# МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2006 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2006 Proceedings of the Thirty Fifth Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 5–8, 2006

## SOME SELF-SIMILAR SETS DEFINED BY A PAIR OF PLANE CONTRACTING SIMILARITIES<sup>\*</sup>

#### Radostina P. Encheva, Georgi H. Georgiev

We consider special pairs of plane contracting similarities with the property: each similarity maps the fixed point of the other similarity to one and the same point. We investigate the invariant sets of all such pair of similarities.

**1. Preliminaries.** A transformation  $S : \mathbb{R}^2 \to \mathbb{R}^2$  is called a contracting similarity with ratio  $c \in (0, 1)$  when  $|S(z_1) - S(z_2) = c|z_1 - z_2|$  for any  $z_1, z_2 \in \mathbb{R}^2$ . A finite family of contracting similarities

 $(1) S_1, S_2, \ldots, S_m$ 

is called an iteration function system. We recall two basic facts for iteration function systems. The proofs are known from [4]. There is a unique non-empty compact set  $F \subset \mathbb{R}^2$ , called an attractor or an invariant set, such that  $F = \bigcup_{i=1}^m S_i(F)$ . The set F is, in general, a fractal. The standard procedure for obtaining of F is the following. Let  $E \subset \mathbb{R}^2$ be an arbitrary non-empty compact set and  $T(E) = \bigcup_{i=1}^m S_i(E)$ . Consider the sequence  $T^0(E) = E, T^1(E) = T(E), \ldots, T^{(k)}(E) = T(T^{(k-1)}(E))$ , then  $F = \bigcap_{k=0}^{\infty} T^{(k)}(E)$ . The set F is often called solf similar. A systematic description of call similar sets is given in

set F is often called self-similar. A systematic description of self-similar sets is given in [3] and [4].

If there are m+1 different points in  $\mathbb{R}^2 p_0, p_1, \ldots, p_m$  such that  $S_i(p_0) = p_{i-1}, S_i(p_m) = p_i$ , for  $i = 1, \ldots, m$ , the iterated function system is called a zipper with signature ( $\sigma_1 = 0, \ldots, \sigma_m = 0$ ). Many properties of zippers are proved in [1] and [2].

In this paper we study zippers with the base points  $p_0$ ,  $p_1$  and  $p_2$ . This means that either  $p_0p_1p_2$  is a triangle with acute angles  $\not\triangleleft p_1p_0p_2$  and  $\not\triangleleft p_1p_2p_0$ , or  $p_1$  is an interior point of the line segment  $[p_0p_2]$ .

2. A zipper defined by two direct similarities. Any orientation-preserving similarity, called also a direct similarity,  $S : \mathbb{R}^2 \to \mathbb{R}^2$  with fixed point  $(x_0, y_0)$  can be

<sup>&</sup>lt;sup>\*</sup>Research partially supported by Shumen University under grant 24200305.

 $<sup>{\</sup>bf Key}\ {\bf words:}\ {\bf contracting}\ {\bf similarities},\ {\bf iterated}\ {\bf function}\ {\bf system}$ 

<sup>2000</sup> Mathematics Subject Classification: 51M15, 28A80.

represented by the matrix equation

$$\begin{pmatrix} x'\\y' \end{pmatrix} = c \begin{pmatrix} \cos\varphi & -\sin\varphi\\\sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} x-x_0\\y-y_0 \end{pmatrix} + \begin{pmatrix} x_0\\y_0 \end{pmatrix}$$

where  $c \in \mathbb{R} \setminus \{0\}$  is the ratio of similarity and  $\varphi \in [-\pi, \pi]$  is the angle of the rotation. This similarity is a contraction whenever  $c \in (-1, 0) \cup (0, 1)$ . We consider an iterated function system formed by two contracting similarities  $S_1$  and  $S_2$  which have different fixed points (0, 0) and (1, 0) respectively. Then the corresponding matrix equation of  $S_1$  and  $S_2$  are

(2) 
$$S_1: \begin{pmatrix} x'\\ y' \end{pmatrix} = c_1 \begin{pmatrix} \cos\varphi_1 & -\sin\varphi_1\\ \sin\varphi_1 & \cos\varphi_1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}$$

and

(3) 
$$S_2: \begin{pmatrix} x'\\ y' \end{pmatrix} = c_2 \begin{pmatrix} \cos\varphi_2 & -\sin\varphi_2\\ \sin\varphi_2 & \cos\varphi_2 \end{pmatrix} \begin{pmatrix} x-1\\ y \end{pmatrix} + \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

where  $c_i \in (0, 1)$  for i = 1, 2.

