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BEST APPROXIMATIONS FOR THE BESSEL-LAGUERRE

TYPE WEIERSTRASS TRANSFORM ON THE QUARTER
PLANE"

Mohamed Sifi

We give approximate real inversion formulas for the Weierstrass transform, associated
with a system of partial differential operators on the region K = [0, +o0[X [0, +00],
by using the best approximations and the theory of reproducing kernels.

1. Introduction. In this paper we consider a system of partial differential operators
D, and D5 defined on K = [0, +00[x [0, +00], by

92 2c0 0
Dy = — 4 ——, >0, t>0,
Yot ¢F
9% 2 19
Dy = i——i—ﬁDl, z > 0.

a2 + x Ox
The eigenfunctions of this system are related to the Bessel and Laguerre functions and
they satisfy a product formula which permits to develop a harmonic analysis associated
to these operators.
In this paper we consider the Laguerre-type Weierstrass transform L, associated with
D; and Ds. This transform which generalizes the standard Weierstrass transform (see
[4, 5]) solves the generalized heat equation:

(1) Au[(z,t),r] := (D1 — DI)u[(z,t),r] = %u[(m,t),r]
on Kx]0, oo with the initial condition u[(z,t),0] = f(z,t) on K.

We construct a family of Hilbert spaces and we exhibit explicitly their reproducing
kernels. After that we prove the existence of the extremal function and we establish its
estimate.

In the classical case [4, 5], the authors obtained analogous results by using the theory
of reproducing kernels from the ideas of best approximations. Also the authors illustrated
their numerical experiments by using computers.

*Supported by UR04/15-02.
Key words: Weierstrass transform, reproducing kernel, best approximation.
2000 Mathematics Subject Classification: 44A15, 46E22, 35K05.

61



Throughout this paper we use the classic notation:
If (X,Q) is a measurable space and m a positive measure on X, then LP(X) =
LP(X,m), 1 < p < +oo represents the space of measurable functions f : X — C, such

that o
o = ([ 1@Pama)) <o

2. The reproducing kernels. We begin this section by recalling some results about
harmonic analysis associated with the differential operators D; and Ds. Next we exhibit
the reproducing kernels of some Hilbert spaces associated to these operators.

The unique solution of the system

I1f

Diu = =)y
1
Dou = —4\ (m—l— a—2|—> U
ou ou
u(0,0) = 1, %(070) = E(O’O) =0.

is the function @y m, (A,m) € I' = [0, co[xN, defined by
<p)\,m(x, t) = ja—l/Z()‘t)'Cgm(sz)v ((E, t) € Ka

where j, is the spherical Bessel function and £, m € N, is the Laguerre function defined
on [0, 0o by

L2 () = e™"/? Lﬁ:) () .
L (0)

Lg,? ) being the Laguerre polynomial of degree m and order a.

The harmonic analysis associated with these operators (Translation operators 7, ),
(z,t) € K, Convolution product *, Bessel-Laguerre Fourier transform F,...) has been
developed by E. Jebbari and M. Sifi in [1] and [2].

Notations. We denote by:

e m, : the measure defined on K by

1

200+1 42
CESINCESD

dme,(z,t) =

e 7, : the measure on I', given by

)\3a+1

L(0)dA @ 6,

dra(X,m) = 220 10(a +1/2) ™

O is the Dirac measure at m and dX is the Lebesgue measure.
o W(K)={f € Ly(K) /F(f) € Lo(D)}.
o HY(K), v € R, the space

HE(K) = { f € L2(K) / [1+ \2(1+ m?)]"/2F(f) € LAT)}.
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The space HY(K), provided with the inner product
(2) {(f:9)my = /F[l + N1+ m)) FLF) N m)Fr(g) (A, m)drya (X, m)
and the norm || f||%,, = (f, f) v, is a Hilbert space.

3
Remark. In the rest of this paper, we suppose that v > 504 + 1.

Proposition 1. The Hilbert space HY(K) admits the reproducing kernel:

Kalte.0).(0)) = [ Breliimnn e, o),

that is:
i) For every (y,s) € K, the function (x,t) — Ku[(z,t), (y,s)] € HL(K).
1) For every f € HY(K) and (y,s) € K, we have

<f7 ICO&[" (yvs)DH; = f(yvs)

Proof. i) Let (y,s) € K. Since the function

o-xm(y,s)
[+ X2(1+m2)]”

(A,m) —

belongs to L2(T'), from [1, Theorem 2.5] it follows that there exists a function in L2 (K),
which we denote by K[, (y, )], such that

) F(Kal (4 5]) Om) = 7 ;;g‘j”;l)]y-

Let Ty := [0, N] x {0,1,..., N}. Then we have

Kalo (o] = Jim | Sl il i, (m).

in the L2 (K) sense.
So that there exists a subsequence (Np),en, such that

o oxm (@, )p—rm(y, s)
Kal(z, 1), (y,s)] = phjgo - 1+ 2(1 5 m2)]r dya(A,m), ae (z,t) e K.
bet (2,1) (y,5)
PAm L, )P X m\Y,S
= : : 1 T.
ng(/\am) (1 +)\2(1 —|—m2))V I'ny ()‘7m)7 ()‘7m) €
Since

