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The problem of solving cubic equations is not among the favorite subjects in teaching
at the standard high schools in Bulgaria. Probably the reason is that in the “alge-
braic” method of view the procedure of solving the cubic equations requires some
knowledge about what is a complex number.
In this note we make an attempt to offer a “non algebraic” point of view for solving
cubic equations using just the typical humble abilities of our middle school educational
system at present.

1. Basic algebra. We shall deal in this paper with solving the cubic equation

(ce) Ay3 + By2 + Cy + D = 0, where A 6= 0.

As it is well known, under the substitution y = x− B

3A
, the equation (ce) takes the form

Ax3 + C∗x + D∗ = 0.

In this paper we shall consider the following special reduced forms of (ce):

(r+) 4x3 + 3p2x + q3 = 0

and

(r−) 4x3 − 3p2x + q3 = 0

which are the result of dividing Ax3 + C∗x + D∗ = 0 by A/4.
As we shall see below, there is a considerable difference between cases (r+) (reduced

form) and (r−) (casus irreducibilis).
Clearly, in every case the equation (ce) can be reduced to one of the equations (r+)

or (r−). Hence, in what follows we shall deal with the functions f
±
(x) = 4x3 ± 3p2x+ q3

with p > 0.

2. Hyperbolic functions. Here we consider hyperbolic functions with a base
a > 0; a 6= 1. For definiteness, we suppose that a > 1. Note, that it is not difficult to
present in the middle school the hyperbolic function with some known base (for example
a = 2).

2.1. And so, the hyperbolic sine is the function sh (u) = 1
2
(au − a−u). From the

definition it follows that sh is defined for all values of u. The function has one zero at
u = 0. If u → +∞, then a−u becomes arbitrarily small (remember that a > 1). Because
at the same time au increases without limit, the function become arbitrarily large. As
u → −∞, a−u becomes arbitrarily large and au approaches the value zero, so that the
value of the function tends to −∞.
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Further, from the defining equation it follows that shu = −sh (−u). Thus, the func-
tion is odd and its graph is centrally symmetric with respect to the origin of coordinates;
the range is −∞ < u < ∞.

2.2. The hyperbolic cosine is also defined for all values of u by the equation

ch u =
1

2
(au + a−u). The function is even and its graph is symmetrical with respect

to the second axis. Note, that chu ≥ 1 for all values of u because α + 1/α ≥ 2 whenever
α > 0. The equality occurs only for α = 1 and hence chu = 1 only for u = 0.

2.3. The functions th u = shu/chu and cth u = chu/shu. The first of these two
functions (the hyperbolic tangent) is defined for all values of u, but for the second (the
hyperbolic cotangent) the value u = 0 must be excluded. The range of thu is bounded:
−1 < th u < 1. By contrast, the range of cthu coincides with the sum (−∞,−1)∪(1,∞).
Clearly both functions are odd.

2.4. Algebraic relations between the hyperbolic functions. From the equa-
tions of the functions the following well known identities are immediate consequences:

(hf) sh (u + v) = sh uch v + chush v and ch (u + v) = chuch v + sh ush v.

Executing (sh), it is easy to calculate that:

(hr+) sh 3u = 4sh 3u + 3shu

and

(hr−) ch 3u = 4ch 3u − 3ch u.

2.5. One may add the identity ch 2u − sh 2u = 1 to realize the close similarity of
these relations to those between the trigonometric functions. This justifies the use of
the terms hyperbolic sine, cosine and so on. One important difference between the two
classes consist in the fact, that it is easy to find out the inverse functions of the hyperbolic
functions. Because of that, it is possible (and useful in our opinion) to teach hyperbolic
functions in the secondary schools.

2.6. As a good exercise, it is worth checking the correctness of the following identities:

(t3) th 3u =
th 3u + 3thu

1 + 3thu
and cth 3u =

cth 3u + 3cthu

1 + 3cthu
.

3. The inverse functions of the hyperbolic functions. The hyperbolic func-
tions sh u and thu are invertible since they are monotonic. The function cthu is invert-
ible since it is one-to-one. For ch u an inverse function can be defined in each of the two
intervals (−∞, 0] and [0,∞) in which the function is monotonic.

Each of the above mentioned facts can be established by using appropriate tools from
the secondary school. For example, the function chu is decreasing in the interval (−∞, 0]
because for the function g(t) = t + 1/t we have g′(t) = 1 − 1/t2 < 0 for every t ∈ (0, 1].

But it is not necessary to investigate the above functions because we are going to find
out their inverse values in the following text.

