Borovets, April 5-8, 2006

ON THE EXPONENTS OF SOME 4×4 MATRICES*

Georgi K. Dimitrov, Ivaïlo M. Mladenov

Here we derive a formula for the exponents of any 4×4 matrix which belongs to one of the Lie algebras $\mathfrak{s o}(4), \mathfrak{s o}(2,2), \mathfrak{s o}(3,1)$ and $\mathfrak{s p}(4, \mathbb{R})$. The approach which we follow is based on the Hamilton-Cayley theorem, namely, the important moment in all our considerations is the respective characteristic polynomial of the above matrices.

1. Introduction. This article concerns all 4×4 matrices with characteristic polynomial $P(z)$ of the form

$$
\begin{equation*}
P(z)=z^{4}-b z^{2}-a \tag{1}
\end{equation*}
$$

which is shared by any element in the Lie algebras $\mathfrak{s o}(4), \mathfrak{s o}(3,1), \mathfrak{s o}(2,2)$ and $\mathfrak{s p}(4, \mathbb{R})$. Both coefficients a and b in (1) are well defined functions of the respective matrix elements.

Let us denote with A an arbitrary matrix from the above classes. By the HamiltonCayley theorem it follows that A satisfies the identity

$$
\begin{equation*}
A^{4}=a \mathrm{I}_{4}+b A^{2} \tag{2}
\end{equation*}
$$

Direct consequence of the above equation and the very definition of the exponential map

$$
\begin{equation*}
\operatorname{Exp}(A)=\mathrm{I}_{4}+\sum_{k=1}^{\infty} \frac{A^{k}}{k!} \tag{3}
\end{equation*}
$$

is that

$$
\begin{equation*}
\operatorname{Exp}(A)=\mathrm{I}_{4}+A+\frac{A^{2}}{2}+\frac{A^{3}}{6} \tag{4}
\end{equation*}
$$

when $a=b=0$.
2. Non-degenerated cases. From now on we exclude the degenerate case in which both coefficients are equal to zero. In order to derive the formula for the cases when either $a \neq 0$, or $b \neq 0$, we use (2) to get some quite useful relations about the even powers of A. Let us start by rewriting the equation (2) in the form

$$
\begin{equation*}
A^{4}=u v \mathrm{I}_{4}+(u-v) A^{2} \tag{5}
\end{equation*}
$$

[^0]where u and v are new parameters, which, obviously, have to satisfy the system
\[

$$
\begin{equation*}
u-v=b, \quad u v=a \tag{6}
\end{equation*}
$$

\]

The solutions of this system are

$$
\begin{equation*}
u=\frac{1}{2}\left(b+\sqrt{b^{2}+4 a}\right) \quad \text { or } \quad u=\frac{1}{2}\left(b-\sqrt{b^{2}+4 a}\right) \quad \text { and } \quad v=\frac{a}{u} . \tag{7}
\end{equation*}
$$

From (6) it follows also that

$$
\begin{equation*}
(u+v)^{2}=b^{2}+4 a \tag{8}
\end{equation*}
$$

In fact, we derive two kind of formulas: one for the case when $b^{2}+4 a \neq 0$, and another one for the case when $b^{2}+4 a=0$.

First case: $b^{2}+4 a \neq 0$. In this case (8) ensure, that

$$
\begin{equation*}
u+v \neq 0 \tag{9}
\end{equation*}
$$

Multiplying both sides of (5) with $u+v$, we get

$$
\begin{equation*}
(u+v) A^{4}=(u+v) u v \mathrm{I}_{4}+\left(u^{2}-v^{2}\right) A^{2} . \tag{10}
\end{equation*}
$$

Let us assume now, that for all $n \in \mathbb{N}, n>2$ we have also

$$
\begin{equation*}
(u+v) A^{2 n}=\left(u^{n-1}+(-1)^{n} v^{n-1}\right) u v \mathrm{I}_{4}+\left(u^{n}+(-1)^{n+1} v^{n}\right) A^{2} \tag{11}
\end{equation*}
$$

