x ≥ 0 into y ∈ R by the recursive

formulae xk+1 = x
1/2

k for k = 1, . . . , n and xk+1 = x2
k for k = n + 1, . . . , 2n, y := x2n.

The theoretical result is y = x. In practice, even for moderate values of n in the range of
50 to 100, at all available computer platforms and for all computing environments (we
write this in November, 2004), the computed result will be ŷ = 0 if 0 ≤ x < 0 and ŷ = 1
if x ≥ 1. Thus we can achieve an arbitrarily large relative error in the result.

The next myth deserves a special attention.

Myth 4 Subtraction of close numbers in MA is dangerous because the relative error of

subtraction is large.

Something is true here: the relative error of subtracion is large (and even unbounded
for arbitrary close numbers). But subtraction of close numbers is usually done exactly in
MA and hence the subtraction itself does not introduce any error. What happens then?
It happens that if the close numbers are approximate (which is the typical case in com-
puter computations) then the left-most significant digits are cancelled and the possible
inaccuracies in the right-most digits become important. So the useful information is lost
even when the subtraction itself is exact.

Of course, if the above close numbers were exact, then the computed result would
also be exact. Moreover, in many situations catastrophic cancellation may be harmless.
For instance, the machine operation a + (b − c) is OK when 1 ≫ |b − c|/|a|, a 6= 0.

So the following statement is also a myth.

Myth 5 Cancellation in the subtraction of near numbers is always very dangerous.

Consider now the following myths.

238



Myth 6 Increasing the precision of the arithmetics (i.e., decreasing the rounding unit)
always increases the accuracy of the computed result.

Sometimes this is not true, as it is shown below. The sum

1065.5 + 1005 − 1077 + 999 − 1065.5 + 1077 = 2004

will be computed as 0 on most computers in single, double and extended precision.
It is true, however, that decreasing the rounding unit decreases the known bounds on

the error of the computations, since in many of them the rounding unit is a multiplier.

Myth 7 Rounding errors are always harmful.

Not true again. Sometimes rounding errors can (and do!) help in certain computational
procedures. For example, the QR algorithm cannot start (theoretically) for certain ma-
trices but due to rounding errors it actually starts.

Myth 8 The final result cannot be more accurate than the intermediate results, i.e.

errors do not cancel.

A counterexample to this myth is given in [2].
Many myths are connected with the solution of linear and nonlinear equations

f(x) = 0, where x and f(x) are vectors of the same size and the function f is con-
tinuous.

Let x̂ be the solution computed in MA. Then the quantity ‖f(x̂)‖ is the residual

corresponding to x̂. Since the residual is scale dependent, it is preferable to work with
some scaled quantity, e.g. r(x̂) := ‖f(x̂)‖/‖f‖, where ‖f‖ is the supremum of ‖f(ξ)‖
when ξ varies over a compact containing the solution x.

The continuity of the function r and the fact that r(x) = 0 for the exact solution x,
are the basis of many myths, some of them considered below.

Myth 9 The accuracy of the computed solution x̂ can be checked by the size of the

residual r(x̂) – the smaller the residual, the better the approximation.

There is a close variant to Myth 9.

Myth 10 Of two approximate solutions the better one corresponds to the smaller resi-

dual.

Myth 9 and 10 are equvalent and they are both untrue. That these myths fail for
nonlinear equations is almost obvious as the next example shows.

The scalar equation

f(x) := x3 − 23.001x2 + 143.022x− 121.021 = 0.

has a single real root x = 1. Let x̂1 = 0.99 and x̂2 = 11.00 be two approximations to the
solution. By the way, only the first may be considered as an approximation. Computing
the residuals r(x̂k) = |f(x̂k)| we have r(x̂1) = 1.0022 and r(x̂2) = 0.1. Thus the bad
approximation x̂2 with a relative error of 1000 percent has a 10 times less residual than
the good approximation x̂1 with relative error of 1 percent!
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But maybe Myths 9 and 10 fail only for nonlinear equations? Unfortunately, not.
They are false for linear vector equations as well!

Consider the linear algebraic equation Ax = b, where A =

[
0.2161 0.1441
1.2969 0.8648

]
,

b = [0.1440, 0.8642]T. The approximate solution x̂ = [0.9911, 0.4870]T has small residual
r(x̂) = ‖Ax − b‖ = 0.1414 × 10−7 and according to Myth 9 should be close to the exact
one. But the exact solution is x = [2,−2]T and there is no true digit in x̂. This should
be expected since the relative error here is ‖x̂ − x‖/‖x‖ = 0.643. This example (due to
W. Kahan) is remarkable because all approximate solutions, whose first three decimal
digits coincide with these of x, have larger residuals than r(x̂)!

This phenomenon for linear equations is explained in [1] and can be observed even
for n = 2. Briefly, it is possible in equations with ill-conditioned matrix A, for which the
condition number cond(A) = ‖A‖ ‖A−1‖ is large. However, this observation is often true
for nonlinear equations as well.

