МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2006 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2006 Proceedings of the Thirty Fifth Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 5–8, 2006

ON THE EXPONENTS OF SOME 4×4 MATRICES^{*}

Georgi K. Dimitrov, Ivaïlo M. Mladenov

Here we derive a formula for the exponents of any 4×4 matrix which belongs to one of the Lie algebras $\mathfrak{so}(4)$, $\mathfrak{so}(2,2)$, $\mathfrak{so}(3,1)$ and $\mathfrak{sp}(4,\mathbb{R})$. The approach which we follow is based on the Hamilton-Cayley theorem, namely, the important moment in all our considerations is the respective characteristic polynomial of the above matrices.

1. Introduction. This article concerns all 4×4 matrices with characteristic polynomial P(z) of the form

$$P(z) = z^4 - bz^2 - a$$

which is shared by any element in the Lie algebras $\mathfrak{so}(4)$, $\mathfrak{so}(3,1)$, $\mathfrak{so}(2,2)$ and $\mathfrak{sp}(4,\mathbb{R})$. Both coefficients a and b in (1) are well defined functions of the respective matrix elements.

Let us denote with A an arbitrary matrix from the above classes. By the Hamilton-Cayley theorem it follows that A satisfies the identity

$$A^4 = a\mathbf{I}_4 + bA^2.$$

Direct consequence of the above equation and the very definition of the exponential map

(3)
$$\operatorname{Exp}(A) = \mathrm{I}_4 + \sum_{k=1}^{\infty} \frac{A^k}{k!}$$

is that

(4)
$$\operatorname{Exp}(A) = \mathrm{I}_4 + A + \frac{A^2}{2} + \frac{A^3}{6}$$

when a = b = 0.

2. Non-degenerated cases. From now on we exclude the degenerate case in which both coefficients are equal to zero. In order to derive the formula for the cases when either $a \neq 0$, or $b \neq 0$, we use (2) to get some quite useful relations about the even powers of A. Let us start by rewriting the equation (2) in the form

(5)
$$A^4 = uvI_4 + (u - v)A^2,$$

^{*}Partially supported by the Bulgarian National Science Foundation under a contract # B-1531/2005 152

where u and v are new parameters, which, obviously, have to satisfy the system

$$(6) u-v=b, uv=a.$$

The solutions of this system are

(7)
$$u = \frac{1}{2}(b + \sqrt{b^2 + 4a}) \text{ or } u = \frac{1}{2}(b - \sqrt{b^2 + 4a}) \text{ and } v = \frac{a}{u}$$

From (6) it follows also that

(8)
$$(u+v)^2 = b^2 + 4a.$$

In fact, we derive two kind of formulas: one for the case when $b^2 + 4a \neq 0$, and another one for the case when $b^2 + 4a = 0$.

<u>First case:</u> $b^2 + 4a \neq 0$. In this case (8) ensure, that

$$(9) u+v \neq 0.$$

Multiplying both sides of (5) with u + v, we get

(10)
$$(u+v)A^4 = (u+v)uvI_4 + (u^2 - v^2)A^2.$$

Let us assume now, that for all $n \in \mathbb{N}$, n > 2 we have also

(11)
$$(u+v)A^{2n} = (u^{n-1} + (-1)^n v^{n-1})uvI_4 + (u^n + (-1)^{n+1}v^n)A^2.$$

This equation, in conjuction with (9) and (10), gives

$$(u+v)A^{2(n+1)} = (u^{n-1} + (-1)^n v^{n-1})uvA^2 + (u^n + (-1)^{n+1}v^n)A^4$$

(12)
$$= (u^{n-1} + (-1)^n v^{n-1})uvA^2 + (u^n + (-1)^{n+1}v^n) (uvI_4 + (u-v)A^2)$$
$$= (u^n + (-1)^{n+1}v^n)uvI_4 + (u^{n+1} + (-1)^{n+2}v^{n+1})A^2.$$

In this way by the full induction method we prove that (11) is really true for each $n \ge 0$. Actually, we proved this for $n \ge 2$, but one can verify it easily for n = 0 and n = 1 and, therefore, we have immediately

(13)

$$(u+v)\sum_{n=0}^{\infty} \frac{A^{2n}}{(2n)!} = \left(v\sum_{n=0}^{\infty} \frac{u^n}{(2n)!} + u\sum_{n=0}^{\infty} \frac{(-1)^n v^n}{(2n)!}\right) I_4$$

$$+ \left(\sum_{n=0}^{\infty} \frac{u^n}{(2n)!} - \sum_{n=0}^{\infty} \frac{(-1)^n v^n}{(2n)!}\right) A^2$$

$$= \left(v\cosh\sqrt{u} + u\cos\sqrt{v}\right) I_4 + \left(\cosh\sqrt{u} - \cos\sqrt{v}\right) A^2.$$
153

