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This paper is concerned with viscosity solutions of fully nonlinear, degenerate elliptic
and parabolic equations and their applications for some nonclassical pde’s problems.
The tangential oblique derivative problem for general nonlinear elliptic equations and
the global behaviour of the solutions of mean curvature parabolic equations and their
connection with some isoparametric problems are considered.

This survey is concerned with viscosity solutions of fully nonlinear, second order
degenerate elliptic equations
(1) F (x, u,Du,D2u) = 0 in Ω
including parabolic and first order equations. Here Ω is a bounded domain in Rn,
F (x, r, p,X) is a continuous function of all arguments (x, r, p,X) ∈ Ω×R×Rn×Sn and
Sn is the space of all symmetric n× n matrices. Moreover, the ellipticity condition
(2) F (x, r, p,X) ≤ F (x, r, p, Y )
and the monotonicity condition with respect to r
(3) γ(r − s) ≤ F (x, r, p,X)− F (x, s, p,X)
are satisfied for some γ = const > 0 and for every x ∈ Ω; r, s ∈ R; p ∈ Rn; X,Y ∈ Sn,
whenever Y ≤ X and s ≤ r.

Viscosity solutions were introduced by M. Crandall and P.-L. Lions [4] for first order
Hamilton-Jacobi equations with the method of vanishing viscosity. Later on, the progress
in the second order theory was done due to the papers of R. Jensen [12], [13], R. Jensen, P.-
L. Lions ans P. Souganidis [14], H. Ishii [10], by means of “supconvolution regularisation”,
a method which comes from the convex and nonsmooth analysis. The main idea of Jensen
is to regularize the semicontinuous sub- and supersolutions of (1), and then to use an
appropriate form of the classical maximum principle of Alexandrov [1] or P.-L. Lions [18]
in order to prove the uniqueness of the viscosity solutions. The next important step in
the existence of the viscosity solution was the adaption of the classical Perron method
to semicontinuous sub- and supersolutions of (1) in the paper of H. Ishii [9] (see also
[11], [5]).
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The advantages of the method of viscosity solutions are the minimal regularity assum-
ptions on the coefficients of equation (1), boundary data and the domain Ω, as well as the
most general ellipticity condition (2). In this way wide class of fully nonlinear degenerate
elliptic and parabolic equations, including first order equations, can be investigated.
Regarding to the fact that the viscosity solution is only a continuous function, this
solution is unique. Moreover, the stability results of the solutions under small perturba-
tions of the coefficients of the equation, boundary data and the domain is a basic
achievement of the theory wich is important for the numerical applications.

The original definition of the viscosity solutions comes from the method of vanishing
viscosity, i.e. by means of an elliptic regularisation of the equation with a small parameter
ε > 0 and a limit of the regularizing parameter ε to zero. This procedure explain the name
of the weak solution. Later on, the notion is more close to the comparison principle and
the Perron method and there are two equivalent definitions one of them more geometrical
and the other more analytical. Roughly speaking, the viscosity solution is a continuous
function which is simultaneously a sub- and supersolution of (1).

Definition 1.An upper semicontinuous function u ∈ USC(Ω) is a viscosity subsolu-
tion of (1) if F (x0, u(x0), Dϕ(x0), D2(ϕ(x0)) ≤ 0 for every x0 ∈ Ω and every C2 function
ϕ(x), such that u(x0) = ϕ(x0) and u(x) ≤ ϕ(x) in some neighbourhood of x0.

An lower semicontinuous function v ∈ LSC(Ω) is a viscosity supersolution of (1)
if F (y0, v(y0), Dψ(y0), D2(ψ(y0)) ≥ 0 for every y0 ∈ Ω and every C2 function ψ(x),
ψ(y0) = v(y0), ψ(x) ≤ v(x) in a neighbourhood of y0.

Finally, a continuous function w ∈ C(Ω) is a viscosity solution of (1) if it is both a
viscosity sub- and supersolution of (1).

In order to give an equivalent but more analytical definition of the viscosity solutions
we define the second order superjets for semicontinuous functions.

Definition 2.The second order superjet J2,+
Ω u(x0) is the set of those (p,X) ∈ Rn×Sn

for which

u(x) ≤ u(x0) + 〈p, x− x0〉+
1
2
〈X(x− x0), x− x0〉+ o(|x− x0|2), x→ x0.

Analogously, J2,−
Ω u(x0) is defined by J2,−

Ω u(x0) = J2,+
Ω (−u(x0)).

