МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2006 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2006 Proceedings of the Thirty Fifth Spring Conference of the Union of Bulgarian Mathematicians
 Borovets, April 5-8, 2006

ON THE EQUIAFFINE CONNECTIONS*

Ivan A. Badev, Bistra B. Tsareva, Georgi Z. Zlatanov

Abstract

In this paper, an average equiaffine connection is defined as the average of n symmetric connections and second equiaffine connection is defined, with Ricci tensor, for any equiaffine connection. Using the Ricci tensor, a second equiaffine connection is specified for any equiaffine connection. The projective transformation of these equiaffine connections is studied. Next, it is determined the category of the spaces $E q A n$ and ${ }^{1} E q A n$, the connections of which are in projective equivalence, in the case when they are spaces of a special composition.

1. Preliminaries. A space with an affine connection without torsion is equiaffine, provided that the parallel transformation of n vectors $\underset{\alpha}{\underset{\sim}{i}}(\alpha=1,2, \ldots, n)$ preserves the volume, where the volume is [1,p.150]:

$$
\begin{equation*}
V=e_{i_{1} i_{2} \ldots i_{n}} v_{1}^{v_{1}}{\underset{2}{i_{2}}}_{v_{2}}^{\ldots} v_{n}^{i_{n}} \tag{1}
\end{equation*}
$$

Here, $e_{i_{1} i_{2} \ldots i_{n}}$ is called fundamental n-vector of the space.
Suppose that $E q A n$ is an equiaffine space with a fundamental n-vector, coefficients of a connection $\Gamma_{i s}^{k}$, a tensor of curvature $R_{i s k}^{m}$, and a tensor of Ricci $R_{i s}$. We denote the fundamental form of the fundamental n-vector by $e=e_{12 \ldots n}$. The equiaffine space $E q A n$ is characterized by one of the following equalities [1, p. 166]

$$
\begin{gather*}
\nabla_{k} e_{i_{1} i_{2} \ldots i_{n}}=0 \tag{2}\\
\Gamma_{k s}^{s}=\partial_{k} \ln e \tag{3}\\
R_{i s}=R_{s i} \tag{4}\\
R_{i s k}^{k}=0 \tag{5}
\end{gather*}
$$

Let there be given n symmetric connections ${ }^{\alpha} \Gamma_{i s}^{k}(\alpha=1,2, \ldots, n)$ and an arbitrary tensor $A_{i_{1} i_{2} \ldots i_{n}}$ in the differentiable manifold X_{n}. Then

$$
\begin{gather*}
{ }^{\alpha} \nabla_{k} A_{i_{1} i_{2} \ldots i_{n}}=\partial_{k} A_{i_{1} i_{2} \ldots i_{n}}-{ }^{\alpha} \Gamma_{k i_{1}}^{m} A_{m i_{2} \ldots i_{n}}-{ }^{\alpha} \Gamma_{k i_{2}}^{m} A_{i_{1} m i_{3} \ldots i_{n}}-\cdots \tag{6}\\
-\Gamma_{k i_{n}}^{m} A_{i_{1} i_{2} \ldots i_{n-1} m} .
\end{gather*}
$$

The mixed covariant derivative is [1, p. 136$]$:
(7) $\nabla_{k} A_{i_{1} i_{2} \ldots i_{n}}=\partial_{k} A_{i_{1} i_{2} \ldots i_{n}}-{ }^{1} \Gamma_{k i_{1}}^{m} A_{m i_{2} \ldots i_{n}}-{ }^{2} \Gamma_{k i_{2}}^{m} A_{i_{1} m i_{3} \ldots i_{n}}-\cdots-{ }^{n} \Gamma_{k i_{n}}^{m} A_{i_{1} i_{2} \ldots i_{n-1} m}$.

[^0]Equiaffine connections are treated in [4] and [5]. In [5], an apparatus is developed to study the geometry of compositions in equiaffine spaces.