We can use again (11) to calculate the following sum

$$(u+v)\sum_{n=0}^{\infty} \frac{A^{2n+1}}{(2n+1)!} = \left(v\sum_{n=0}^{\infty} \frac{u^n}{(2n+1)!} + u\sum_{n=0}^{\infty} \frac{(-1)^n v^n}{(2n+1)!}\right) A$$
$$+ \left(\sum_{n=0}^{\infty} \frac{u^n}{(2n+1)!} - \sum_{n=0}^{\infty} \frac{(-1)^n v^n}{(2n+1)!}\right) A^3$$
$$(14) = \left(\frac{v}{\sqrt{u}}\sum_{n=0}^{\infty} \frac{\sqrt{u}^{2n+1}}{(2n+1)!} + \frac{u}{\sqrt{v}}\sum_{n=0}^{\infty} \frac{(-1)^n \sqrt{v}^{2n+1}}{(2n+1)!}\right) A$$
$$+ \left(\frac{1}{\sqrt{u}}\sum_{n=0}^{\infty} \frac{\sqrt{u}^{2n+1}}{(2n+1)!} - \frac{1}{\sqrt{v}}\sum_{n=0}^{\infty} \frac{(-1)^n \sqrt{v}^{2n+1}}{(2n+1)!}\right) A^3$$
$$= \left(v\frac{\sinh\sqrt{u}}{\sqrt{u}} + u\frac{\sin\sqrt{v}}{\sqrt{v}}\right) A + \left(\frac{\sinh\sqrt{u}}{\sqrt{u}} - \frac{\sin\sqrt{v}}{\sqrt{v}}\right) A^3.$$

Let us remark also that the formula just derived is still valid even when u or v vanishes (in this case we take the limits of the functions $\frac{\sin(x)}{x}$ and $\frac{\sinh(x)}{x}$ as x tends to zero). Introducing

$$f_0(u,v) = \frac{v\cosh\sqrt{u} + u\cos\sqrt{v}}{u+v}, \quad f_1(u,v) = \frac{v\frac{\sinh\sqrt{u}}{\sqrt{u}} + u\frac{\sin\sqrt{v}}{\sqrt{v}}}{u+v},$$

$$f_2(u,v) = \frac{\cosh\sqrt{u} - \cos\sqrt{v}}{u+v}, \qquad f_3(u,v) = \frac{\frac{\sinh\sqrt{u}}{\sqrt{u}} - \frac{\sin\sqrt{v}}{\sqrt{v}}}{u+v},$$

we give up (13) and (14) the form

(16)
$$\sum_{n=0}^{\infty} \frac{A^{2n}}{(2n)!} = f_0(u,v)\mathbf{I}_4 + f_2(u,v)A^2, \quad \sum_{n=0}^{\infty} \frac{A^{2n+1}}{(2n+1)!} = f_1(u,v)A + f_3(u,v)A^3,$$

which implies

(17)
$$\operatorname{Exp}(A) = f_0(u, v) \mathrm{I}_4 + f_1(u, v) A + f_2(u, v) A^2 + f_3(u, v) A^3.$$

<u>Second case:</u> $b^2 + 4a = 0$. In this case we can write

(18)
$$A^4 - bA^2 - aI_4 = \left(A^2 - \frac{b}{2}I_4\right)^2 = \left(A - \sqrt{\frac{b}{2}}I_4\right)^2 \left(A + \sqrt{\frac{b}{2}}I_4\right)^2 = 0$$

and after introducing

(19)
$$\sqrt{\frac{b}{2}} = \rho,$$

154

rewrite it as

(21)

(20)
$$(A - \rho I_4)^2 (A + \rho I_4)^2 = (A + \rho I_4)^2 (A - \rho I_4)^2 = 0.$$

With this equation at hand we get immediately

Exp
$$(A - \rho I_4) (A + \rho I_4)^2 = [I_4 + (A - \rho I_4)] (A + \rho I_4)^2$$

$$= [A + (1 - \rho) I_4] (A + \rho I_4)^2.$$

By the properties of the exponential map, i.e.

(22)
$$\operatorname{Exp}(A - \rho \mathbf{I}_4) = \operatorname{Exp}(A)\operatorname{Exp}(-\rho \mathbf{I}_4) = \operatorname{exp}(-\rho)\operatorname{Exp}(A)$$

and (21), it follows that

(23)
$$\operatorname{Exp}(A) (A + \rho \mathbf{I}_4)^2 = \operatorname{exp}(\rho) [A + (1 - \rho) \mathbf{I}_4] (A + \rho \mathbf{I}_4)^2.$$

Similar considerations gives us

(24)
$$\operatorname{Exp}(A) (A - \rho \mathbf{I}_4)^2 = \operatorname{exp}(-\rho) [A + (1 + \rho) \mathbf{I}_4] (A - \rho \mathbf{I}_4)^2,$$

respectively.