. ("25N m(xat)(P—A m(y75)
1 A = ; ’ 1r(A
Jm g, (A m) 1+ A2(1+m2)]” r(d,m),
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and

(4) sup @A,m(xﬂf) =1, (>‘a m) €K,
(z,t)eK
1
|ng (Aa m)l S

1+ 221 +m2))
Then by the dominated convergence theorem K, [(z,t), (y, s)] is given by

Kalle.0).(0)) = [ P, o,

it) Let f € W(K)N HY(K) and (y, s) € K. From (3) and (4) and [1, Theorem 2.5|, we
have

(fi Kol (ys s))my = / FHNm)pam(y, s)dya(X,m) = f(y,s).
r
The assertion i) follows from the density of W(K) in L2/(K). O

Definition 1. Let r > 0. We define
Er(z,t) := / exp(—=rA%[1 +4(2m + o + 1)2])g0)\7m(x, t)dya (A, m).
r

The generalized heat kernel E,. is given by

E,-[(.’E, t)v (ya 3)} = T(I,t)gT(y’ S); (l‘, t)v (y’ 3) e K.

Proposition 2. Let (z,t), (y,s) € K and r > 0. Then, we have:
1) The function &, solves the generalized heat equation:

where A is the operator given by (1).
if) F(Bol(@,6), 1) (o m) = exp(=rA2[1 + 4(2m + &+ 1)2]) o (@, 1):

i4i) /FET[(ac?t), (y, 8)]dmeg(z,t) = 1.

iv) For fized (y,s) € K, the function u[(x,t),r] :== E.[(x,1), (y, s)] solves the generali-
zed heat equation:

Aul(z,t),r] = —u[(z,t),7].

Proof. The assertion ) follows from Definition 1 and (3) by applying derivation under
the integral sign.
The parts i), 4i7) and iv) can be easily proved. 0O
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Definition 2. The Bessel-Laguerre type Weierstrass transform is the integral operator
given for f € L2(K) by

Lof(a,t) =& % f(a,t) = /K (1), (5, )L (s —5)dma(y, 5).

Proposition 3. i) The integral transform L., r > 0, solves the generalized heat
equation:

Apul(e,1),7] = Sul(a, ).,
on Kx]0, co[ with the initial condition u[(z,t),0] = f(z,t) on K.

11) The integral transform L,, r > 0, is a bounded linear operator from HY(K) into
L?(K), and we have

ILr fll2,ma < calr)Ifllay,
where
ca(r) ::/exp(—r)\z[l+4(2m+oz—|—1)2])d7a(/\,m).
T

Proof. i) This assertion follows from Definition 2 and Proposition 2, iv).
1) Let f € HY(K). Applying Holder’s inequality, we get

L f 2,ma S HET[(xvt)a']||oo,ma||f||2,ma'

From [1, Theorem 2.5] and (4), we obtain

1B [(2,1), ]llocma < /Fexp(*MQ[l +4@2m + a +1)*))dya (A, m) = ca(r).

On the other hand, from [1, Theorem 2.5] we see that || f||2,m, < ||f||z». This proves
ii). O

Definition 3. Let 1 > 0. We define the Hilbert space H,(K) = H, ,

(K) with the
norm square:

11132, == wll £z + 1Le £113 -

As in Proposition 1, we obtain:

Proposition 4. The Hilbert space H,,(K) admits the following reproducing kernel:

_ ¢A,m(w7t)90f)\,m(yaS)d’}’a()wm)
Kul(@, 0, (9, )] = /F UL+ A2(1+ m2)] + exp(—2rA2[L + 42m + a + 1)2])

3. Extremal function for Bessel-Laguerre type Weierstrass transform. We
can now state the main result of this paper.
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Theorem 1. For any g € L2(K) and for any p > 0, the infimum

2
2, My

is attained by a unique function f; .= f, . and we have

. 2 _
3) it Ll +llo — Lo

(6) < (o,t) = /K 004, 9)Qul(@ £), (v, 8)]dma(y. s),

(where Qu[(.’ﬂ, t)7 (97 8)] = QM’V[(LLV t)v (y7 5)] )

_ / exp(—rA*[1 +4(2m + a + 1)*))oxm (@, £)o—x.m (Y. 5)
S [T A2(1 +m2))r + exp(—2rA2[1 + 4(2m + o + 1)2])

dva (A, m).