Let $E q A n$ be an equiaffine space of compositions $X_{k} \times X_{n-k}$, defined with an affinor of the composition a_{α}^{β} [2]. The special compositions in $E q A n$ are studied by means of the tensor $\underset{\alpha \beta}{\bar{R}}=a_{\alpha}^{\sigma} R_{\sigma}^{\beta}$ [5]. Now, we denote with $P\left(X_{k}\right)$ and $P\left(X_{n-k}\right)$ the position of the fundamental manifolds X_{k} and X_{n-k} of the composition $X_{k} \times X_{n-k}$. Then we define the composition $X_{k} \times X_{n-k}$ in $E q A n$ as an R-composition, if for arbitrary vectors $v^{n} \in P\left(X_{k}\right)$ and $\stackrel{m}{v^{\alpha}} \in P\left(X_{n-k}\right)$ the equation $R_{\alpha \beta} v^{n} v^{\alpha} v^{\beta}=0$ holds [5]. It is proved that R -compositions in $E q A n$ satisfy the condition:

$$
\begin{equation*}
\bar{R}_{\alpha \beta}=\bar{R}_{\beta \alpha} \tag{8}
\end{equation*}
$$

2. Average equiaffine connection. Suppose that there are n symmetric connections ${ }^{\alpha} \Gamma_{i s}^{k}(\alpha=1,2, \ldots, n)$ and an n-vector $e_{i_{1} i_{2} \ldots i_{n}}$ in the differentiable manifold $X n$.

Theorem 1. If the volume (1) is preserved by the parallel transfer of arbitrary vectors $\stackrel{\underset{1}{v}}{\underset{2}{v}} \underset{2}{i}, \ldots, \stackrel{i}{v}$ by the connections ${ }^{1} \Gamma_{i s}^{k},{ }^{2} \Gamma_{i s}^{k}, \ldots,{ }^{n} \Gamma_{i s}^{k}$ and ${ }^{2} \Gamma_{i s}^{k},{ }^{3} \Gamma_{i s}^{k}, \ldots,{ }^{n} \Gamma_{i s}^{k},{ }^{1} \Gamma_{i s}^{k}$ and ${ }^{n} \Gamma_{i s}^{k}$, ${ }^{1} \Gamma_{i s}^{k}, \ldots,{ }^{n-1} \Gamma_{i s}^{k}$, then the average connection $\Gamma_{i s}^{k}=\frac{1}{n}\left({ }^{1} \Gamma_{i s}^{k}+{ }^{2} \Gamma_{i s}^{k}+\cdots+{ }^{n} \Gamma_{i s}^{k}\right)$ of the connections ${ }^{1} \Gamma_{i s}^{k},{ }^{2} \Gamma_{i s}^{k}, \ldots,{ }^{n} \Gamma_{i s}^{k}$ is equiaffine with a fundamental n-vector $e_{i_{1} i_{2} \ldots i_{n}}$.

Proof. Under the hypothesis of Theorem 1, from $d V=0$, when the vectors $\underset{1}{v^{i}}, \underset{2}{v^{i}}$, $\ldots, v_{n}^{v^{i}}$ are transfered parallelly in the respective connections, it follows that $\delta e_{i_{1} i_{2} \ldots i_{n}}=$ 0 . Since the last equality should be fulfilled independently of the choice of $d u^{k}$, it is equivalent to

$$
\begin{align*}
& \nabla_{k} e_{i_{1} i_{2} \ldots i_{n}}=\partial_{k} e_{i_{1} i_{2} \ldots i_{n}}-{ }^{1} \Gamma_{k i_{1}}^{m} e_{m i_{2} \ldots i_{n}}-{ }^{2} \Gamma_{k i_{2}}^{m} e_{i_{1} m i_{3} \ldots i_{n}}-\cdots-{ }^{n} \Gamma_{k i_{n}}^{m} e_{i_{1} i_{2} \ldots i_{n-1} m} \\
& \nabla_{k} e_{i_{1} i_{2} \ldots i_{n}}=\partial_{k} e_{i_{1} i_{2} \ldots i_{n}}-{ }^{2} \Gamma_{k i_{1}}^{m} e_{m i_{2} \ldots i_{n}}-{ }^{3} \Gamma_{k i_{2}}^{m} e_{i_{1} m i_{3} \ldots i_{n}}-\cdots-{ }^{1} \Gamma_{k i_{n}}^{m} e_{i_{1} i_{2} \ldots i_{n-1} m} \tag{9}\\
& \nabla_{k} e_{i_{1} i_{2} \ldots i_{n}}=\partial_{k} e_{i_{1} i_{2} \ldots i_{n}}-{ }^{n} \Gamma_{k i_{1}}^{m} e_{m i_{2} \ldots i_{n}}-{ }^{1} \Gamma_{k i_{2}}^{m} e_{i_{1} m i_{3} \ldots i_{n}}-\cdots-{ }^{n-1} \Gamma_{k i_{n}}^{m} e_{i_{1} i_{2} \ldots i_{n-1} m} .
\end{align*}
$$