Subtracting the left-hand side of (24) from that one of (23), we get

(25)
$$4\rho \operatorname{Exp}(A)A = 2\sqrt{2b}\operatorname{Exp}(A)A.$$

Since det(A) = -a, and $a \neq 0$, one can conclude that A is invertible. This is enough for us in order to write

Exp(A) =
$$\frac{1}{4\rho} A^{-1} \left\{ \exp(\rho) \left[A + (1-\rho) \mathbf{I}_4 \right] (A+\rho \mathbf{I}_4)^2 \right\}$$

(26)

$$-\exp(-\rho) [A + (1 + \rho) I_4] (A - \rho I_4)^2 \Big\}$$

which can be given in a more compact form as

(27)
$$\operatorname{Exp}(A) = g_0(\rho)A^{-1} + g_1(\rho)I_4 + g_2(\rho)A + g_3(\rho)A^2,$$

where

(28)
$$g_0(\rho) = \frac{\rho \operatorname{sh} \rho - \rho^2 \operatorname{ch} \rho}{2}, \qquad g_1(\rho) = \frac{2 \operatorname{ch} \rho - \rho \operatorname{sh} \rho}{2}$$
$$g_0(\rho) = \frac{\operatorname{sh} \rho + \rho \operatorname{ch} \rho}{2}, \qquad g_1(\rho) = \frac{\operatorname{sh} \rho}{2}$$

$$g_2(\rho) = \frac{\operatorname{sn}\rho + \rho \operatorname{cn}\rho}{2\rho}, \qquad g_3(\rho) = \frac{\operatorname{sn}\rho}{2\rho}.$$

Another useful way in which the above result can be presented is

(29)
$$\operatorname{Exp}(A) = \frac{\operatorname{ch}\rho}{2}(A+2I_3-\rho^2 A^{-1}) + \frac{\operatorname{sh}\rho}{2\rho}(A^2+A-\rho^2 I_3+\rho^2 A^{-1}).$$
155

3. Specializations for various Lie algebras. In this section we present the respective parameters a and b via explicit formulas for coordinates of Lie algebra elements from the selected list of Lie algebras given at the beginning of the paper.

3.1. The parameters a and b for the Lie algebra $\mathfrak{so}(4)$. The standard form of an arbitrary element $A \in \mathfrak{so}(4)$ is

(30)
$$A = \left\{ \begin{bmatrix} 0 & -x_1 & x_2 & -x_4 \\ x_1 & 0 & -x_3 & -x_5 \\ -x_2 & x_3 & 0 & -x_6 \\ x_4 & x_5 & x_6 & 0 \end{bmatrix}; x_1, x_2, x_3, x_4, x_5, x_6 \in \mathbb{R} \right\}$$

and, in accordance with (2), the parameters a and b can be determined by evaluating its characteristic polynomial P(A). For that purpose we used the elegant procedure described in [4]. The analytical and especially the computational details can be found in [1] along the *Mathematica*[®] program code furnishing this task. The results is

(31)
$$a = -(x_1x_6 + x_2x_5 + x_3x_4)^2$$
$$b = -x_1^2 - x_2^2 - x_3^2 - x_4^2 - x_5^2 - x_6^2$$

3.2. The parameters *a* and *b* for the Lie algebra $\mathfrak{so}(3, 1)$. We fixed a basis in which the elements of $\mathfrak{so}(3, 1)$ are of the form

(32)
$$\mathfrak{so}(3,1) = \left\{ \begin{bmatrix} 0 & -x_1 & x_2 & x_4 \\ x_1 & 0 & -x_3 & x_5 \\ -x_2 & x_3 & 0 & x_6 \\ x_4 & x_5 & x_6 & 0 \end{bmatrix}; x_1, x_2, x_3, x_4, x_5, x_6 \in \mathbb{R} \right\},$$

while the parameters a and b in the above coordinates turns out to be presented by the following expressions

(33)
$$a = (x_1x_6 + x_2x_5 + x_3x_4)^2$$
$$b = -x_1^2 - x_2^2 - x_3^2 + x_4^2 + x_5^2 + x_6^2.$$

We take the opportunity to mention that any constant electromagnetic field can be described by a second order tensor of type (32) and that the trajectories of charged particles in such fields can be obtained by making use of its exponent [5]. We refer to [2] for details and graphics illustrating various physical situations.