3.1. Inverse hyperbolic sine u = sh−1v. We can find this function by solving the

equation v =
1

2
(au − a−u) for given v. Multiplying by 2au gives first 2vau = a2u − 1, or
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a2u−2vau−1 = 0. This is a quadratic equation for au. Only the solution au = v+
√

v2 + 1
is relevant, because v −

√
v2 + 1 is always negative, whereas au can take only positive

values.

Taking logarithms finally yields

(is) u = loga

(

v +
√

v2 + 1
)

,

which gives the explicit form of the equation of the inverse function.

3.2. Inverse hyperbolic cosine u = ch−1v. To invert v = ch u one proceeds as for
v = sh u by similar steps to the equation a2u−2vau +1 = 0, leading to au = v±

√
v2 − 1.

Finally one obtains the inverse functions

(ic−) u = log
a

(

v −
√

v2 − 1
)

; for the interval (−∞, 0]

and

(ic+) u = loga

(

v +
√

v2 − 1
)

; for the interval [0, +∞).

3.3. Problem. Prove in a similar way that

(it) u = th−1(v) =
1

2
loga

(

1 + v

1 − v

)

; v ∈ (−1, 1)

and

(ict) u = cth−1(v) =
1

2
log

a

(

1 + v

v − 1

)

; v ∈ (−∞,−1) ∪ (1,∞).

4. The cubic equations. Next we are going to apply the above considerations for
solving cubic equations.

4.1. The case (r+). Here we have the equation f
+

= 4x3 + 3p2x + q3 = 0. For the
derivative of f ′

+
we have f ′

+
(X) = 3(4x2 + p2) > 0 for all values of x. Thus the function

f
+

is strictly increasing and the equation (r+) has at most one root.

To find it, we make the substitution x = psh u. According to (hr+), the equation

(r+) takes the form p3sh 3u + q3 = 0. Hence sh 3u = − q3

p3
. Next, one can use (is) to

obtain u:

3u = loga

(

− q3

p3
+

√

q6

p6
+ 1

)

; therefore u =
1

3
loga

√

p6 + q6 − q3

p3

and finally we have

u = loga

3

√

√

p6 + q6 − q3

p
= loga λ,

where λ =

3

√

√

p6 + q6 − q3

p
. Now we can replace u in the equality x = pshu. We have

x =
p

2
(au − a−u) and because of the identity au = alog

a
λ = λ we obtain the root x:
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x =
p

2

(

λ − 1

λ

)

. Hence

x=
p

2





3

√

√

p6 + q6 − q3

p
− p

3

√

√

p6 + q6 − q3



=
1

2

(

3

√

√

p6 + q6 − q3− 3

√

√

p6 + q6 + q3

)

4.2. Example. We should note, that the above formula gives complicated expres-
sions for the roots. Let us solve for example the equation x3 +x−2 = 0. Clearly we have

to multiply it by 4 to obtain the reduced form (r+). Then p =
2√
3

and q = −2. Next,

one may apply the above considerations to obtain that λ =
3

√√
28 +

√
27; therefore

1

λ
=

3

√√
28 −

√
27. Then the only root x0 of our equation is

x0 =
1√
3

(

3

√√
28 +

√
27 − 3

√√
28 −

√
27

)

.

In the same time it is obvious that x0 = 1 is a root of our equation. Note, that the

Cardano’s formula gives (naturally) very similar result: x0 =
3

√

1 +

√

28

27
+

3

√

1 −
√

28

27
.

Note however that the formula (s+) gives the solution in every case. We offer to
the reader as an exercise to solve the equations x3 + x + 2 = 0, x3 + x + 1 = 0 and
4x3 + 3x + a = 0.

4.3. The case (r
−
). Now we deal with the equation f

−
(x) = 4x3 − 3p2x + q3 = 0.

It is clear that the substitution x = pchu leads to the equation p3ch 3u + q3 = 0 (see

(hr
−
)). Then ch 3u = − q3

p3
and it seems that the equalities (ic

±
) with v = − q3

p3
are

useful here. Unfortunately, (ic
±
) holds only if |v| ≥ 1. Let us consider first the cases

v ≤ −1 and v ≥ 1.

