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ON THE EXPONENTS OF SOME 4× 4 MATRICES*

Georgi K. Dimitrov, Iväılo M. Mladenov

Here we derive a formula for the exponents of any 4× 4 matrix which belongs to one
of the Lie algebras so(4), so(2, 2), so(3, 1) and sp(4,R). The approach which we follow
is based on the Hamilton-Cayley theorem, namely, the important moment in all our
considerations is the respective characteristic polynomial of the above matrices.

1. Introduction. This article concerns all 4×4 matrices with characteristic polynomial
P (z) of the form

(1) P (z) = z4 − bz2 − a
which is shared by any element in the Lie algebras so(4), so(3, 1), so(2, 2) and sp(4,R).
Both coefficients a and b in (1) are well defined functions of the respective matrix
elements.

Let us denote with A an arbitrary matrix from the above classes. By the Hamilton-
Cayley theorem it follows that A satisfies the identity

(2) A4 = aI4 + bA2.

Direct consequence of the above equation and the very definition of the exponential
map

(3) Exp(A) = I4 +
∞∑

k=1

Ak

k!

is that

(4) Exp(A) = I4 +A+
A2

2
+
A3

6

when a = b = 0.
2. Non-degenerated cases. From now on we exclude the degenerate case in which

both coefficients are equal to zero. In order to derive the formula for the cases when either
a 6= 0, or b 6= 0, we use (2) to get some quite useful relations about the even powers of
A. Let us start by rewriting the equation (2) in the form

(5) A4 = uvI4 + (u− v)A2,
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where u and v are new parameters, which, obviously, have to satisfy the system

(6) u− v = b, uv = a.

The solutions of this system are

(7) u =
1
2

(b+
√
b2 + 4a) or u =

1
2

(b−√b2 + 4a) and v =
a

u
·

From (6) it follows also that

(8) (u+ v)2 = b2 + 4a.

In fact, we derive two kind of formulas: one for the case when b2 + 4a 6= 0, and another
one for the case when b2 + 4a = 0.

First case: b2 + 4a 6= 0. In this case (8) ensure, that

(9) u+ v 6= 0.

Multiplying both sides of (5) with u+ v, we get

(10) (u+ v)A4 = (u+ v)uvI4 + (u2 − v2)A2.

Let us assume now, that for all n ∈ N, n > 2 we have also

(11) (u+ v)A2n = (un−1 + (−1)nvn−1)uvI4 + (un + (−1)n+1vn)A2.

This equation, in conjuction with (9) and (10), gives

(u+ v)A2(n+1) =(un−1 + (−1)nvn−1)uvA2 + (un + (−1)n+1vn)A4

=(un−1 + (−1)nvn−1)uvA2 + (un + (−1)n+1vn)
(
uvI4 + (u− v)A2

)
(12)

=(un + (−1)n+1vn)uvI4 + (un+1 + (−1)n+2vn+1)A2.

In this way by the full induction method we prove that (11) is really true for each n ≥ 0.
Actually, we proved this for n ≥ 2, but one can verify it easily for n = 0 and n = 1 and,
therefore, we have immediately

(u+ v)
∞∑
n=0

A2n

(2n)!
=

(
v

∞∑
n=0

un

(2n)!
+ u

∞∑
n=0

(−1)nvn

(2n)!

)
I4

+

( ∞∑
n=0

un

(2n)!
−
∞∑
n=0

(−1)nvn

(2n)!

)
A2(13)

=
(
v cosh

√
u+ u cos

√
v
)

I4 +
(
cosh

√
u− cos

√
v
)
A2.
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We can use again (11) to calculate the following sum

(u+ v)
∞∑
n=0

A2n+1

(2n+ 1)!
=

(
v

∞∑
n=0

un

(2n+ 1)!
+ u

∞∑
n=0

(−1)nvn

(2n+ 1)!

)
A

+

( ∞∑
n=0

un

(2n+ 1)!
−
∞∑
n=0

(−1)nvn

(2n+ 1)!