Proof. By Proposition 4 and [4, Theorem 2.1], the infimum given by (5) is attained
by a unique function f; /, and the extremal function f; / is represented by

f;,g(y’s) = <gaLT(KH['7(va)])>2,ma’ (y,S) €K,

where K, is the kernel given by Proposition 4.
Since for (z,t) € K,

Ly f(z,t) = /Fexp(*f’x"[l +42m + a + 1)’ FLF) A m)oam (@, )dya(A,m),

we obtain

Lo (Kl w,9)]) (2,0

_ / exp(—rA%[1 +42m + a + 1)) orm(@, ) p_rxm(y, s)
r [l + X214+ m?)]” + exp(—2rA2[1 +4(2m + o+ 1)?])

dya (A, m)

= Qu[(‘rat)v(yas)]'
This gives (6). O
Corollary 1. The extremal function f; , in (6) can be estimated as follows:

« Ma (242
il < o [ € lato. ) Pmav.),
«

where

e Vi) _ dya (A, m) -1
M, /Ke dmg(y,s) and N, (/F [1+)\2(1+m2)]V) .

Proof. Applying Holder’s inequality to relation (6), we obtain

fi (@, t)]* < My, /Ke“““z)lg(y’s>|2|c2u[<x,t>, (y, 9)][dma(y, s).
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From Fubini-Tonnelli’s theorem we get

(7) 172 o2 < Mo / =&+ gy, ) PIQuL (4, )

%,madma (yv 5)
On the other hand, from [1, Theorem 2.5], we have
||Qu['a (y7 S)] ||§,17’L(y = /F |7(Qp«[a (y7 S)]) (/\7 m)lzd’Yoz()‘? m)

But for (A\,m) € T' we have

exp(rA?[1 +4(2m + a + 1)?]))o_xm(y, )

Fo(Qul (y9)1) (Am) =

Then the inequality (z + y)? > 4wy yields

2 1 1
HQ;LL7 (y,S)letma < @/F [1 T )\2(1 +m2)]ud’ya()\,m).

From this inequality and (7) we deduce the result. O
Corollary 2. Let § > 0 and g,gs € L2(K) be such that
g — gsll2,m. < 0.

Then,

Hf;g - ;,g(sHHZ < o=

21
Proof. From (6) and Fubini’s theorem, we have for (A\,m) € T,

exp(rA?[1 +4(2m + a + 1])F(g) (A, m) '
14 p[l+ 221 +m2)] exp(2rA2[1 +4(2m + o + 1)?))

@)  Frlfig)hm) =

Hence,

exp(rA2[1 +4(2m + a + 1)) Fr(g — gs)(A\,m)

Ffing = Figs)(Am) =
Using the inequality (z + y)? > 4y, we obtain
(14 X0+ 2 [Py = Frp) O] < L1 Fula = ) AP
Thus we obtain

1 1
* 2 2 2
||f;t,g - :,g(;”H’(; < @HJ_—L(Q _95)”2,’ya < @”g _g5||2,ma7

1+ p[l+ X2(1+ m2)]” exp(2rA2[1 + 4(2m + a + 1)2])

1+ p[l+ X2(1 + m2)]” exp(2rA2[1 + 4(2m + o + 1)2])
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which gives the desired result. [

Corollary 3. Let f € HY(K) and g = L, f. Then

Hf;:,g_fH?-I(Z —0 as :U—>O

Proof. From (8) we have
F(HN,m) = exp(rA?[1 +4(2m + a + 1)?)) F(g) (A, m)

and

B exp(rA?[1 +4(2m + a + 1)?))F(g) (A, m) _
L p[l A A2(1+ m2))Y exp(2rA2[1 + 4(2m 4+ o + 1)2])

F(fg) 2em)
Thus,

Cp[1 N1+ m?)]Y exp(2rA?[1 + 4(2m + a + 1)%]) F(g) (N, m) _
14+ p[l+ A2(1 +m?))” exp(2r\2[1 + 4(2m + a + 1)?])

Ffug—HAm) =
Then we obtain

10— Fl2 = / By 0 1) () (0 ) 20 (A),

with
B (M) = P21+ A2(1+ m?2)]? exp(4r [l + 4(2m + o + 1)?]) .
PR T (U4 p[l 4+ A2(1 4+ m2)]¥)2 exp(4rA2[1 + 4(2m + o + 1)2])
Since
lim A, (A, m)=0
n—0
and

e (A m)| < [14+ X2 (1+m?)],

we obtain the result from the dominated convergence theorem. [
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HAW-TOBPU AIIPOKCUMAIIUA 3A TPAHC®OPMAIIUSATA HA
BAUWEPITIPAC OT TUITA HA BECEJI-JIATEP BbPXY KBAJIPAHT

Moxamen Cudnu

B Tasu pabora npesarame npubiimKkeHu peasiHu hopMysIH 33 0OpbIlaHe Ha TPAHC-
dopmanuara va Bailepmpac, cBbp3aHa ¢bC crcTeMa JacTHU JudEpeHInaIHu yPaB-
Henusi B obacrra K = [0, +00[x[0,4+o00[. Karo anapar ce u3nossyBaT Meroia Ha
Haii-[00pUTe AIPOKCUMAIMY U TEOPUSTA HA PENPO/yKTUBHUTE sIPA.

KuarouoBu mymm: tpanchopmanus uHa Baiteprpac, penpoayKTHBHU sIapa, Habi-
J00pU Al POKCUMAIIVH.
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