Borovets, April 5-8, 2006

MEASURABILITY OF SETS OF PAIRS OF PARALLEL NON-ISOTROPIC STRAIGHT LINES OF THE FIRST TYPE IN THE SIMPLY ISOTROPIC SPACE*

Adrijan V. Borisov, Margarita G. Spirova
We study the measurability of sets of pairs of parallel non-isotropic straight lines in different isotropic planes and the corresponding invariant densities with respect to the group of the general similitudes and some its subgroups.

1. Introduction. The simply isotropic space $I_{3}{ }^{(1)}$ is defined (see [3]) as a projective space $\mathbb{P}_{3}(\mathbb{R})$ with an absolute consisting a plane ω (the absolute plane) and two complex conjugate straight lines (the absolute lines) f_{1}, f_{2} into ω. The absolute lines f_{1} and f_{2} intersect in a real point F (the absolute point). In homogeneous coordinates ($x_{0}, x_{1}, x_{2}, x_{3}$) we can choose the plane $x_{0}=0$ as the plane ω, the line $x_{0}=0, x_{1}+i x_{2}=0$ as the line f_{1} and the line $x_{0}=0, x_{1}-i x_{2}=0$ as the line f_{2}. Then the absolute point F has homogeneous coordinates $(0,0,0,1)$. All regular projectivities transforming the absolute figure into itself form the 8-parametric group G_{8} of the general simply isotropic similitudes. Passing on to affine coordinates (x, y, z) any similitude of G_{8} can be written in the form [3; p. 3]

$$
\begin{align*}
\bar{x} & =c_{1}+c_{7}(x \cos \varphi-y \sin \varphi) \\
\bar{y} & =c_{2}+c_{7}(x \sin \varphi+y \cos \varphi) \tag{1}\\
\bar{z} & =c_{3}+c_{4} x+c_{5} y+c_{6} z
\end{align*}
$$

where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6} \neq 0, c_{7}>0$ and φ are real parameters.
A straight line is said to be (completely) isotropic if its infinite point coincides with the absolute point F; otherwise, the straight line is said to be non-isotropic [3, p. 5].

We will consider G_{8} and the following its subgroups:
I. $B_{7} \subset G_{8} \Longleftrightarrow c_{7}=1$. This is the group of the simply isotropic similitudes of the δ-distance [3, p. 5].
II. $S_{7} \subset G_{8} \Longleftrightarrow c_{6}=1$. This is the group of the simply isotropic similitudes of the s-distance [3, p. 6].
III. $W_{7} \subset G_{8} \Longleftrightarrow c_{6}=c_{7}$. This is the group of the simply isotropic angular similitudes [3, p. 18].
IV. $G_{7} \subset G_{8} \Longleftrightarrow \varphi=0$. This is the group of the simply isotropic boundary similitudes [3, p. 8].

[^0]V. $V_{7} \subset G_{8} \Longleftrightarrow c_{6} c_{7}^{2}=1$. This is the group of the simply isotropic volume preserving similitudes [3, p. 8].
VI. $G_{6}=G_{7} \cap V_{7}$. This is the group of the simply isotropic volume preserving boundary similitudes $[3$, p. 8].
VII. $B_{6}=B_{7} \cap G_{7}$. This is the group of the modular boundary motions [3, p. 9].
VIII. $B_{5}=B_{7} \cap S_{7} \cap G_{7}$. This is the group of the unimodular boundary motions [3, p. 9].

Two points P_{1} and P_{2} are called parallel if the straight line $P_{1} P_{2}$ is isotropic.
We emphasize that most of the common material of the geometry of the simply isotropic space $I_{3}^{(1)}$ can be found in [3].

Using some basic concepts of the integral geometry in the sense of M. I. Stoka [4] and G. I. Drinfel'd [2], we study the measurability of sets of pairs of parallel nonisotropic straight lines in different isotropic planes with respect to G_{8} and indicated above subgroups.
2. Measurability with respect to $\boldsymbol{G}_{\mathbf{8}}$. Let $\left(G_{1}, G_{2}\right)$ be a pair of parallel nonisotropic straight lines

$$
\begin{align*}
& G_{1}: x=a z+p_{1}, y=b z+q_{1}, \quad a^{2}+b^{2} \neq 0 \\
& G_{2}: x=a z+p_{2}, y=b z+q_{2} \tag{2}
\end{align*}
$$