3.3. The parameters a and b for the Lie algebra $\mathfrak{so}(2,2)$. Now we have

(34)
$$\mathfrak{so}(2,2) = \left\{ \begin{bmatrix} 0 & x_1 & x_2 & x_4 \\ -x_1 & 0 & x_3 & x_5 \\ x_2 & x_3 & 0 & x_6 \\ x_4 & x_5 & -x_6 & 0 \end{bmatrix}; x_1, x_2, x_3, x_4, x_5, x_6 \in \mathbb{R} \right\}.$$

and,

(35)
$$a = -(x_1x_6 + x_2x_5 - x_3x_4)^2$$

$$b = -x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 - x_6^2,$$

156

respectively.

3.4. The parameters a and b for the Lie algebra $\mathfrak{sp}(4, \mathbb{R})$. Any element of this Lie algebra can be specified by means of the coordinates x_i , $i = 1, \ldots, 10$ and has the form

(36)
$$A = \left\{ \begin{bmatrix} x_1 & x_2 & x_5 & x_6 \\ x_3 & x_4 & x_6 & x_7 \\ x_8 & x_9 & -x_1 & -x_3 \\ x_9 & x_{10} & -x_2 & -x_4 \end{bmatrix}; x_1, \dots, x_{10} \in \mathbb{R} \right\}.$$

Unfortuately, this time the parameters

$$(37) \begin{array}{rcl} a &=& -x_1^2 x_4^2 - x_2^2 x_3^2 - x_6^2 x_9^2 - x_1^2 x_7 x_{10} - x_3^2 x_5 x_{10} - x_2^2 x_7 x_8 - x_4^2 x_5 x_8 \\ && + x_6^2 x_8 x_{10} + x_9^2 x_5 x_7 + 2 x_1 x_2 x_3 x_4 - 2 x_1 x_4 x_6 x_9 + 2 x_1 x_2 x_7 x_9 \\ && + 2 x_1 x_3 x_6 x_{10} + 2 x_2 x_4 x_6 x_8 - 2 x_2 x_3 x_6 x_9 + 2 x_3 x_4 x_5 x_9 - x_5 x_7 x_8 x_{10} \\ b &=& x_1^2 + x_4^2 + 2 x_2 x_3 + 2 x_6 x_9 + x_5 x_8 + x_7 x_{10}. \end{array}$$

are not so symmetrical as in preceding cases but are still manageable, especially for the purposes of the direct numerical implementations.

A *Mathematica*[®] program module which returns automatically the relevant matrix exponent by appropriate input matrices belonging to the classes discussed so far is available for testing and free use [3].

Acknowledgements. The authors are grateful to Dr. Clementina D. Mladenova from the Institute of Mechanics – Bulgarian Academy of Sciences for providing an access to her PC and computer algebra system *Mathematica*[®]. Most of the calculations presented here were done *via* above mentioned system.

REFERENCES

[1] G. Dimitrov G., I. Mladenov.

http://obzor.bio21.bas.bg/dpb_files/mfiles/Lev_Fad_Alg.nb.

[2] G. DIMITROV G., I. MLADENOV. A New Formula for the Exponents of the Generators of the Lorentz Group. In: Proceedings of the Seventh International Conference on Geometry, Integrability and Quantization, (Eds I. Mladenov, M. de León), SOFTEX, Sofia 2005.

[3] G. Dimitrov G., I. Mladenov.

http://obzor.bio21.bas.bg/dpb_files/mfiles/4x4Exp_Map.nb.

[4] S.-H. HOU. A Simple Proof of the Leverrier-Faddeev Characteristic Polynomial Algorithm. SIAM Rev., 40 (1998), 706–709.

[5] R. ZENI, W. RODRIGUES. The Exponential of the Generators of the Lorentz Group and the Solution of the Lorentz Force. *Hadronic Journal*, **3** (1990), 317–327.

Georgi K. Dimitrov	Ivaïlo M. Mladenov
Institute of Biophysics	Institute of Biophysics
Bulgarian Academy of Sciences	Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 21	Acad. G. Bonchev Str., Bl. 21
1113 Sofia, Bulgaria	1113 Sofia, Bulgaria
e-mail: gkid@abv.bg	e-mail: mladenov@obzor.bio21.bas.bg

ВЪРХУ ЕКСПОНЕНТИТЕ НА НЯКОИ 4 × 4 МАТРИЦИ

Георги К. Димитров, Ивайло М. Младенов

В настоящата работа е изведена обща формула за експонентите на всички 4×4 матрици принадлежащи на някоя от следните алгебри на Ли: $\mathfrak{so}(4)$, $\mathfrak{so}(2,2)$, $\mathfrak{so}(3,1)$ и $\mathfrak{sp}(4,\mathbb{R})$. Подходът за решаване на задачата се основава на теоремата на Хамилтон-Кейли и, по-точно, от съществено значение е видът на характеристичният полином на матриците на изброените по-горе алгебри на Ли.