)
A3

=

(
v√
u

∞∑
n=0

√
u

2n+1

(2n+ 1)!
+

u√
v

∞∑
n=0

(−1)n
√
v

2n+1

(2n+ 1)!

)
A(14)

+

(
1√
u

∞∑
n=0

√
u

2n+1

(2n+ 1)!
− 1√

v

∞∑
n=0

(−1)n
√
v

2n+1

(2n+ 1)!

)
A3

=
(
v

sinh
√
u√

u
+ u

sin
√
v√

v

)
A+

(
sinh
√
u√

u
− sin

√
v√

v

)
A3.

Let us remark also that the formula just derived is still valid even when u or v vanishes

(in this case we take the limits of the functions
sin(x)
x

and
sinh(x)
x

as x tends to zero).
Introducing

f0(u, v) =
v cosh

√
u+ u cos

√
v

u+ v
, f1(u, v) =

v
sinh
√
u√

u
+ u

sin
√
v√

v

u+ v
,

(15)

f2(u, v)=
cosh

√
u− cos

√
v

u+ v
, f3(u, v) =

sinh
√
u√

u
− sin

√
v√

v

u+ v
,

we give up (13) and (14) the form

(16)
∞∑
n=0

A2n

(2n)!
= f0(u, v)I4 + f2(u, v)A2,

∞∑
n=0

A2n+1

(2n+ 1)!
= f1(u, v)A+ f3(u, v)A3,

which implies

(17) Exp(A) = f0(u, v)I4 + f1(u, v)A+ f2(u, v)A2 + f3(u, v)A3.

Second case: b2 + 4a = 0. In this case we can write

(18) A4 − bA2 − aI4 =
(
A2 − b

2
I4

)2

=

(
A−

√
b

2
I4

)2(
A+

√
b

2
I4

)2

= 0

and after introducing

(19)

√
b

2
= ρ,
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rewrite it as

(20) (A− ρI4)2 (A+ ρI4)2 = (A+ ρI4)2 (A− ρI4)2 = 0.

With this equation at hand we get immediately

Exp (A− ρI4) (A+ ρI4)2 = [I4 + (A− ρI4)] (A+ ρI4)2

(21)

= [A+ (1− ρ) I4] (A+ ρI4)2
.

By the properties of the exponential map, i.e.

(22) Exp (A− ρI4) = Exp(A)Exp (−ρI4) = exp (−ρ) Exp(A)

and (21), it follows that

(23) Exp(A) (A+ ρI4)2 = exp (ρ) [A+ (1− ρ) I4] (A+ ρI4)2
.

Similar considerations gives us

(24) Exp(A) (A− ρI4)2 = exp (−ρ) [A+ (1 + ρ) I4] (A− ρI4)2
,

respectively.
Subtracting the left-hand side of (24) from that one of (23), we get

(25) 4ρExp(A)A = 2
√

2bExp(A)A.

Since det(A) = −a, and a 6= 0, one can conclude that A is invertible. This is enough for
us in order to write

Exp(A) =
1
4ρ
A−1

{
exp (ρ) [A+ (1− ρ) I4] (A+ ρI4)2

(26)

−exp (−ρ) [A+ (1 + ρ) I4] (A− ρI4)2
}

which can be given in a more compact form as

(27) Exp(A) = g0(ρ)A−1 + g1(ρ)I4 + g2(ρ)A+ g3(ρ)A2,

where

(28)

g0(ρ) =
ρ sh ρ− ρ2 ch ρ

2
, g1(ρ) =

2 ch ρ− ρ sh ρ
2

g2(ρ) =
sh ρ+ ρ ch ρ

2ρ
, g3(ρ) =

sh ρ
2ρ

.

Another useful way in which the above result can be presented is

(29) Exp(A) =
ch ρ

2
(A+ 2I3 − ρ2A−1) +

sh ρ
2ρ

(A2 +A− ρ2I3 + ρ2A−1).
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3. Specializations for various Lie algebras. In this section we present the
respective parameters a and b via explicit formulas for coordinates of Lie algebra elements
from the selected list of Lie algebras given at the beginning of the paper.