4.3.1. The case (−
q3

p3
≤ −1). Keeping in mind that p > 0, it follows from here

that q > 0 and, hence, the equation ch 3u = − q3

p3
has no solution, because ch 3u ≥ 1

for all u. We can avoid this obstacle by putting x = −pchu. Then one should obtain

−ch 3u = − q3

p3
and, hence, ch 3u =

q3

p3
≥ 1. To obtain u one should use (ic+):

3u = loga

(

q3

p3
+

√

q6

p6
− 1

)

; therefore u =
1

3
loga

q3 +
√

q6 − p6

p3
,

so we have

u = loga

3

√

q3 +
√

q6 − p6

p
= loga λ,

where λ =

3

√

q3 +
√

q6 − p6

p
. Now we can replace u in x = −pchu. We have x
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= −p

2
(au + a−u) and because, of the identity au = alog

a
λ = λ, we obtain the root

x: x = −p

2

(

λ +
1

λ

)

. Hence

x = −p

2





3

√

q3 +
√

q6 − p6

p
+

p

3

√

q3 +
√

q6 − p6





= −1

2

(

3

√

q3 +
√

q6 − p6 +
3

√

q3 −
√

q6 − p6

)

.

A good application of this formula gives the equation 4x3 − 6x + 3 = 0. We have here
p =

√
2 and q = 3

√
3. Now it follows by the above that the only root of this equation is

x0 = −( 3
√

4 + 3
√

2)/2. A good practice of teaching is to replace x0 and verify that the
expression 4x3

0 − 6x0 + 3 is zero.

Remark. Certainly, we could use (ic−). It is easy to see in this case that the root of

the equation has the form x = −p

2
(µ +

1

µ
), where µ =

3

√

q3 −
√

q6 − p6

p
. But it follows

from the last expression that λµ = 1. Therefore µ +
1

µ
= λ +

1

λ
and as is shown above,

x = −1

2
(λ + µ).

4.3.2. The case (−
q3

p3
≥ 1). In the same manner as in 4.3.1 after the substitution

x = pchu the equation (r−) takes the form ch 3u = − q3

p3
. Solving this equation we get

x =
p

2





3

√

−q3 +
√

q6 − p6

p
+

p

3

√

−q3 +
√

q6 − p6





=
1

2

(

3

√

−q3 +
√

q6 − p6 +
3

√

−q3 −
√

q6 − p6

)

.

Let us consider for example the equation 4x3 − 3x− 26 = 0. Obviously, it has a solution
x = 2 and below we shall see that it is the only solution. On the other hand, for p = 1
and q = 3

√
−26 the above identity gives

x =
1

2

(

3

√

26 +
√

675 +
1

3
√

26 +
√

675

)

=
1

2

(

3

√

26 +
√

675 +
3

√

26 −
√

675

)

and it is not obvious that the above expression is nothing but 2. Note however, that no
harm done if the lecturer use simple calculator to compute this expression: one obtains

x1 =
3

√

26 +
√

675 = 3.732 050 807 568 877 293 527 446 341 505 9 · · · ;

x2 =
3

√

26 −
√

675 = 0.267 949 192 431 122 706 472 553 658 494 1 . . .

and x1 + x2 = 4 (we use here the standard Windows calculator in scientific mode).
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5. The case
|q|

|p|
< 1 . The substitution x = ±pchu is not useful here, because

the equation ch 3u = − q3

p3
has no solution. To realize the problem, let us investigate the

function f
−
. We have f ′

−
(x) = 3(4x2−p2). Hence f

−
increases in the intervals

(

−∞,−p

2

]

and
[p

2
,∞
)

. For x ∈
[

−p

2
,
p

2

]

the function f
−

is decreasing. The values of f
−

in the

point of local extremum are M = f
−

(

−p

2

)

= q3 + p3 and m = f
−

(

−p

2

)

= q3 − p3. The

constant p is positive, that is why |q| < p implies that M > 0 and m < 0. Therefore,

the interval
[

−p

2
,
p

2

]

contain a root of the equation (r−). To locate the other roots it

is sufficient to see that f
−
(−p) = m and f

−
(p) = M . Thus we obtain that each of the

intervals
[

−p,−p

2

]

and
[p

2
, p
]

contains a root. Note in addition, that if
|q|
|p| > 1 then m

and M are both positive or not, hence the equation (r−) has only one solution.

And so, in case 5. the equation f
−
(x) = 0 has three different roots (we leave to the

reader the investigation the case when two of them coincides). This is so-called casus

irreducibilis and it is proved in [1], that it is impossible to find the solutions without
using complex numbers.

5.1. Nevertheless, we shall try to say something about solutions. For this purpose, let
us make a substitution x=p cos t. Then we have 4x3−3p2x+q3=4p3 cos3 t−3p3 cos t+q3=0
and therefore p3 cos 3t + q3 = 0. And so, we can find an angle t0 ∈ [0, π], for which

cos 3t0 = − q3

p3
since

|q|3
|p|3 < 1. Then x0 = p cos t0 is a solution. In addition, it is easy to

see that the numbers x1 = p cos(t0 +
2π

3
) and x2 = p cos(t0 +

4π

3
) are also solutions of

our equation [2], because cos 3t0 = cos 3(t0 +
2kπ

3
) for k = 1, 2.