This equation, in conjuction with (9) and (10), gives

$$
\begin{align*}
(u+v) A^{2(n+1)} & =\left(u^{n-1}+(-1)^{n} v^{n-1}\right) u v A^{2}+\left(u^{n}+(-1)^{n+1} v^{n}\right) A^{4} \\
& =\left(u^{n-1}+(-1)^{n} v^{n-1}\right) u v A^{2}+\left(u^{n}+(-1)^{n+1} v^{n}\right)\left(u v \mathrm{I}_{4}+(u-v) A^{2}\right) \tag{12}\\
& =\left(u^{n}+(-1)^{n+1} v^{n}\right) u v \mathrm{I}_{4}+\left(u^{n+1}+(-1)^{n+2} v^{n+1}\right) A^{2} .
\end{align*}
$$

In this way by the full induction method we prove that (11) is really true for each $n \geq 0$. Actually, we proved this for $n \geq 2$, but one can verify it easily for $n=0$ and $n=1$ and, therefore, we have immediately

$$
\begin{align*}
(u+v) \sum_{n=0}^{\infty} \frac{A^{2 n}}{(2 n)!}= & \left(v \sum_{n=0}^{\infty} \frac{u^{n}}{(2 n)!}+u \sum_{n=0}^{\infty} \frac{(-1)^{n} v^{n}}{(2 n)!}\right) \mathrm{I}_{4} \\
& +\left(\sum_{n=0}^{\infty} \frac{u^{n}}{(2 n)!}-\sum_{n=0}^{\infty} \frac{(-1)^{n} v^{n}}{(2 n)!}\right) A^{2} \tag{13}\\
= & (v \cosh \sqrt{u}+u \cos \sqrt{v}) \mathrm{I}_{4}+(\cosh \sqrt{u}-\cos \sqrt{v}) A^{2}
\end{align*}
$$

We can use again (11) to calculate the following sum

$$
\left.\begin{array}{rl}
(u+v) \sum_{n=0}^{\infty} \frac{A^{2 n+1}}{(2 n+1)!}= & \left(v \sum_{n=0}^{\infty} \frac{u^{n}}{(2 n+1)!}+u \sum_{n=0}^{\infty} \frac{(-1)^{n} v^{n}}{(2 n+1)!}\right) A \\
& +\left(\sum_{n=0}^{\infty} \frac{u^{n}}{(2 n+1)!}-\sum_{n=0}^{\infty} \frac{(-1)^{n} v^{n}}{(2 n+1)!}\right) A^{3} \\
= & \left(\frac{v}{\sqrt{u}} \sum_{n=0}^{\infty} \frac{\sqrt{u}^{2 n+1}}{(2 n+1)!}+\frac{u}{\sqrt{v}} \sum_{n=0}^{\infty} \frac{(-1)^{n} \sqrt{v}^{2 n+1}}{(2 n+1)!}\right) A \\
& +\left(\frac{1}{\sqrt{u}} \sum_{n=0}^{\infty} \frac{\sqrt{u}^{2 n+1}}{(2 n+1)!}-\frac{1}{\sqrt{v}} \sum_{n=0}^{\infty} \frac{(-1)^{n} \sqrt{v}}{}{ }^{2 n+1}\right. \\
(2 n+1)!
\end{array}\right) A^{3} .
$$

Let us remark also that the formula just derived is still valid even when u or v vanishes (in this case we take the limits of the functions $\frac{\sin (x)}{x}$ and $\frac{\sinh (x)}{x}$ as x tends to zero). Introducing

$$
\begin{array}{ll}
f_{0}(u, v)=\frac{v \cosh \sqrt{u}+u \cos \sqrt{v}}{u+v}, & f_{1}(u, v)=\frac{v \frac{\sinh \sqrt{u}}{\sqrt{u}}+u \frac{\sin \sqrt{v}}{\sqrt{v}}}{u+v}, \\
f_{2}(u, v)=\frac{\cosh \sqrt{u}-\cos \sqrt{v}}{u+v}, & f_{3}(u, v)=\frac{\frac{\sinh \sqrt{u}}{\sqrt{u}}-\frac{\sin \sqrt{v}}{\sqrt{v}}}{u+v}, \tag{15}
\end{array}
$$

we give up (13) and (14) the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{A^{2 n}}{(2 n)!}=f_{0}(u, v) \mathrm{I}_{4}+f_{2}(u, v) A^{2}, \quad \sum_{n=0}^{\infty} \frac{A^{2 n+1}}{(2 n+1)!}=f_{1}(u, v) A+f_{3}(u, v) A^{3}, \tag{16}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\operatorname{Exp}(A)=f_{0}(u, v) \mathrm{I}_{4}+f_{1}(u, v) A+f_{2}(u, v) A^{2}+f_{3}(u, v) A^{3} \tag{17}
\end{equation*}
$$