The pair $\left(G_{1}, G_{2}\right)$ is said to be of the first type if G_{1} and G_{2} lie into different isotropic planes. Then the following inequality holds:

$$
\begin{equation*}
a\left(q_{2}-q_{1}\right)-b\left(p_{2}-p_{1}\right) \neq 0 \tag{3}
\end{equation*}
$$

We can assume without loss of generality that $a \neq 0$, and in this case we can take the Plücker coordinates ([3;p.38-41]) $g_{2}^{1}, g_{3}^{1}, g_{5}^{1}, g_{6}^{1}, g_{5}^{2}, g_{6}^{2}$ as the parameters of the set of pairs $\left(G_{1}, G_{2}\right)$, where

$$
\begin{align*}
& g_{2}^{1}=\frac{b}{a}, g_{3}^{1}=\frac{1}{a}, g_{5}^{1}=-\frac{p_{1}}{a}, g_{6}^{1}=-q_{1}+\frac{b p_{1}}{a} \\
& g_{5}^{2}=-\frac{p_{2}}{a}, g_{6}^{2}=-q_{2}+\frac{b p_{2}}{a} \tag{4}
\end{align*}
$$

Under the action of (1) the pair $\left(G_{1}, G_{2}\right)\left(g_{2}^{1}, g_{3}^{1}, g_{5}^{1}, g_{6}^{1}, g_{5}^{2}, g_{6}^{2}\right)$ is transformed into the pair $\left(\bar{G}_{1}, \bar{G}_{2}\right)\left(\bar{g}_{2}^{1}, \bar{g}_{3}^{1}, \bar{g}_{5}^{1}, \bar{g}_{6}^{1}, \bar{g}_{5}^{2}, \bar{g}_{6}^{2}\right)$ as follows:

$$
\begin{aligned}
\bar{g}_{2}^{1}= & K c_{7}\left(\sin \varphi+g_{2}^{1} \cos \varphi\right) \\
\bar{g}_{3}^{1}= & K\left(c_{4}+c_{5} g_{2}^{1}+c_{6} g_{3}^{1}\right) \\
\bar{g}_{5}^{i}= & K\left\{\left(c_{3}-c_{5} g_{6}^{i}+c_{6} g_{5}^{i}\right) c_{7} \cos \varphi-\right. \\
& \left.-\left[c_{3}+c_{4} g_{6}^{i}+c_{6}\left(g_{2}^{1} g_{5}^{i}+g_{3}^{1} g_{6}^{i}\right)\right] c_{7} \sin \varphi-c_{1}\left(c_{4}+c_{5}+c_{6} g_{3}^{1}\right)\right\} \\
\bar{g}_{6}^{i}= & K\left[\left(c_{1} g_{2}^{1}-c_{2}\right) \cos \varphi+\left(c_{1}+c_{2} g_{2}^{1}\right) \sin \varphi+c_{7} g_{6}^{i}\right]
\end{aligned}
$$

where $K=\left[c_{7}\left(\cos \varphi-g_{2}^{1} \sin \varphi\right]^{-1}\right.$ and $i=1,2$. The transformations (5) form the associated group \bar{G}_{8} of $G_{8}\left[4 ;\right.$ p. 34]. The group \bar{G}_{8} is isomorphic to G_{8} and the invariant density with respect to G_{8} of the pairs of lines $\left(G_{1}, G_{2}\right)$, if it exists, coincides with the density with respect to \bar{G}_{8} of the points $\left(g_{2}^{1}, g_{3}^{1}, g_{5}^{1}, g_{6}^{1}, g_{5}^{2}, g_{6}^{2}\right)$ in the set of parameters.