Definition 3.An upper semicontinuous function u ∈ USC(Ω) is a viscosity subsolu-
tion of (1) if F (x0, u(x0), p,X) ≤ 0 for every x0 ∈ Ω and for every (p,X) ∈ J2,+

Ω u(x0).
Analogously, the definition of a lower semicontinuous viscosity supersolution v ∈

LSC(Ω) is given with the opposite inequality F (y0, v(y0), q, Y ) ≥ 0 for every y0 ∈ Ω
and for every (q, Y ) ∈ J2,−

Ω v(y0).
Finally, a continuous function w ∈ C(Ω) is a viscosity solution of (1) if it is both a

viscosity sub- and supersolution.
We illustrate the advantages of the viscosity solutions with some nonclassical problems

for which the standard theory of the pde’s is not easy applicable or even does not give
any results.

The first example is the tangential oblique derivative problem for the equation (1)
(4) B(x, u,Du) = 0 on ∂Ω \ E

where B(x, u,Du) = ∂u/∂l + b(x, u), ∂/∂l =
n∑

i=1

ai(x)∂/∂xi and ai(x) ∈ C1,1(Ω),

54



b(x, u) ∈ C0,1(Ω×R). Here the nonzero vector field l is tangential to ∂Ω at some closed
(n− 2)-dimensional C2,1 smooth submanifold E of ∂Ω, but is not tangential to E.

The tangential oblique derivative problem (linear case) was considered for the first
time by Poincare in connection with the study of the high and low tides on the surface
of the earth. Another application of this problem is in the probability theory (see the
references in [23]). Problem (1), (4) is interesting from mathematical point of view even
in the linear case because the well known Shapiro-Lopatinskii condition is violated on E
and we have a nonclassical elliptic boundary value problem.

It is curious to mention that the viscosity method allows us in a similar way, as for
the tangential oblique derivative problem, to investigate the mixed Dirichlet-Neumann
boundary conditions (Zaremba problem).
(5) B1(x, u,Du) = 0 on ∂Ω,
where B1(x, u,Du) = ∂u/∂l + b(x, u) on Γ1, B1(x, u,Du) = u − ϕ(x) on Γ2 and Γ1 =
{x ∈ ∂Ω; 〈l(x), ν(x)〉 > 0}, Γ1 ∪Γ2 = ∂Ω, Γ1 ∩Γ2 = ∅, Γ1 ∩Γ2 = E, Γ2 = Γ2, where ν(x)
is the unit outher normal to ∂Ω.

In the theory of the tangential oblique derivative problem three cases are possible:
(6) 〈l(x), ν(x)〉 preserves its sign on ∂Ω;

(7) 〈l(x), ν(x)〉 changes its sign on ∂Ω through E from minus to plus
in the direction of the vector field l(x)|E ;

(8) 〈l(x), ν(x)〉 changes its sign on ∂Ω through E from plus to minus
in the direction l(x)|E .

The qualitative properties of the solutions in the above cases are quite different, for
example, in the case (7) in order to have uniqueness of the classical solutions for linear
elliptic equations some extra condition is necessary on E, i.e.
(9) u(x) = ϕ(x) on E

while in (8) the solutions are in general discontinuous functions on E (see [23]).
The tangential oblique derivative problem was investigated with energy methods in

the Sobolev spaces (see [6], [8], [21], [22], [23]) or with the Schauder technique in the
Hölder spaces (see [7], [26], [25], [29], [30]) mainly for linear or weakly nonlinear elliptic
and parabolic equations. Unfortunately, the Sobolev technique is applicable only for linear
equations, while the Schauder method is usefull for nonlinear problems, but under very
restrictive conditions. For example, C3,α, 0 < α < 1, smoothness of the coefficients of
the equation, the boundary operator and the domain Ω and uniform ellipticity of the
equation is necessary for the a priori estimates in the proof of the existence of a classical
solution. Moreover, in both of the cases of Sobolev or Schauder technique, all proofs are
based on subelliptic type estimates with precise loss of smoothness of the solutions near
E (see [6], [7]) which is possible for uniformly elliptic equations with linear principal
part. In contrast to the above methods, the existence of a viscosity solution is based
on the Perron method so that the subelliptic estimates of Egorov-Kondratiev are not
necessary. In this way, general fully nonlinear, even degenerate elliptic equations can be
investigated.