**Proposition 1.** Let a and b be positive real numbers such that  $a^2 + b^2 < 1$  and  $(a-1)^2+b^2 < 1$ . Then the iterated function system  $\{S_1, S_2\}$  is a zipper with vertices  $p_0 = (0, 0)$ ,  $p_1 = (a, b)$  and  $p_2 = (1, 0)$  if and only if  $c_1 = \sqrt{a^2 + b^2}$ ,  $c_2 = \sqrt{(1-a)^2 + b^2}$ ,  $\tan \varphi_1 = \frac{b}{a}$  and  $\tan \varphi_2 = \frac{b}{a-1}$ .

**Proof.** Since the function tan is a bijection of the open interval  $(-\pi/2, \pi/2)$ , the conditions  $S_1(p_2) = p_1$  and  $S_2(p_0) = p_1$  are equivalent to the conditions  $c_1 = \sqrt{a^2 + b^2}$ ,  $c_2 = \sqrt{(1-a)^2 + b^2}$ ,  $\varphi_1 = \arctan \frac{b}{a}$  and  $\varphi_2 = \arctan \frac{b}{a-1}$ .  $\Box$ Let *F* be the invariant set of the zipper  $\{S_1, S_2\}$ . According to Lemma 1.1 from [2]

Let F be the invariant set of the zipper  $\{S_1, S_2\}$ . According to Lemma 1.1 from [2] there is a structural parametrization of F. This means that there exists a continuous mapping  $\gamma : [0, 1] \to F$  with the property: if  $\overline{t} \in (0, 1)$ ,  $\gamma(0, \overline{t}, 1) = (p_0, p_1, p_2)$ ,  $\tau_1(t) = \overline{t} \cdot t$  and  $\tau_2(t) = \overline{t} \cdot (1-t) + t$  for all  $t \in [0, 1]$ , then  $S_i \circ \gamma = \gamma \circ \tau_i$  for i = 1, 2. Without loss of generality we may assume that  $\overline{t} : (1-\overline{t}) = c_1 : c_2$ .



**Corollary 1.** The invariant set F is not a Jordan arc.

**Proof.** It is sufficient to show that  $\gamma$  is not a homeomorphism. From (2) and (3) it follows that the sequence of points  $S_1 \circ S_2^k(p_1) \in F$ ,  $k = 1, 2, \ldots$ , tends to  $p_1 \in F$ . The second sequence  $S_2 \circ S_1^k(p_1)$ ,  $k = 1, 2, \ldots$ , also tends to  $p_1$ . Hence,  $p_1$  is a self-intersecting point of F, i.e  $\gamma$  is not a homeomorphism (see Figure 1). 160 3. A zipper defined by a pair of direct and orientation-reversing similarities. A contracting orientation-reversing similarity  $\widetilde{S}_2 : \mathbb{R}^2 \to \mathbb{R}^2$  with fixed point (1, 0) can be represented in the form

(4) 
$$\widetilde{S}_2: \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \widetilde{c}_2 \begin{pmatrix} \cos\varphi_2 & \sin\varphi_2 \\ \sin\varphi_2 & -\cos\varphi_2 \end{pmatrix} \begin{pmatrix} x-1 \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
,  
where  $\widetilde{c} \in (0, 1)$  and  $\varphi \in [-\pi, \pi]$ . As in the previous section we obtain

where  $\tilde{c}_2 \in (0, 1)$  and  $\varphi_2 \in [-\pi, \pi]$ . As in the previous section we obtain:

**Proposition 2.** Let a > 0, b > 0,  $a^2 + b^2 < 1$  and  $(1 - a)^2 + b^2 < 1$ . Suppose that  $S_1 : \mathbb{R}^2 \to \mathbb{R}^2$  is given by (2) and  $\tilde{S}_2$  is given by (4). Then, the iterated function system  $\{S_1, \tilde{S}_2\}$  is a zipper with vertices  $p_0 = (0, 0)$ ,  $p_1 = (a, b)$  and  $p_2 = (1, 0)$  if and only if  $c_1 = \sqrt{a^2 + b^2}$ ,  $c_2 = \sqrt{(1 - a)^2 + b^2}$ ,  $\tan \varphi_1 = \frac{b}{a}$  and  $\tan \varphi_2 = \frac{b}{1 - a}$ .