The associated group \bar{G}_{8} has the infinitesimal operators

$$
\begin{align*}
& Y_{1}=g_{3}^{1} \frac{\partial}{\partial g_{5}^{1}}-g_{2}^{1} \frac{\partial}{\partial g_{6}^{1}}+g_{3}^{1} \frac{\partial}{\partial g_{5}^{2}}-g_{2}^{1} \frac{\partial}{\partial g_{6}^{2}}, \quad Y_{2}=\frac{\partial}{\partial g_{6}^{1}}+\frac{\partial}{\partial g_{6}^{2}}, \\
& Y_{3}=\frac{\partial}{\partial g_{5}^{1}}+\frac{\partial}{\partial g_{5}^{2}}, \quad Y_{4}=\frac{\partial}{\partial g_{3}^{1}}, \quad Y_{5}=g_{2}^{1} \frac{\partial}{\partial g_{3}^{1}}-g_{6}^{1} \frac{\partial}{\partial g_{5}^{1}}-g_{6}^{2} \frac{\partial}{\partial g_{5}^{2}}, \\
& Y_{6}=g_{3}^{1} \frac{\partial}{\partial g_{3}^{1}}+g_{5}^{1} \frac{\partial}{\partial g_{5}^{1}}+g_{5}^{2} \frac{\partial}{\partial g_{5}^{2}}, \quad Y_{7}=-g_{3}^{1} \frac{\partial}{\partial g_{3}^{1}}+g_{6}^{1} \frac{\partial}{\partial g_{6}^{1}}+g_{6}^{2} \frac{\partial}{\partial g_{6}^{2}}, \quad Y_{8}= \tag{6}\\
& =\left[1+\left(g_{2}^{1}\right)^{2}\right] \frac{\partial}{\partial g_{2}^{1}}+g_{2}^{1} g_{3}^{1} \frac{\partial}{\partial g_{3}^{1}}-g_{3}^{1} g_{6}^{1} \frac{\partial}{\partial g_{5}^{1}}+g_{2}^{1} g_{6}^{1} \frac{\partial}{\partial g_{6}^{1}}-g_{3}^{1} g_{6}^{2} \frac{\partial}{\partial g_{5}^{2}}+g_{2}^{1} g_{6}^{2} \frac{\partial}{\partial g_{6}^{2}},
\end{align*}
$$

and it acts transitively on the set of points $\left(g_{2}^{1}, g_{3}^{1}, g_{5}^{1}, g_{6}^{1}, g_{5}^{2}, g_{6}^{2}\right)$.
From(3), applying (4), we obtain $g_{6}^{1}-g_{6}^{2} \neq 0$, and it is easy to verify that the infinitesimal operators $Y_{2}, Y_{3}, Y_{4}, Y_{5}, Y_{7}$, and Y_{8} are arcwise unconnected, but $Y_{6}=\lambda_{3} Y_{3}+$ $\lambda_{4} Y_{4}+\lambda_{5} Y_{5}$, where

$$
\lambda_{3}=\frac{-g_{5}^{1} g_{6}^{2}+g_{6}^{1} g_{5}^{1}}{g_{6}^{1}-g_{6}^{2}}, \lambda_{4}=\frac{g_{3}^{1}\left(g_{6}^{1}-g_{6}^{2}\right)+g_{2}^{1}\left(g_{5}^{1}-g_{5}^{2}\right)}{g_{6}^{1}-g_{6}^{2}}, \lambda_{5}=\frac{-g_{5}^{1}+g_{5}^{2}}{g_{6}^{1}-g_{6}^{2}}
$$

Since $Y_{3}\left(\lambda_{3}\right)+Y_{4}\left(\lambda_{4}\right)+Y_{5}\left(\lambda_{5}\right)=3 \neq 0$, we conclude that the following statement holds:
Theorem 2.1. A set of pairs of parallel non-isotropic straight lines of the first type is not measurable with respect to the group G_{8} and it has no measurable subsets.
3. Measurability with respect to $\boldsymbol{S}_{\mathbf{7}}$. The associated group \bar{S}_{7} of the group S_{7} has the infinitesimal operators $Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}, Y_{6}$, and Y_{7} from (6) and it acts transitively on the set of points $\left(g_{2}^{1}, g_{3}^{1}, g_{5}^{1}, g_{6}^{1}, g_{5}^{2}, g_{6}^{2}\right)$. The integral invariant function $f=f\left(g_{2}^{1}, g_{3}^{1}, g_{5}^{1}, g_{6}^{1}, g_{5}^{2}, g_{6}^{2}\right)$ satisfies the so-called system of R. Deltheil ([1, p.28]; [4, p.11]) $Y_{1}(f)=0, Y_{2}(f)=0, Y_{3}(f)=0, Y_{4}(f)=0, Y_{5}(f)=0, Y_{6}(f)+3 f=0, \quad Y_{7}(f)+f=0$, and has the form

$$
f=\frac{c}{\left(g_{6}^{1}-g_{6}^{2}\right)\left[1+\left(g_{2}^{1}\right)^{2}\right]^{2}},
$$

where $c=$ const. Thus we establish the following
Theorem 3.1. The set of pairs $\left(G_{1}, G_{2}\right)\left(g_{2}^{1}, g_{3}^{1}, g_{5}^{1}, g_{6}^{1}, g_{5}^{2}, g_{6}^{2}\right)$ of parallel non-isotropic straight lines of the first type is measurable with respect to the group S_{7} and has the density