Second case: $b^{2}+4 a=0$. In this case we can write

$$
\begin{equation*}
A^{4}-b A^{2}-a \mathrm{I}_{4}=\left(A^{2}-\frac{b}{2} \mathrm{I}_{4}\right)^{2}=\left(A-\sqrt{\frac{b}{2}} \mathrm{I}_{4}\right)^{2}\left(A+\sqrt{\frac{b}{2}} \mathrm{I}_{4}\right)^{2}=0 \tag{18}
\end{equation*}
$$

and after introducing

$$
\begin{equation*}
\sqrt{\frac{b}{2}}=\rho, \tag{19}
\end{equation*}
$$

rewrite it as

$$
\begin{equation*}
\left(A-\rho \mathrm{I}_{4}\right)^{2}\left(A+\rho \mathrm{I}_{4}\right)^{2}=\left(A+\rho \mathrm{I}_{4}\right)^{2}\left(A-\rho \mathbf{I}_{4}\right)^{2}=0 . \tag{20}
\end{equation*}
$$

With this equation at hand we get immediately

$$
\begin{aligned}
\operatorname{Exp}\left(A-\rho \mathrm{I}_{4}\right)\left(A+\rho \mathrm{I}_{4}\right)^{2} & =\left[\mathrm{I}_{4}+\left(A-\rho \mathrm{I}_{4}\right)\right]\left(A+\rho \mathrm{I}_{4}\right)^{2} \\
& =\left[A+(1-\rho) \mathrm{I}_{4}\right]\left(A+\rho \mathrm{I}_{4}\right)^{2} .
\end{aligned}
$$

By the properties of the exponential map, i.e.

$$
\begin{equation*}
\operatorname{Exp}\left(A-\rho \mathbf{I}_{4}\right)=\operatorname{Exp}(A) \operatorname{Exp}\left(-\rho \mathbf{I}_{4}\right)=\exp (-\rho) \operatorname{Exp}(A) \tag{22}
\end{equation*}
$$

and (21), it follows that

$$
\begin{equation*}
\operatorname{Exp}(A)\left(A+\rho \mathrm{I}_{4}\right)^{2}=\exp (\rho)\left[A+(1-\rho) \mathrm{I}_{4}\right]\left(A+\rho \mathrm{I}_{4}\right)^{2} . \tag{23}
\end{equation*}
$$

Similar considerations gives us

$$
\begin{equation*}
\operatorname{Exp}(A)\left(A-\rho \mathrm{I}_{4}\right)^{2}=\exp (-\rho)\left[A+(1+\rho) \mathrm{I}_{4}\right]\left(A-\rho \mathrm{I}_{4}\right)^{2}, \tag{24}
\end{equation*}
$$

respectively.
Subtracting the left-hand side of (24) from that one of (23), we get

$$
\begin{equation*}
4 \rho \operatorname{Exp}(A) A=2 \sqrt{2 b} \operatorname{Exp}(A) A . \tag{25}
\end{equation*}
$$

Since $\operatorname{det}(A)=-a$, and $a \neq 0$, one can conclude that A is invertible. This is enough for us in order to write

$$
\begin{align*}
\operatorname{Exp}(A)= & \frac{1}{4 \rho} A^{-1}\left\{\exp (\rho)\left[A+(1-\rho) \mathrm{I}_{4}\right]\left(A+\rho \mathrm{I}_{4}\right)^{2}\right. \tag{26}\\
& \left.-\exp (-\rho)\left[A+(1+\rho) \mathrm{I}_{4}\right]\left(A-\rho \mathrm{I}_{4}\right)^{2}\right\}
\end{align*}
$$

which can be given in a more compact form as

$$
\begin{equation*}
\operatorname{Exp}(A)=g_{0}(\rho) A^{-1}+g_{1}(\rho) \mathrm{I}_{4}+g_{2}(\rho) A+g_{3}(\rho) A^{2} \tag{27}
\end{equation*}
$$

where

$$
\begin{array}{ll}
g_{0}(\rho)=\frac{\rho \operatorname{sh} \rho-\rho^{2} \operatorname{ch} \rho}{2}, & g_{1}(\rho)=\frac{2 \operatorname{ch} \rho-\rho \operatorname{sh} \rho}{2} \\
g_{2}(\rho)=\frac{\operatorname{sh} \rho+\rho \operatorname{ch} \rho}{2 \rho}, & g_{3}(\rho)=\frac{\operatorname{sh} \rho}{2 \rho} . \tag{28}
\end{array}
$$