Let us recall the main assumptions guaranteeing a comparison principle for semiconti-
nuous viscosity sub- and supersolutions of (1), (4) with nontangential Neumann’s condi-
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tions (see [5, th. 7.5] or [11, th. 6.1]).
Suppose that

(10) |F (x, r, p,X)− F (x, r, q, Y )| ≤ ω(|p− q|+ ‖X − Y ‖)
for x ∈ V ; p, q ∈ Rn; X,Y ∈ Sn, for some modulus of continuity ω(s), where V is some
oneside neighborhood of ∂Ω;
(11) F (y, r, p, Y )− F (x, r, p,X) ≤ ω(N |x− y|2 + |x− y|(|p|+ 1))
whenever x, y ∈ Ω; r ∈ R, p ∈ Rn, X,Y ∈ Sn and the inequalities

(12) −3N
(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ 3N

(
I −I
−I I

)

hold for every constant N ≥ 1.
As for the most general first order boundary operator (4) we suppose that B(x, r, p)

is monotone with respect to r, i.e.
(13) B(x, s, p) ≤ B(x, r, p)
whenever s ≤ r, x ∈ ∂Ω, r, s ∈ R, p ∈ Rn, and B is oriented in the direction of the outer
normal ν(x) to ∂Ω, i.e.
(14) B(x, r, p− tν(x)) ≤ B(x, r, p− sν(x))
whenever t ≥ s, t, s ∈ R, (x, r, p) ∈ ∂Ω×R×Rn.

Moreover, for the boundary operator (4) we need a notation of the boundary condition
in the viscosity sence which is stable under limit operations with viscosity solutions (see
Def. 7.4 in [5]).

Definition 4.A function u ∈ USC(Ω) is a viscosity subsolution of the boundary
condition (4) if either B(x0, u(x0), p) ≤ 0 or F (x0, u(x0), p,X) ≤ 0 for every x0 ∈ ∂Ω
and for every (p,X) ∈ J2,+

Ω u(x0).
A function v ∈ LSC(Ω) is a viscosity supersolution of the boundary condition (4)

if either B(y0, v(y0), q) ≥ 0 or F (y0, v(y0), p,X) ≥ 0 for every y0 ∈ ∂Ω and every
(q, Y ) ∈ J2,−

Ω v(y0).
Finally, a continuous function w ∈ C(Ω) is a viscosity solution of the boundary

condition (4) if it is both a sub- and supersolution.

Now we can formulate the following existence and uniqueness results (see [28, Ths
2.5, 2.6 and 2.8]).

Theorem 1. Suppose that the condition (2), (3), (7), (10)−(14) hold. If u ∈ USC(Ω),
v ∈ LSC(Ω) are, resp., bounded sub- and supersolutions of (1), (4) and u ≤ v on E, then
u ≤ v in Ω.

Moreover, if u, u, u ≤ u, are continuous viscosity sub- and supersolutions of (1), (4)
satisfying the same Dirichlet data on E, i.e. u = u = ϕ on E, then there exists a unique
viscosity solution u ∈ C(Ω) such that u ≤ u ≤ u in Ω, u = ϕ on E.

The same result is true for a vector field l satisfying (6). In this case assumptions (11),
(12) should be replaces with more precise anisotropic conditions which take into account
the direction l(x) on E where the boundary operator is tangential to ∂Ω (see [28]).

As in Theorem 1, the same result is valid for the Zaremba problem (1), (5) under the
same assumptions of Theorem 1.
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The second problem which illustrates the adventadges of viscosity solutions and can
not be explained with the classical pde’s theory is the global behaviour of the solutions
to a parabolic mean curvature equation

(15) ut − div

(
Du√

1 + |Du|2

)
= 1 in Q = Ω× (0,∞),

(16) u = 0 on Γ = (∂Ω× [0,∞)) ∪ (Ω× {0}),
where Ω is a bounded domain in Rn with smooth boundary.

The global behaviour of the solutions of (15), (16) is deeply connected with the
following isoperimetric problem (see p. 196 in [3], [19], [20]).

Given Ω find Ω∗ ⊂ Ω which minimizes the ratio of perimeter and the volume, in short

(17) h(Ω) = min
G⊂Ω

|∂G|
|G| =

|∂Ω∗|
|Ω∗|

of the smooth simple connected subdomains G ⊂ Ω, where h(Ω) and Ω∗ are the constant
and the domain of Cheger. What is the connection between (15), (16) and (17)?

Marcellini and Miller observed in numerical calculations that a solution of (15), (16)
can blow up as time goes to infinity. Those points in Ω in which the speed ut tends to a
maximum (as t→∞) seem to constitute the set Ω∗ which solves (17) and vice versa. In
particular, solutions of (15), (16) can “detach from the boundary”, i.e. fail to satisfy the
boundary condition u = 0 after some time.

The new phenomena is caused by blow up of the gradient on the boundary, as well
as by amplitude blow up of u when Ω is sufficiently large. The combination of these
two effects leads to a traveling wave phenomenon or detachment of solutions on part of
the boundary and the development of “a rising elliptic cap” depending on the mean
curvature of the minimizing set Ω∗. We illustrate the situation only for the square,
Ω = K = {0 < xi < a, i = 1, 2} (see [15, Th. 2.3]).