3.1. The parameters a and b for the Lie algebra so(4). The standard form of
an arbitrary element A ∈ so(4) is

(30) A =








0 −x1 x2 −x4

x1 0 −x3 −x5

−x2 x3 0 −x6

x4 x5 x6 0


 ; x1, x2, x3, x4, x5, x6 ∈ R





and, in accordance with (2), the parameters a and b can be determined by evaluating its
characteristic polynomial P (A). For that purpose we used the elegant procedure described
in [4]. The analytical and especially the computational details can be found in [1] along
the Mathematica

r
program code furnishing this task. The results is

(31)
a = − (x1x6 + x2x5 + x3x4)2

b = −x2
1 − x2

2 − x2
3 − x2

4 − x2
5 − x2

6.

3.2. The parameters a and b for the Lie algebra so(3, 1). We fixed a basis in
which the elements of so(3, 1) are of the form

(32) so(3, 1) =








0 −x1 x2 x4

x1 0 −x3 x5

−x2 x3 0 x6

x4 x5 x6 0


 ; x1, x2, x3, x4, x5, x6 ∈ R




,

while the parameters a and b in the above coordinates turns out to be presented by the
following expressions

(33)
a = (x1x6 + x2x5 + x3x4)2

b = −x2
1 − x2

2 − x2
3 + x2

4 + x2
5 + x2

6.

We take the opportunity to mention that any constant electromagnetic field can be
described by a second order tensor of type (32) and that the trajectories of charged
particles in such fields can be obtained by making use of its exponent [5]. We refer to [2]
for details and graphics illustrating various physical situations.

3.3. The parameters a and b for the Lie algebra so(2, 2). Now we have

(34) so(2, 2) =








0 x1 x2 x4

−x1 0 x3 x5

x2 x3 0 x6

x4 x5 −x6 0


 ; x1, x2, x3, x4, x5, x6 ∈ R




.

and,

(35)
a = − (x1x6 + x2x5 − x3x4)2

b = −x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − x2

6,

156



respectively.
3.4. The parameters a and b for the Lie algebra sp(4,R). Any element of

this Lie algebra can be specified by means of the coordinates xi, i = 1, . . . , 10 and has
the form

(36) A =








x1 x2 x5 x6

x3 x4 x6 x7

x8 x9 −x1 −x3

x9 x10 −x2 −x4


 ; x1, . . . , x10 ∈ R




.

Unfortuately, this time the parameters

a = −x2
1x

2
4 − x2

2x
2
3 − x2

6x
2
9 − x2

1x7x10 − x2
3x5x10 − x2

2x7x8 − x2
4x5x8

+x2
6x8x10 + x2

9x5x7 + 2x1x2x3x4 − 2x1x4x6x9 + 2x1x2x7x9
(37)

+2x1x3x6x10 + 2x2x4x6x8 − 2x2x3x6x9 + 2x3x4x5x9 − x5x7x8x10

b = x2
1 + x2

4 + 2x2x3 + 2x6x9 + x5x8 + x7x10.

are not so symmetrical as in preceding cases but are still manageable, especially for the
purposes of the direct numerical implementations.

A Mathematica
r

program module which returns automatically the relevant matrix
exponent by appropriate input matrices belonging to the classes discussed so far is
available for testing and free use [3].
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ВЪРХУ ЕКСПОНЕНТИТЕ НА НЯКОИ 4× 4 МАТРИЦИ

Георги К. Димитров, Ивайло M. Младенов

В настоящата работа е изведена обща формула за експонентите на всички 4× 4
матрици принадлежащи на някоя от следните алгебри на Ли: so(4), so(2, 2),
so(3, 1) и sp(4,R). Подходът за решаване на задачата се основава на теоремата
на Хамилтон-Кейли и, по-точно, от съществено значение е видът на характерис-
тичният полином на матриците на изброените по-горе алгебри на Ли.
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