If at least two of the indices i_{p} and i_{s} are equal in some equation, then the system is satisfied identically. Therefore, it remains to consider the equations in (9), which correspond to different indices. These because of the asymmetry of the n-vector $e_{i_{1} i_{2} \ldots i_{n}}$, are equivalent to:

$$
\begin{align*}
& \partial_{k} e_{12 \ldots n}-{ }^{1} \Gamma_{k 1}^{m} e_{m 2 \ldots n}-{ }^{2} \Gamma_{k 2}^{m} e_{1 m 3 \ldots n}-\cdots-{ }^{n} \Gamma_{k n}^{m} e_{12 \ldots n-1 m}=0 \\
& \partial_{k} e_{12 \ldots n}-{ }^{2} \Gamma_{k 1}^{m} e_{m 2 \ldots n}-{ }^{3} \Gamma_{k 2}^{m} e_{1 m 3 \ldots n}-\cdots-{ }^{1} \Gamma_{k n}^{m} e_{12 \ldots n-1 m}=0 \tag{10}\\
& \partial_{k} e_{12 \ldots n}-{ }^{n} \Gamma_{k 1}^{m} e_{m 2 \ldots n}-{ }^{1} \Gamma_{k 2}^{m} e_{1 m 3 \ldots n}-\cdots-{ }^{n-1} \Gamma_{k n}^{m} e_{12 \ldots n-1 m}=0 .
\end{align*}
$$

By substituting the fundamental form $e=e_{12 \ldots n}$ and discarding the zero terms, we obtain:

$$
\begin{align*}
& { }^{1} \Gamma_{k 1}^{1}+{ }^{2} \Gamma_{k 2}^{2}+\cdots+{ }^{n-1} \Gamma_{k n-1}^{n-1}+{ }^{n} \Gamma_{k n}^{n}=\partial_{k} \ln e \\
& { }^{2} \Gamma_{k 1}^{1}+{ }^{3} \Gamma_{k 2}^{2}+\cdots+{ }^{n} \Gamma_{k n-1}^{n-1}+{ }^{1} \Gamma_{k n}^{n}=\partial_{k} \ln e \tag{11}\\
& \cdots \cdots{ }^{n} \Gamma_{k n-1}^{n-1}+{ }^{n-1} \Gamma_{k n}^{n}=\partial_{k} \ln e .
\end{align*}
$$

The conditions (11) are necessary and sufficient to preserve the volume (1) by the
parallel transfer of arbitrary vectors $\underset{1}{v^{i}},{\underset{2}{v}}_{v^{i}}, \ldots, v_{n}^{i}$, in the connections ${ }^{1} \Gamma_{i s}^{k}, \ldots,{ }^{n} \Gamma_{i s}^{k}$, ${ }^{2} \Gamma_{i s}^{k}, \ldots,{ }^{n} \Gamma_{i s}^{k},{ }^{1} \Gamma_{i s}^{k}$, and ${ }^{n} \Gamma_{i s}^{k},{ }^{1} \Gamma_{i s}^{k}, \ldots,{ }^{n-1} \Gamma_{i s}^{k}$, respectively. Finally by adding (11) term-wise, we obtain: ${ }^{1} \Gamma_{k s}^{s}+{ }^{2} \Gamma_{k s}^{s}+\cdots+{ }^{n-1} \Gamma_{k s}^{s}+{ }^{n} \Gamma_{k s}^{s}=n \partial_{k} \ln e$, i.e.

$$
\begin{equation*}
\frac{1}{n}\left({ }^{1} \Gamma_{i s}^{s}+{ }^{2} \Gamma_{i s}^{s}+\cdots+{ }^{n} \Gamma_{i s}^{k}\right)=\partial_{k} \ln e \tag{12}
\end{equation*}
$$