Consider the system Ax = b with A =

[
ε3 1
0 1

]
and b = [1, 1]T which has a solution

x = [0, 1]T, where ε > 0 is a small parameter. Let y = [0, 1 + ε]T and z = [1/ε, 1]T
be two approximate solutions. The relative error of y is ey = ε ≪ 1, while this of z
is ez = 1/ε ≫ 1. At the same time the residual for y is ε

√
2, while the residual for z

is ε2. We see that for ε → 0 the bad solution z has a relative error 1/ε tending to ∞
but its residual ε2 is arbitrarily smaller than the residual ε

√
2 of the good solution y

with relative error ε. So the check by residuals is completely misleading even for linear
systems with two equations. At this point we advise the reader to explain geometrically
the observed phenomenon.

In the general case, for a nonsingular A, Ax = b and arbitrary x̂ 6= x, we have (in the
2-norm)

1

‖A−1‖ ≤ ‖Ax̂ − b‖
‖x̂ − x‖ ≤ ‖A‖

and these inequalities are reachable. Denote by x̂1 and x̂2 the vectors, for which

1

‖A−1‖ =
‖Ax̂1 − b‖
‖x̂1 − x‖ ,

‖Ax̂2 − b‖
‖x̂2 − x‖ = ‖A‖.

Then we have
e1

e2

= cond(A)
r1

r2

,

where rk := ‖Ax̂k − b‖. This clearly explains why the bettter approximation can have
larger residual.

So there is a bit of irony in Myths 9 and 10: the check of the accuracy of the computed
solution by the size of the residual can be successfull if the equation is well-conditioned.
But then the computed solution is probably good enough, so there is nothing to check.
But if the equation is ill-conditioned and there is a danger of large errors in x̂, then the
check based on the residual can be misleading.

The bad thing is that 80 percent of experienced computer users beleive in such myths.
And many books on numerical analysis do not worn them.

There are some very sophisticated myths that may even be usefull sometimes. But
not always – otherwise they would not be myths.
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Myth 11 A reliable way to check the accuracy of x̂ is to repeat the computations with

double, or some other extended precision.

Myth 11 even has a procedural variant.

Myth 12 If, after a repeated computation with extended precision, the first several digits

in the approximate solutions computed in both ways coincide, then these digits are

true.

Why 11 and 12 are myths is explained in detail in [1] (see also the example after
Myth 6). It is true that if we work with a very small rounding unit ε we can achieve
an arbitrary number of true digits in the computed result. And it is also true that to
achieve this goal we shall need an arbitrary large computing time.

Experienced computer users know that if small changes in the data lead to large
changes in the result (i.e. if the computational problem is very sensitive) then the com-
puted solution may be contaminated with large errors. Sometimes this correct obser-
vation is reversed assuming that if, for a given set of small perturbations, the result is

slightly changed, then the accuracy of the solution is satisfatory. Thus we come to the
next myth. And the reason is in the words “a given”. If there was “any” instead, every-
thing would be OK. But it is impossible to make an experiment including all possible
initial data. At least because of the lack of time.

Myth 13 If the check of the result by a repeated computation with slightly perturbed data

gives a slightly perturbed result, this guarantees that the computational procedure is

reliable and the solution is computed with a good accuracy.

A counterexample to this myth is given in [1]. The reason is that in very sensitive
problems there are “insensitive directions” (in nonlinear problems they are manifolds)
along which large changes of data cause a small change in the result. At the same time a
small perturbation of the data along other directions can change the result dramatically.

Consider the system Ax = b with A =

[
a + 1 a

a a − 1

]
, where a > 0 is large. The

matrix A is nonsingular since det(A) = −1. Let b = [2a, 2a]T. Then x = [2a,−2a]T. So
if we change a to a + δ, where δ is arbitrary, then the relative change in both the data b
and the result x will be |δ|/|a|. The system looks very well conditioned with a relative
condition number of order 1. But if we take b = [2a + 1, 2a − 1]T the solution becomes
x = [1, 1]T. So a relative change of order 1/(2a) in the data caused a relative change of
order 2a in the result – an amplification of order 4a2. This indicates an ill-conditioning
of the problem. The things become clear after computing the condition number of A,
namely cond2(A) = 4a2 + 2 + O(a−2), a → ∞.

Now we can ask whether it is possible to save something of Myths 11–13? The answer
is yes. Or almost yes. And the next statement is not a myth but a useful euristics.

A heuristics If a check of the result by several sets of randomly chosen small pertur-

bations in the initial data and by several MA with different rounding units shows

small perturbation in the computed result, then with a high degree of reliability we

can expect that the computed solution is close to the exact one.

241



Of course, we can find a counterexample to this proposition as well – that is why it
is heuristics and not a theorem. But the reader will hardly find such an example in his
or her computational practice.
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13 МИТА В ЧИСЛЕНИЯ АНАЛИЗ

Михаил М. Константинов, Петко Х. Петков, Звездалина С. Ганчева

Анализирани са 13 популярни мита в числения анализ, които понякога са доста

подвеждащи. Предложена е и една полезна евристика.
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