**Corollary** The invariant set F of  $\{S_1, \widetilde{S}_2\}$  is not a Jordan arc.

**Proof.** Let *E* be the unit segment with endpoints  $p_0 = (0, 0)$  and  $p_2 = (1, 0)$ . For  $k \ge \frac{\pi - \varphi_1 - \varphi_2}{\varphi_1}$  we have that  $Card(S_1(T^{k-1}(E)) \cap S_2(T^{k-1}(E))) > 1$ . Since  $T^k(E) \to F$  as  $k \to \infty$ , where *F* (see Figure 2) is the attractor of  $\{S_1, \tilde{S}_2\}$ ,  $Card(S_1(F) \cap S_2(F)) > 1$ . Now, let  $\gamma$  be the structural parametrization of *F*. Assume that *F* is a Jordan arc. This means that  $\gamma$  is a homeomorphism. From  $Card(S_1(F) \cap S_2(F)) > 1$  it follows that there exist  $F \ni x \neq p_1 = (a, b)$  and  $x \in S_1(F) \cap S_2(F)$ . Hence,  $\gamma^{-1}(x) \in \tau_1([0, 1]) = [0, \overline{t}]$  and  $\gamma^{-1}(x) \in \tau_2([0, 1]) = [\overline{t}, 1]$ , i. e.  $\gamma^{-1}(x) = \overline{t}$ . Therefore,  $x = p_1$  which is a contradiction.  $\Box$ 

4. Zippers defined by two orientation-reversing similarities. Using complex numbers for representation of contracting similarities of  $\mathbb{R}^2 \cong \mathbb{C}$  we can obtain general conditions for zipper with signature (0,0) and vertices  $p_0 = 0 \in \mathbb{C}$ ,  $p_1 = a + bi = \alpha \in \mathbb{C}$  and  $p_2 = 1 \in \mathbb{C}$ . It is well known that any direct similarity of  $\mathbb{R}^2 \cong \mathbb{C}$  is given by the equation  $S(z) = qz + r; q \in \mathbb{C} \setminus \{0\}, r, z \in \mathbb{C}$  and any orientation-reversing similarity of  $\mathbb{R}^2 \cong \mathbb{C}$  is given by  $S(z) = q\overline{z} + r; q \in \mathbb{C} \setminus \{0\}, r, z \in \mathbb{C}$ .

**Theorem 1.** Let  $\alpha \in \mathbb{C}$ ,  $|\alpha| < 1$  and  $|1 - \alpha| < 1$ . Let  $\mathbf{S} = \{S_1, S_2\}$  be a pair of contracting similarities of  $\mathbb{R}^2 \cong \mathbb{C}$ , i.e. for  $i \in \{1, 2\}$  either  $S_i(z) = q_i z + r_i$ ,  $|q_i| < 1$ , or  $S_i(z) = q_i \overline{z} + r_i$ ,  $|q_i| < 1$ . Then, the iterated function system  $\mathbf{S} = \{S_1, S_2\}$  is a zipper with signature (0,0) and vertices at the points  $\{0, \alpha, 1\}$  if and only if  $r_1 = 0$ ,  $r_2 = \alpha$ ,  $q_1 = \alpha$  and  $q_2 = 1 - \alpha$ .

**Proof.** From the definition of a zipper (see [1]) the iterated function system  $\mathbf{S} = \{S_1, S_2\}$  is a zipper with signature (0,0) whenever

(5) 
$$S_1(0) = 0, S_2(0) = \alpha$$
 and

161

(6) 
$$S_1(1) = \alpha, S_2(1) = 1.$$

Applying (5) we get  $r_1 = 0$ ,  $r_2 = \alpha$ . Then using (6) we obtain  $q_1 = \alpha$  and  $q_2 = 1 - \alpha$ . Obviously, if  $\alpha \in \mathbb{R}$ , or more precisely  $\alpha \in (0, 1)$ , then the the attractor F of **S** is the

unit segment. So that in the remaining part of the paper we can assume that  $\alpha \in \mathbb{C} \setminus \mathbb{R}$ . Now we shall investigate the zippers  $\mathbf{S} = \{S_1, S_2\}$  of two orientation-reversing contracting

similarities of the Euclidean plane. From **Theorem 1** we have that  $S_1(z) = \alpha \overline{z}, S_2(z) =$  $(1-\alpha)\overline{z}+\alpha$ , where  $|\alpha|<1, |1-\alpha|<1, \alpha, z\in\mathbb{C}$  and **S** has vertices at the points  $\{0, \alpha, 1\}.$ 



**Corollary 3.** The invariant set F of of the zipper S defined by two orientationreversing similarities is a Jordan arc if and only if  $|\alpha - 1/2| < 1/2$ .

**Proof.** F is a Jordan arc with endpoints 0 and 1 if  $Card(S_1(F) \cap S_2(F)) = 1$  (see [2], Theorem 1.2). If E is the unit segment with endpoints 0 and 1, then  $T^{1}(E)$  is union of two segments with endpoints 0, 1 and a common endpoint  $\alpha$ . At the next iteration we obtain the points  $S_1(\alpha)$  and  $S_2(\alpha)$  which belong to the segment E since  $S_i$  changes the orientation. The distance between the points  $S_1(\alpha)$  and  $S_2(\alpha)$  is  $1 - |\alpha|^2 - |1 - \alpha|^2$ . Continuing in this way we get  $2^k$  new points at the k-th iteration and the distances between the points obtained by the same new point at (k-1)-th iteration are  $|\alpha|^{k-2-s}|1-\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k-2-s}|\alpha|^{k$  $\alpha|^{s}(1-|\alpha|^{2}-|1-\alpha|^{2}), s=0,1,\ldots,k-2, k\geq 2$ . Hence,  $Card(S_{1}(F)\cap S_{2}(F))=1$  if and only if  $1 - |\alpha|^2 - |1 - \alpha|^2 > 0$ . The last inequality is equivalent to  $|\alpha - 1/2| < 1/2$ and this completes the proof see (Figure 3).