5.2. To write the roots, we should use the inverse function of the cos – this is
the function arccosx. It is right that inverse of the trigonometric functions is not a
theme for our secondary school, but for students who are familiar one can write that

t0 =
1

3
arccos

(

− q3

p3

)

, hence

xk = cos

(

1

3
arccos

(

− q3

p3

)

+
2kπ

3

)

for k = 0, 1, 2.

5.3. Examples. We should note, that the consideration from 5. are completely
accessible for the students in high school. A necessary condition for that is to have
available calculator. Consider for example the equation 4x3 − 6x − 1 = 0. We have
here q = −1 and p =

√
2. Hence we have to look for an angle t0, for which cos 3t0 =

1√
8

=
1

2
√

2
. Using the inverse option of the Windows calculator we see that 3t0 =

1.2094292028881888136421330153191 . . . and

t0 = 0.40314306762939627121404433843969 . . . ,

t1 = t0 +
2π

3
= 2.497538170022591763522473260626 . . . and
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t2 = t0 +
4π

3
= 4.5919332724157872558309021828124 . . . (radians).

Next we can write the roots:

x0 =
√

2 cos t0 = 1.3008395659415771262321851800939 . . . ,

x1 =
√

2 cos t1 = −1.1309011226299858500660801892384 . . . and

x2 =
√

2 cos t2 = −0.16993844331159127616610499085551 . . . .

Note, that in our case the intervals
[

−p,−p

2

]

,
[

−p

2
,
p

2

]

and
[p

2
, p
]

coincides with
[

−
√

2,−
√

2

2

]

,

[

−
√

2

2
,

√
2

2

]

and

[√
2

2
,
√

2

]

since p =
√

2.

5.3.1. Occasionally, it is possible to find the “exact” solutions. Consider as an
example the equation x3 − 3x + 1 = 0. To obtain the reduced form, multiply by 4:
4x3 − 12x+ 4 = 0. Hence, p = 2 and q =

3
√

4. Now we are looking for angle t0, for which

cos 3t0 = − q3

p3
= −1

2
. Thus, we obtain that 3t0 =

2π

3
and t0 = 2π

9
. Then the solutions

of our equation are the numbers x0 = 2 cos 2π

9
, x1 = 2 cos

8π

9
and x2 = 2 cos

14π

9
.

6. Exotic equations. We finish with an example of cubic equation of the following
special type:

(ex)
x3 + 3p2x

p3 + 3px2
= κ.

It is clear that the identities (t3) suggest to get a substitution x = pth u or x = pcth u.
Each such substitution reduces (ex) to the form th 3u = κ or cth 3u = κ. The choice
of substitution depends of |κ|. Clearly for the exclusive values κ = ±1 we have x = ±p.
Note, that the exclusive values κ = ±1 we have x = ±p.

We suggest the reader to consider the equation x3 − 6x2 + 3x − 2 = 0. Here p = 1,

κ = 2 and the only solution is x =
3
√

3 + 1
3
√

3 − 1
≈ 5.5223333933593124968516951351377 . . . .

Note, that Cardano’s formula gives x = 2 +
3
√

3 +
3
√

9.
6.1. Note that the equation (ex) has only one root for every p 6= 0 and κ, because

(

x3 + 3p2x

p3 + 3px2

)′

=
3(x2 − p2)2

(p2 + 3x2)2
> 0 for x 6= ±p.

Thus the function
x3 + 3p2x

p3 + 3px2
is increasing and the equation (ex) has no more than one

root.
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РЕШАВАНЕ НА КУБИЧНИ УРАВНЕНИЯ С МЕТОДИ НА

АНАЛИЗА

Владимир Т. Тодоров

По традиция темата “кубични уравнения” не се разглежда в нашите средни учи-

лища. Вероятно една от причините за това е, че "алгебричната"гледна точка

изисква някои познания за комплексните числа. Разбира се, в неразложимия

случай това е в известен смисъл неизбежно.

В тази бележка предлагаме “неалгебричен” подход, който позволява преподава-

нето на кубични уравнения в средното училище без да се използва понятието

“комплексно число”. По наше мнение той е достъпен дори и за скромните въз-

можности, които предлага образователната ни система в наши дни.
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