From (12) it follows that the average connection $\frac{1}{n}\left({ }^{1} \Gamma_{i s}^{s}+{ }^{2} \Gamma_{i s}^{s}+\cdots+{ }^{n} \Gamma_{i s}^{k}\right)$ of the connections ${ }^{1} \Gamma_{i s}^{k},{ }^{2} \Gamma_{i s}^{k}, \ldots,{ }^{n} \Gamma_{i s}^{k}$ is equiaffine with fundamental n-vector $e_{i_{1} i_{2} \ldots i_{n}}$.
3. Transformation of equiaffine connections. Let there be given an equiaffine space $E q A n$ with connection $\Gamma_{i s}^{k}$, a fundamental n-vector $e_{i_{1} i_{2} \ldots i_{n}}$, a tensor of curvature $R_{i s k}^{i}$, and a Ricci tensor $R_{i s}$. Consider the following connection

$$
\begin{equation*}
{ }^{1} \Gamma_{i s}^{k}=\Gamma_{i s}^{k}+R_{i s} R^{k j} \partial_{j} \ln e . \tag{13}
\end{equation*}
$$

where $R^{i s}$ is the reciprocal tensor to $R_{i s}$ and $e=e_{12 \ldots n}$. The symmetry of the Ricci tensor implies that the connection ${ }^{1} \Gamma_{i s}^{k}$ is symmetric.

Theorem 2. The connection ${ }^{1} \Gamma_{i s}^{k}$ is equiaffine with a fundamental form e^{2}.
Proof. From (13) it follows that ${ }^{1} \Gamma_{i s}^{k}=\Gamma_{i s}^{k}+R_{i s} R^{k j} \partial_{j} \ln e$, and taking into account (3), we obtain

$$
\begin{equation*}
{ }^{1} \Gamma_{i k}^{k}=\partial_{i} \ln e^{2} . \tag{14}
\end{equation*}
$$

So that the connection ${ }^{1} \Gamma_{i s}^{k}$ is equiaffine with a fundamental form e^{2}.
If we denote by ${ }^{1} R_{i s k}^{j}$. and ${ }^{1} R_{s k}$ the tensor of curvature and the tensor of Ricci, respectively, for the connection ${ }^{1} \Gamma_{i s}^{k}$, then some straightforward arithmetic gives

$$
\begin{align*}
& { }^{1} R_{i s k .}^{j}=R_{i s k .}^{j}+2 \nabla_{[i}\left(R_{s] k} R^{j p} \partial_{p} \ln e\right)+2 R^{j p} R_{k[s} \partial_{i]} \ln e \partial_{p} \ln e, \tag{15}\\
& { }^{1} R_{s k}=R_{s k}+\nabla_{i}\left(R_{s k} R^{i p} \partial_{p} \ln e\right)+R^{i p} R_{s k} \partial_{i} \ln e \partial_{p} \ln e .
\end{align*}
$$

From the first equation of (15), after contracting on the indices k and j, we obtain that $R_{i s k}^{k}={ }^{1} R_{i s k}^{k}$., which was to be expected since for the equiaffine connections $\Gamma_{i s}^{k}$ and ${ }^{1} \Gamma_{i s}^{k}$ it holds that $R_{i s k}^{k}=0$ and ${ }^{1} R_{i s k .}^{k}=0$.

Theorem 3. If there exists a projective transformation between the equiaffine connections $\Gamma_{i s}^{k}$ and ${ }^{1} \Gamma_{i s}^{k}$, then

$$
\begin{equation*}
\left.{ }^{1} R_{i s k .}^{j}=R_{i s k .}^{j}+\frac{2}{n+1} \nabla \delta_{[s}^{j} \nabla_{i]} \partial_{k} \ln e+\frac{2}{n+1} \nabla \delta_{[s}^{j} \partial_{i]} \ln e\right) \partial_{k} \ln e . \tag{16}
\end{equation*}
$$

Proof. Let there be a projective correspondence between the equiaffine connections $\Gamma_{i s}^{k}$ and ${ }^{1} \Gamma_{i s}^{k}$. According to [1, p. 166] there is projective transformation between the connections $\Gamma_{i k}^{k}$ and ${ }^{1} \Gamma_{i k}^{k}$ if and only if the tensor of affine deformation $T_{i s}^{k}={ }^{1} \Gamma_{i s}^{k}-\Gamma_{i s}^{k}$ satisfies

$$
\begin{equation*}
T_{i s}^{k}=\left(\delta_{i}^{k} \delta_{s}^{j}+\delta_{s}^{k} \delta_{i}^{j}\right) P_{j} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{j}=\frac{1}{n+1} T_{j m}^{m} \tag{18}
\end{equation*}
$$