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\left|\frac{1}{\left(g_{6}^{1}-g_{6}^{2}\right)\left[1+\left(g_{2}^{1}\right)^{2}\right]^{2}}\right| d g_{2}^{1} \wedge d g_{3}^{1} \wedge d g_{5}^{1} \wedge d g_{6}^{1} \wedge d g_{5}^{2} \wedge d g_{6}^{2} \tag{7}
\end{equation*}
$$

Differentiating (4) and substituting into (7) we obtain another expression for the density:

Corollary 3.1. The density (7) for the pairs $\left(G_{1}, G_{2}\right)$ determined by the equations (2) can be written in the form

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\left|\frac{1}{\left[a\left(q_{2}-q_{1}\right)-b\left(p_{2}-p_{1}\right)\right]\left(a^{2}+b^{2}\right)^{2}}\right| d a \wedge d b \wedge d p_{1} \wedge d q_{1} \wedge d p_{2} \wedge d q_{2} \tag{8}
\end{equation*}
$$

4. Measurability with respect to $\boldsymbol{G}_{\mathbf{6}}$. The associated group \bar{G}_{6} of the group G_{6} has the infinitesimal operators $Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{7}$ from (6) and $Z=-3 g_{3}^{1} \frac{\partial}{\partial g_{3}^{1}}-2 g_{5}^{1} \frac{\partial}{\partial g_{5}^{1}}+$ 148
$g_{6}^{1} \frac{\partial}{\partial g_{6}^{1}}-2 g_{5}^{2} \frac{\partial}{\partial g_{5}^{2}}+g_{6}^{2} \frac{\partial}{\partial g_{6}^{2}}$. Since \bar{G}_{6} acts intransitively on the set of points $\left(g_{2}^{1}, g_{3}^{1}, g_{5}^{1}\right.$, $\left.g_{6}^{1}, g_{5}^{2}, g_{6}^{2}\right)$, the set of pairs $\left(G_{1}, G_{2}\right)$ is not measurable with respect to G_{6}. The system $Y_{1}(f)=0, Y_{2}(f)=0, Y_{3}(f)=0, Y_{4}(f)=0, Y_{7}(f)=0, Z(f)=0$ has a solution $f=g_{2}^{1}$, and it is an absolute invariant of \bar{G}_{6}.

Consider the subset of pairs $\left(G_{1}, G_{2}\right)$ satisfying the condition

$$
\begin{equation*}
g_{2}^{1}=h \tag{9}
\end{equation*}
$$

where $h=$ const. The group \bar{G}_{6} induces the group G_{6}^{\star} on the subset (9) with the infinitesimal operators $Y_{2}, Y_{3}, Y_{4}, Y_{7}, Z$ and $U=g_{3}^{1}\left(\frac{\partial}{\partial g_{5}^{1}}+\frac{\partial}{\partial g_{5}^{2}}\right)-h\left(\frac{\partial}{\partial g_{6}^{1}}+\frac{\partial}{\partial g_{6}^{2}}\right)$, and it is transitive. The Deltheil system $Y_{2}(f)=0, Y_{3}(f)=0, Y_{4}(f)=0, Y_{7}(f)+f=0, Z(f)+5 f=0, U(f)=0$ has the solution $f=c\left(g_{6}^{1}-g_{6}^{2}\right)^{5}$, where $c=$ const.

From here it follows:
Theorem 4.1. The set of pairs $\left(G_{1}, G_{2}\right)\left(g_{2}^{1}, g_{3}^{1}, g_{5}^{1}, g_{6}^{1}, g_{5}^{2}, g_{6}^{2}\right)$ of parallel non-isotropic straight lines of the first type is not measurable with respect to the group G_{6}, but it has the measurable subset (9) with the density

$$
g\left(G_{1}, G_{2}\right)=\left|g_{6}^{1}-g_{6}^{2}\right|^{5} d g_{3}^{1} \wedge d g_{5}^{1} \wedge d g_{6}^{1} \wedge d g_{5}^{2} \wedge d g_{6}^{2}
$$