The sets  $T^k(E)$  are called pre-fractals of F.

**Proposition 3.** Let the Jordan arc F be the attractor of **S**. Then the pre-fractal  $T^k(E)$ has a length  $(|\alpha| + |1 - \alpha|)^k$ .

**Proof.** We use the principle of complete induction. It is clear that the statement is true for k = 1. Moreover,  $|\alpha| + |1 - \alpha| > 1$ . We suppose that the length of the pre-fractal  $T^{k-1}(E)$  is  $(|\alpha| + |1 - \alpha|)^{k-1}$ . Since  $Card(S_1(T^{k-1}(E)) \cap S_2(T^{k-1}(E))) = 1$  the length of  $T^k(E)$  is  $|\alpha|(|\alpha| + |1 - \alpha|)^{k-1} + |1 - \alpha|(|\alpha| + |1 - \alpha|)^{k-1} = (|\alpha| + |1 - \alpha|)^k$ .  $\Box$ If  $c_i \in (0, 1), i = 1, \dots, m$  are the ratios of the similarities  $S_i$  of the system (1),

then the unique solution s of the equation  $\sum_{i=1}^{m} c_i^s = 1$  is called a similarity dimension. In Euclidean space the similarity dimension and the Hausdorff dimension  $\dim_{\mathcal{H}} F$  of F

coincides if the "pieces"  $S_i(F)$  are pairwise disjoint. This result remains true if the pieces have only "small overlap", so called "just touching" (see [5]). Consequently, if the attractor F of the zipper  $\mathbf{S} = \{S_1, S_2\}$  is a Jordan arc, then  $\dim_{\mathcal{H}} F = s$ , where s the solution of the equation  $|\alpha|^s + |1 - \alpha|^s = 1$ .

Summarizing the results of this and previous sections we get the main theorem in this paper.

162

**Theorem 2.** Let  $S_1$  and  $S_2$  be two contracting similarities of  $\mathbb{R}^2 \cong \mathbb{C}$  and let  $\mathbf{S} = \{S_1, S_2\}$  be a zipper with signature (0,0) and vertices  $\{0, \alpha, 1\}$ . Then the attractor F of  $\mathbf{S}$  is a Jordan arc if and only if  $S_1$  and  $S_2$  are orientation-reversing similarities and  $\alpha \in \mathbb{C} \setminus \mathbb{R}$ ,  $|\alpha - 1/2| < 1/2$ .

#### REFERENCES

[1] V. V. ASEEV, A. V. TETENOV. On the self-similar Jordan arcs admitting structure parametrization. *Sib. Math. J.*, **46**, No. 4 (2005), 733–748.

[2] V. V. ASEEV, A. V. TETENOV, A. S. KRAVCHENKO. On self-similar Jordan curves on the plane. *Sib. Math. J.*, 44, No. 3 (2003), 481–492.

[3] CH. BANDT, S. GRAF. Self-similar sets 7. A characterization of self-similar fractals with positive Hausdorff measure. *Proc. Amer. Math. Soc.*, **114**, No. 4 (1992), 995–1001.

[4] K. J. FALCONER. Fractal geometry: mathematical foundations and applications. John Wiley and Sons, Chichester, 2003.

[5] J. HUTCHINSON. Fractals and self-similarity. Indiana Univ. Math. J., **30**, No. 5 (1981), 713–747.

Radostina P. Encheva and Georgi Hr. Georgiev Faculty of Mathematics and Informatics Shumen University Universitetska Str., No. 115 9712 Shumen, Bulgaria e-mail: r.encheva@fmi.shu-bg.net, g.georgiev@fmi.shu-bg.net

### НЯКОИ САМОПОДОБНИ МНОЖЕСТВА, ОПРЕДЕЛЕНИ ЧРЕЗ ДВОЙКА РАВНИННИ СВИВАЩИ ПОДОБНОСТИ

#### Радостина П. Енчева, Георги Хр. Георгиев

Разглеждат се специални двойки от равнинни свиващи подобности със свойството: всяка подобност изпраща неподвижната точка на другата в една и съща фиксирана точка. Изучават се инвариантните множества на всички такива двойки подобности.