Another useful way in which the above result can be presented is

$$
\begin{equation*}
\operatorname{Exp}(A)=\frac{\operatorname{ch} \rho}{2}\left(A+2 \mathrm{I}_{3}-\rho^{2} A^{-1}\right)+\frac{\operatorname{sh} \rho}{2 \rho}\left(A^{2}+A-\rho^{2} \mathrm{I}_{3}+\rho^{2} A^{-1}\right) . \tag{29}
\end{equation*}
$$

3. Specializations for various Lie algebras. In this section we present the respective parameters a and b via explicit formulas for coordinates of Lie algebra elements from the selected list of Lie algebras given at the beginning of the paper.
3.1. The parameters a and b for the Lie algebra $\mathfrak{s o}(4)$. The standard form of an arbitrary element $A \in \mathfrak{s o}(4)$ is

$$
A=\left\{\left[\begin{array}{rccc}
0 & -x_{1} & x_{2} & -x_{4} \tag{30}\\
x_{1} & 0 & -x_{3} & -x_{5} \\
-x_{2} & x_{3} & 0 & -x_{6} \\
x_{4} & x_{5} & x_{6} & 0
\end{array}\right] ; x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \in \mathbb{R}\right\}
$$

and, in accordance with (2), the parameters a and b can be determined by evaluating its characteristic polynomial $P(A)$. For that purpose we used the elegant procedure described in [4]. The analytical and especially the computational details can be found in [1] along the Mathematica ${ }^{\circledR}$ program code furnishing this task. The results is

$$
\begin{align*}
a & =-\left(x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}\right)^{2} \\
b & =-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-x_{4}^{2}-x_{5}^{2}-x_{6}^{2} . \tag{31}
\end{align*}
$$

3.2. The parameters a and b for the Lie algebra $\mathfrak{s o}(3,1)$. We fixed a basis in which the elements of $\mathfrak{s o}(3,1)$ are of the form

$$
\mathfrak{s o}(3,1)=\left\{\left[\begin{array}{rccc}
0 & -x_{1} & x_{2} & x_{4} \tag{32}\\
x_{1} & 0 & -x_{3} & x_{5} \\
-x_{2} & x_{3} & 0 & x_{6} \\
x_{4} & x_{5} & x_{6} & 0
\end{array}\right] ; x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \in \mathbb{R}\right\}
$$

while the parameters a and b in the above coordinates turns out to be presented by the following expressions

$$
\begin{align*}
a & =\left(x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}\right)^{2} \\
b & =-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2} \tag{33}
\end{align*}
$$

We take the opportunity to mention that any constant electromagnetic field can be described by a second order tensor of type (32) and that the trajectories of charged particles in such fields can be obtained by making use of its exponent [5]. We refer to [2] for details and graphics illustrating various physical situations.
3.3. The parameters a and b for the Lie algebra $\mathfrak{s o}(2,2)$. Now we have

$$
\mathfrak{s o}(2,2)=\left\{\left[\begin{array}{clcc}
0 & x_{1} & x_{2} & x_{4} \tag{34}\\
-x_{1} & 0 & x_{3} & x_{5} \\
x_{2} & x_{3} & 0 & x_{6} \\
x_{4} & x_{5} & -x_{6} & 0
\end{array}\right] ; x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \in \mathbb{R}\right\}
$$

and,

$$
\begin{align*}
a & =-\left(x_{1} x_{6}+x_{2} x_{5}-x_{3} x_{4}\right)^{2} \tag{35}\\
b & =-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}-x_{6}^{2}
\end{align*}
$$

respectively.
3.4. The parameters a and b for the Lie algebra $\mathfrak{s p}(4, \mathbb{R})$. Any element of this Lie algebra can be specified by means of the coordinates $x_{i}, i=1, \ldots, 10$ and has the form

$$
A=\left\{\left[\begin{array}{rlrr}
x_{1} & x_{2} & x_{5} & x_{6} \tag{36}\\
x_{3} & x_{4} & x_{6} & x_{7} \\
x_{8} & x_{9} & -x_{1} & -x_{3} \\
x_{9} & x_{10} & -x_{2} & -x_{4}
\end{array}\right] ; x_{1}, \ldots, x_{10} \in \mathbb{R}\right\}
$$