From (13), (17) and (18) follows

$$
\begin{equation*}
T_{i s}^{k}=R_{i s} R^{k j} \partial_{j} \ln e=\frac{n-1}{n+1}\left(\delta_{i}^{k} \delta_{s}^{j}+\delta_{s}^{k} \delta_{i}^{j}\right) \partial_{j} \ln e \tag{19}
\end{equation*}
$$

Substituting $R_{i s} R^{k j} \partial_{i} \ln e$ from (19) into the first equality of (15) and taking into account that $\nabla m\left(\delta_{i}^{k} \delta_{s}^{j}+\delta_{s}^{k} \delta_{i s}^{j}\right)=0$, we obtain (16). From (16) we find that

$$
\begin{equation*}
{ }^{1} R_{s k}=R_{s k}-\frac{n-1}{n+1} \partial_{s} \partial_{k} \ln e-\frac{n-1}{n+1} \ln e \partial_{k} \ln e \tag{20}
\end{equation*}
$$

We denote by ${ }^{1} E q A n$ the equiaffine connection defined by the connection ${ }^{1} \Gamma_{i s}^{k}$.
The fundamental form of ${ }^{1} E q A n$ is e^{2}. The spaces $E q A n$ and ${ }^{1} E q A n$ are differential manifolds in $X n$ equipped with the equiaffine connections $\Gamma_{i s}^{k}$ and ${ }^{1} \Gamma_{i s}^{k}$, respectively.

Suppose that in $X n$ there is an affinor a_{α}^{β} which satisfies the condition

$$
\begin{equation*}
a_{\alpha}^{\sigma} a_{\sigma}^{\beta}=\delta_{\alpha}^{\beta} \tag{21}
\end{equation*}
$$

According to [3], in the equiaffine spaces $E q A n$ and ${ }^{1} E q A n$, the affinor a_{α}^{β} defines compositions $X_{k} \times X_{n-k}$ of two fundamental manifolds X_{k} and X_{n-k}.

The R-compositions in $E q A n$ and ${ }^{1} E q A n$ are characterized by:

$$
\begin{equation*}
\bar{R}_{[\alpha \beta]}=0,{ }^{1} R_{[\alpha \beta]}=0 \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{R}_{[\alpha \beta]}=a_{\alpha}^{\sigma} R_{\sigma \beta},{ }^{1} \bar{R}_{[\alpha \beta]}=a_{\alpha}^{\sigma 1} R_{\sigma \beta} . \tag{23}
\end{equation*}
$$

In [3] is introduced an adapted coordinate system with the composition $X_{k} \times X_{n-k}\left(u^{i}, u^{\bar{i}}\right)$, $(i=1,2, \ldots, k ; \bar{i}=k+1, \ldots, n)$. The matrix of the affinor a_{α}^{β} of the composition in the adapted coordinate system has the form [3]:

$$
a_{\alpha}^{\beta}=\left(\begin{array}{cc}
\delta_{i}^{j} & 0 \tag{24}\\
0 & \delta_{\bar{j}}^{\bar{i}}
\end{array}\right)
$$

After multiplying both sides of (20) with the affinor a_{α}^{β}, and taking into account (23), we obtain

$$
\begin{equation*}
{ }^{1} \bar{R}_{\alpha \beta}=\bar{R}_{\alpha \beta}-\frac{n-1}{n+1} a_{\alpha}^{\sigma}\left(\partial_{\sigma} \partial_{\beta} \ln e+\partial_{\sigma} \ln e \partial_{\beta} \ln e\right) \tag{25}
\end{equation*}
$$