From Theorem 4.1. and (4) we have:
Corollary 4.1. The set of pairs $\left(G_{1}, G_{2}\right)\left(a, b, p_{1}, q_{1}, p_{2}, q_{2}\right)$ of parallel non-isotropic straight lines of the first type is not measurable with respect to the group G_{6}, but it has the measurable subset $\frac{b}{a}=h, h=$ const, with the density

$$
d\left(G_{1}, G_{2}\right)=\left|\frac{\left[q_{2}-q_{1}-h\left(p_{2}-p_{1}\right)\right]^{5}}{a^{4}}\right| d a \wedge d p_{1} \wedge d q_{1} \wedge d p_{2} \wedge d q_{2}
$$

5. Measurability with respect to $\boldsymbol{B}_{\mathbf{7}}, \boldsymbol{W}_{\mathbf{7}}, \boldsymbol{G}_{\boldsymbol{7}}, \boldsymbol{V}_{\mathbf{7}}, \boldsymbol{B}_{\mathbf{6}}, \boldsymbol{B}_{5}$. By arguments similar to the ones used above we study the measurability of sets of pairs $\left(G_{1}, G_{2}\right)$ with respect to all the remaining groups. We summarize the results in the following

Theorem 5.1. The set of pairs $\left(G_{1}, G_{2}\right)\left(g_{2}^{1}, g_{3}^{1}, g_{5}^{1}, g_{6}^{1}, g_{5}^{2}, g_{6}^{2}\right)$ of parallel non-isotropic straight lines of first type:
(i) is not measurable with respect to the groups B_{7}, G_{7}, B_{6}, and it has no measurable subsets;
(ii) is measurable with respect to the group W_{7}, and has the density

$$
d\left(G_{1}, G_{2}\right)=\left|\frac{1}{\left(g_{6}^{2}-g_{6}^{2}\right)^{4} \sqrt{1+\left(g_{2}^{1}\right)^{2}}}\right| d g_{2}^{1} \wedge d g_{3}^{1} \wedge d g_{5}^{1} \wedge d g_{6}^{1} \wedge d g_{5}^{2} \wedge d g_{6}^{2}
$$

(iii) is measurable with respect to the group V_{7}, and has the density

$$
d\left(G_{1}, G_{2}\right)=\left|\frac{\left(g_{6}^{1}-g_{6}^{2}\right)^{5}}{\left[1+\left(g_{2}^{1}\right)^{2}\right]^{5}}\right| d g_{2}^{1} \wedge d g_{3}^{1} \wedge d g_{5}^{1} \wedge d g_{6}^{1} \wedge d g_{5}^{2} \wedge d g_{6}^{2}
$$

(iv) is not measurable with respect to the group B_{5}, but it has the measurable subset $g_{2}^{1}=h_{1}, g_{6}^{1}-g_{6}^{2}=h_{2}, h_{1}=$ const, $h_{2}=$ const, with the density

$$
d\left(G_{1}, G_{2}\right)=d g_{3}^{1} \wedge d g_{5}^{1} \wedge d g_{6}^{1} \wedge d g_{5}^{2}
$$

From Theorem 5.1. and (4) it follows
Corollary 5.1. The set of pairs $\left(G_{1}, G_{2}\right)\left(a, b, p_{1}, q_{1}, p_{2}, q_{2}\right)$ of parallel non-isotropic straight lines of the first type:
(i) is measurable with respect to the group W_{7}, and has the density

$$
d\left(G_{1}, G_{2}\right)=\left|\frac{1}{\left[a\left(q_{2}-q_{1}\right)-b\left(p_{2}-p_{1}\right)\right]^{4} \sqrt{a^{2}+b^{2}}}\right| d a \wedge d b \wedge d p_{1} \wedge d q_{1} \wedge d p_{2} \wedge d q_{2}
$$

(ii) is measurable with respect to the group V_{7}, and has the density

$$
d\left(G_{1}, G_{2}\right)=\left|\frac{\left[a\left(q_{2}-q_{1}\right)-b\left(p_{2}-p_{1}\right)\right]^{5}}{\left(a^{2}+b^{2}\right)^{5}}\right| d a \wedge d b \wedge d p_{1} \wedge d q_{1} \wedge d p_{2} \wedge d q_{2}
$$

(iii) is not measurable with respect to the group B_{5}, but it has the measurable subset $\frac{b}{a}=h_{1}, a\left(q_{2}-q_{1}\right)-b\left(p_{2}-p_{1}\right)=h_{2}, h_{1}=$ const, $h_{2}=$ const, with the density

$$
d\left(G_{1}, G_{2}\right)=\frac{1}{a^{4}} d a \wedge d p_{1} \wedge d q_{1} \wedge d p_{2}
$$