Unfortuately, this time the parameters

$$
\begin{align*}
a= & -x_{1}^{2} x_{4}^{2}-x_{2}^{2} x_{3}^{2}-x_{6}^{2} x_{9}^{2}-x_{1}^{2} x_{7} x_{10}-x_{3}^{2} x_{5} x_{10}-x_{2}^{2} x_{7} x_{8}-x_{4}^{2} x_{5} x_{8} \\
& +x_{6}^{2} x_{8} x_{10}+x_{9}^{2} x_{5} x_{7}+2 x_{1} x_{2} x_{3} x_{4}-2 x_{1} x_{4} x_{6} x_{9}+2 x_{1} x_{2} x_{7} x_{9} \tag{37}\\
& +2 x_{1} x_{3} x_{6} x_{10}+2 x_{2} x_{4} x_{6} x_{8}-2 x_{2} x_{3} x_{6} x_{9}+2 x_{3} x_{4} x_{5} x_{9}-x_{5} x_{7} x_{8} x_{10} \\
b= & x_{1}^{2}+x_{4}^{2}+2 x_{2} x_{3}+2 x_{6} x_{9}+x_{5} x_{8}+x_{7} x_{10}
\end{align*}
$$

are not so symmetrical as in preceding cases but are still manageable, especially for the purposes of the direct numerical implementations.

A Mathematica ${ }^{\circledR}$ program module which returns automatically the relevant matrix exponent by appropriate input matrices belonging to the classes discussed so far is available for testing and free use [3].

Acknowledgements. The authors are grateful to Dr. Clementina D. Mladenova from the Institute of Mechanics - Bulgarian Academy of Sciences for providing an access to her PC and computer algebra system Mathematica ${ }^{\circledR}$. Most of the calculations presented here were done via above mentioned system.

REFERENCES

[1] G. Dimitrov G., I. Mladenov.
http://obzor.bio21.bas.bg/dpb_files/mfiles/Lev_Fad_Alg.nb.
[2] G. Dimitrov G., I. Mladenov. A New Formula for the Exponents of the Generators of the Lorentz Group. In: Proceedings of the Seventh International Conference on Geometry, Integrability and Quantization, (Eds I. Mladenov, M. de León), SOFTEX, Sofia 2005.
[3] G. Dimitrov G., I. Mladenov.
http://obzor.bio21.bas.bg/dpb_files/mfiles/4x4Exp_Map.nb.
[4] S.-H. Hou. A Simple Proof of the Leverrier-Faddeev Characteristic Polynomial Algorithm. SIAM Rev., 40 (1998), 706-709.
[5] R. Zeni, W. Rodrigues. The Exponential of the Generators of the Lorentz Group and the Solution of the Lorentz Force. Hadronic Journal, 3 (1990), 317-327.

Georgi K. Dimitrov
Institute of Biophysics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 21
1113 Sofia, Bulgaria
e-mail: gkid@abv.bg

Ivaïlo M. Mladenov
Institute of Biophysics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 21
1113 Sofia, Bulgaria
e-mail: mladenov@obzor.bio21.bas.bg

ВЪРХУ ЕКСПОНЕНТИТЕ НА НЯКОИ 4×4 МАТРИЦИ

Георги К. Димитров, Ивайло М. Младенов

В настоящата работа е изведена обща формула за експонентите на всички 4×4 матрици принадлежащи на някоя от следните алгебри на Ли: $\mathfrak{s o}(4), \mathfrak{s o}(2,2)$, $\mathfrak{s o}(3,1)$ и $\mathfrak{s p}(4, \mathbb{R})$. Подходът за решаване на задачата се основава на теоремата на Хамилтон-Кейли и, по-точно, от съществено значение е видът на характеристичният полином на матриците на изброените по-горе алгебри на Ли.

[^0]: *Partially supported by the Bulgarian National Science Foundation under a contract \# B-1531/2005 152