Theorem 2. Let K be the square with length a > 2 +
√
π. Then

i) Problem (15), (16) has a unique solution u ∈ C∞(K × (0,∞)) ∩ C(K × [0,∞))
which solves the Dirichlet condition (16) in the viscosity sense. Moreover, the trace of u
on the boundary is Lipschitz continuous.

ii) The gradient of the solution blows up on ∂K1∩∂K, after a finite time T∗(x). Here
K1 is obtained from K by rounding off the corners with circular arcs of radius 1. Until
this blow up occurs, (16) holds in the classical sense. After the blow up time T∗(x) the
solution detaches from the boundary data on ∂K1 ∩ ∂K with infinite slope.

iii) If KR denotes “the square with rounded corners of radius R”, then for R ∈
[1, a/(2 +

√
π)] the following sharp estimates hold for large time

u(x, t) ≥
(

1− 1
R

)
t+ ωR(x) for x ∈ KR, t� 0.

u(x, t) ≤
(

1− 1
R

)
t+ ωR(x) for x ∈ K \KR, t� 0,

where ωR and ωR are independent of t and locally finite.

Theorem 2 confirms the conjectures of Marcellini and Miller in several ways. On the
set Ω∗, defined in (17), the solution u grows with maximasl speed, and off the set Ω∗ it
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grows less than maximal in time.
Let us finish this survey with some open problems in the theory of the viscosity

solutions. The main question which comes from the applications is how to define a
discontinuous viscosity solution which is unique and stable under small perturbations
of the equation, boundary data and the domain? For example, case (8) in the tangential
oblique derivative problem leads to jump discontinuous solutions, even in the linear case.
The other example is the image process equation
(18) ut − div (a(|∇u|2)∇u) = 0 in Ω× (0, T ),

a(|∇u|2)
∂u

∂ν
= 0 on ∂Ω× (0, T ), u(x, 0) = u0(x) on Ω,

where Ω ⊂ Rn is a bounded domain with boundary of class C1 and ν is the exterior
normal to ∂Ω. The structural assumptions on a ∈ C1([0,∞)) are
(19) a(s) > 0, b(s) := a(s) + 2sa′(s) is positive for s near 0

and changes sign exactly once at s2
0 > 0.

Typical examples of such diffusion fuctions a are a(s) = e−s or a(s) = (1 + s)−1.
They are used in image enhancement processes, see [24]. The function u0(x) represents
the brightness of a picture which one wants to denoise. Numerical computations have
shown that equation (18) can produce the desired effect that u(x, T ) provides a sharper
image than u(x, 0).

For the time being, the existence of a weak solution of problem (18) is an open
problem. It seems that the solutions are jump discontinuous functions. The Perron
method is not applicable for (18) because there is no comparison principle for semiconti-
nuous viscosity sub- and supersolutions. In fact Theorem 4.1 in [16] guarantees a conditio-
nal comparison principle between C1 smooth weak solutions of (18) which is only enough
for the uniqueness of C1 weak solutions. Without comparison principle, in general, Perron
method produces discontinuous solutions. Our conjecture is that at the points x where
the Perron solution u(x) is discontinuous, the set valued map x→ [u∗(x), u∗(x)] should
be considered. Here the upper and lower semicontinuous envelops u∗(x) and u∗(x) are
defined as

u∗ = lim
r→0

sup{u(y); |y − x| < r, y ∈ Ω},

u∗ = lim
r→0

inf{u(y); |y − x| < r, y ∈ Ω}.
This notion allows for an extension of the comparison principle and stability properties
for discontinuous solutions which is a major feature from the theory of viscosity solutions.

The second open problem is the nature of the important conditions (11), (12) for
the comparison principle. They naturally appear in the method of the proof, but there
are many questions about their necessity or how to find some other criteria guaranteing
the validity of the comparison principle. Our main conjecture is that they are deeply
connected with the conditions for interior gradient estimates of continuous viscosity
solutions.
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ВИСКОЗНИ РЕШЕНИЯ ЗА НЕЛИНЕЙНИ ЕЛИПТИЧНИ И
ПАРАБОЛИЧНИ УРАВНЕНИЯ

Николай Кутев

Работата е посветена на теория на вискозните решения за напълно нелинейни,
израждащи се елиптични и параболични уравнения и тяхното приложение за
някои некласически задачи. Разгледана е задачата с тангенциална наклонена
производна за най-общи нелинейни елиптични уравнения и глобалното поведение
на решенията на нестационарното уравнение на повърхнини с предварително
зададена средна кривина, както и връзката с някои изопараметрични задачи.
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