Theorem 4. If the composition $X_{k} \times X_{n-k}$ is an R-composition in the spaces $E q A n$ and ${ }^{1} E q A n$, which have a projective transformation, then in the adapted coordinate system the fundamental form of the n-vector $e_{i_{1} i_{2} \ldots i_{n}}$ is defined as follows:

$$
\begin{equation*}
e=f_{1}\left({ }_{1}^{1}\right)+\underset{2}{f}\left({ }_{2}^{2}\right)+\cdots+f_{n}(\stackrel{n}{u}), \tag{26}
\end{equation*}
$$

where $\underset{1}{f}\left({ }^{1}\right)$ are arbitrary functions.
Proof. Since it is given that the spaces $E q A n$ and ${ }^{1} E q A n$ are in projective transformation, (25) holds. By (22) and (25) the composition $X_{k} \times X_{n-k}$ is an R-composition if and only if the tensor

$$
\begin{equation*}
b_{\alpha \beta}=a_{\alpha}^{\sigma}\left(\partial_{\sigma} \partial_{\beta} \ln e+\partial_{\sigma} \ln e \partial_{\beta} \ln e\right) \tag{27}
\end{equation*}
$$

is symmetric. From (24) and (27) follows that in the adapted coordinate system we have:

$$
b_{\alpha \beta}^{=}\left(\begin{array}{cc}
\partial_{i} \partial_{k} \ln e+\partial_{i} \ln e \partial_{k} \ln e & \partial_{i} \partial_{\bar{k}} \ln e+\partial_{i} \ln e \partial_{\bar{k}} \ln e \tag{28}\\
-\partial_{\bar{i}} \partial_{k} \ln e-\partial_{\bar{i}} \ln e \partial_{k} \ln e & \partial_{\bar{i}} \partial_{\bar{k}} \ln e+\partial_{\bar{i}} \ln e \partial_{\bar{k}} \ln e
\end{array}\right) .
$$

Hence, $b_{[\alpha \beta]}=0$ if and only if

$$
\begin{equation*}
\partial_{i} \partial_{\bar{k}} \ln e+\partial_{i} \ln e \partial_{\bar{k}} \ln e=0 \tag{29}
\end{equation*}
$$

Solving the system of differential equation (29), we arrive at (26). Now, by (3) and (14), the equality (26) requires a restriction of the connections $\Gamma_{i s}^{k}$ and ${ }^{1} \Gamma_{i s}^{k}$, i.e. it specializes the spaces $E q A n$ and ${ }^{1} E q A n$.

REFERENCES

[1] A. P. Norden. Affinely Connected Spaces, GRFML, Moscow, 1976 (in Russian).
[2] A. P. Norden. Spaces of Cartesian compositions, Izv. Vyssh. Uchebn. Zaved. Mathem. № 4, 1963, 117-118 (in Russian).
[3] A. P. Norden, G. Timofeev. The invariants criterion for specials compositions in manydimensional spaces, Izv. Vyssh. Uchebn. Zaved. Mathem., №8, 1972, $81-89$ (in Russian).
[4] G. Zlatanov, B. Tsareva. Geometry of the Nets in Equiaffine Space, Journal of Geometry, 55 (1996), 192-201.
[5] G. Zlatanov G. Equiaffine Spaces of compositions, Tensor N.S., 62 (2000), 189-190.

Ivan Badev

Technical University branch Plovdiv
25, Tzanko Djustabanov Str.
4000 Plovdiv, Bulgaria
e-mail: ivanbadev@abv.bg

Bistra Tsareva
University of Plovdiv
236, Bulgaria Blvd
4000 Plovdiv, Bulgaria
e-mail: btsareva@pu.acad.bg

Georgi Zlatanov
University of Plovdiv
236, Bulgaria Blvd
4000 Plovdiv, Bulgaria
e-mail: zlatanov@pu.acad.bg

ВЪРХУ ЕКВИАФИННИТЕ СВЪРЗАНОСТИ

Иван Бадев, Бистра Царева, Георги Златанов

В работата е определена еквиафинна свързаност, която е средна свързаност на n дадени симетрични свързаности.
За всяка еквиафинна свързаност с помощта на тензора на Ричи е определена втора еквиафинна свързаност. Изучено е проективното преобразование на тези две свързаности.
Еквиафинните пространства, на които свързаностите се намират в проективно съответствие, са означени с $E q A n$ и ${ }^{1} E q A n$. Определен е видът на пространствата $E q A n$ и ${ }^{1} E q A n$, когато те са пространства от специална композиция.

[^0]: *2000 Mathematics Subject Classification: 53A15, 53A60