6. Some Crofton type formulas with respect to $\boldsymbol{S}_{\boldsymbol{7}}$. The parallel straight lines into coordinate plane $\widetilde{G}_{1}: b x-a y+a q_{1}-b p_{1}=0, z=0$, and $\widetilde{G}_{2}: b x-a y+a q_{2}-$ $b p_{2}=0, z=0$, are the orthogonal projections of the parallel straight lenes G_{1} and G_{2}, respectively. Then the Euclidean distance δ between \widetilde{G}_{1} and \widetilde{G}_{2} is

$$
\begin{equation*}
\delta=\left|\frac{a\left(q_{2}-q_{1}\right)-b\left(p_{2}-p_{1}\right.}{\sqrt{a^{2}+b^{2}}}\right| . \tag{10}
\end{equation*}
$$

Assume that the straight lines G_{1} and G_{2} make the angle θ with the horizontal plane Oxy. Then [3; p. 48]

$$
\begin{equation*}
\theta=\frac{1}{\sqrt{a^{2}+b^{2}}} \tag{11}
\end{equation*}
$$

and, replacing (10) and (11) into (8), we obtain

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\left|\frac{\theta^{5}}{\delta}\right| d a \wedge d b \wedge d p_{1} \wedge d q_{1} \wedge d p_{2} \wedge d q_{2} \tag{12}
\end{equation*}
$$

If we denote $\bar{P}_{1}=G_{1} \cap O x y, \bar{P}_{2}=G_{2} \cap O x y$, then into the plane $O x y$ we have $d \bar{P}_{1}=d p_{1} \wedge d q_{1}, d \bar{P}_{2}=d p_{2} \wedge d q_{2}$. By differentiation of (10), (11), and by exterior multiplication of the forms of (12) we get
(13) $d \delta \wedge d \theta \wedge d \bar{P}_{1} \wedge d \bar{P}_{2}=-\theta^{4}\left[a\left(q_{2}-q_{1}\right)-b\left(p_{2}-p_{1}\right] d a \wedge d b \wedge d p_{1} \wedge d q_{1} \wedge d p_{2} \wedge d q_{2}\right.$.

In view of (13), the formula (12) becomes

$$
d\left(G_{1}, G_{2}\right)=\left|\frac{\theta}{\delta\left[a\left(q_{2}-q_{1}\right)-b\left(p_{2}-p_{1}\right]\right.}\right| d \delta \wedge d \theta \wedge d \bar{P}_{1} \wedge d \bar{P}_{2}
$$

REFERENCES

[1] R. Deltheil. Sur la théorie des probabilité géométriques. Thése Ann. Fac. Sc. Univ. Toulouse, (3), 11 (1919), 1-65.
[2] G. I. Drinfel'd. On the measure of the Lie groups. Zap. Mat. Otdel. Fiz. Mat. Fak. Kharkov. Mat. Obsc., 21 (1949), 47-57 (in Russian).
[3] H. Sachs. Isotrope Geometrie des Raumes. Friedr. Vieweg and Sohn, Braunschweig/Wiesbaden, 1990.
[4] M. I. Stoka. Geometrie Integralǎ. Ed. Acad. RPR, Bucuresti, 1967.

Adrijan Varbanov Borisov Margarita Georgieva Spirova
Dept. of Mathematics
South-West University "Neofit Rilski"
66, Ivan Mihailov Str.
2700 Blagoevgrad, Bulgaria
e-mail: adribor@aix.swu.bg
Faculty of Mathematics and Informatics
University of Sofia
5, James Bourchier
1164 Sofia, Bulgaria
e-mail: margspr@abv.bg

ИЗМЕРИМОСТ НА МНОЖЕСТВА ОТ ДВОЙКИ УСПОРЕДНИ
 НЕИЗОТРОПНИ ПРАВИ ОТ ПЪРВИ ТИП В ПРОСТО ИЗОТРОПНО ПРОСРТАНСТВО

Адриян В. Борисов, Маргарита Г. Спирова

Изследвана е измеримостта на множества от двойки успоредни неизотропни прави, лежащи в различни изотропни равнини и съответните инвариантни гъстоти относно групата на общите просто-изотропни подобности и някои нейни подгрупи.

[^0]: ${ }^{*} 2000$ Mathematics Subject Classification: 53C65
 146

