МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2006 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2006 Proceedings of the Thirty Fifth Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 5–8, 2006

NEW RECURRENT INEQUALITY ON A CLASS OF VERTEX FOLKMAN NUMBERS*

Nikolay R. Kolev, Nedyalko D. Nenov

Let G be a graph and V(G) be the vertex set of G. Let a_1, \ldots, a_r be positive integers, $m = \sum_{i=1}^r (a_i - 1) + 1$ and $p = \max\{a_1, \ldots, a_r\}$. The symbol $G \to \{a_1, \ldots, a_r\}$ denotes that in every r-coloring of V(G) there exists a monochromatic a_i -clique of color i for some $i = 1, \ldots, r$. The vertex Folkman numbers $F(a_1, \ldots, a_r; m - 1) = \min\{|V(G)| : G \to (a_1 \ldots a_r) \text{ and } K_{m-1} \not\subseteq G\}$ are considered. In this paper we improve the known upper bounds on the numbers F(2, 2, p; p + 1) and F(3, p; p + 1).

Introduction. We consider only finite, non-oriented graphs without loops and multiple edges. We call a *p*-clique of the graph G a set of *p* vertices, each two of which are adjacent. The largest positive integer *p*, such that the graph G contains a *p*-clique is denoted by cl(G). We denote by V(G) and E(G) the vertex set and the edge set of the graph G respectively. The symbol K_n denotes the complete graph on *n* vertices.

Let G_1 and G_2 be two graphs without common vertices. We denote by $G_1 + G_2$ the graph G for which $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup E'$, where $E' = \{[x, y] \mid x \in V(G_1), y \in V(G_2)\}.$

Definition. Let a_1, \ldots, a_r be positive integers. We say that the r-coloring

$$V(G) = V_1 \cup \ldots \cup V_r, \ V_i \cap V_j = \emptyset, \ i \neq j,$$

of the vertices of the graph G is (a_1, \ldots, a_r) – free, if V_i does not contain an a_i – clique for each $i \in \{1, \ldots, r\}$. The symbol $G \to (a_1, \ldots, a_r)$ means that there is not an (a_1, \ldots, a_r) -free coloring of the vertices of G.

We consider for arbitrary natural numbers a_1, \ldots, a_r and q

 $H(a_1, \ldots, a_r; q) = \{G : G \to (a_1, \ldots, a_r) \text{ and } cl(G) < q\}.$

The vertex Folkman numbers are defined by the equality

 $F(a_1, \dots, a_r; q) = \min\{|V(G)| : G \in H(a_1, \dots, a_r; q)\}.$

It is clear that $G \to (a_1, \ldots, a_r)$ implies $cl(G) \ge \max\{a_1, \ldots, a_r\}$. Folkman [1] proved that there exists a graph G such that $G \to (a_1, \ldots, a_r)$ and $cl(G) = \max\{a_1, \ldots, a_r\}$. Therefore

(1) $F(a_1,\ldots,a_r;q) \text{ exists if and only if } q > \max\{a_1,\ldots,a_r\}.$

^{*}Key words: r-coloring, Folkman numbers

²⁰⁰⁰ Mathematics Subject Classification: 05C55

If a_1, \ldots, a_r are positive integers, $r \ge 2$ and $a_i = 1$ then it is easy to see that

(2)
$$G \to (a_1, \ldots, a_r) \Leftrightarrow G \to (a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_r).$$

It is also easy to see that for an arbitrary permutation $\varphi \in S_r$ we have

$$G \to (a_1, \ldots, a_r) \Leftrightarrow G \to (a_{\varphi(1)}, \ldots, a_{\varphi(r)}).$$

That is why

(3) $F(a_1, \dots, a_r; q) = F(a_{\varphi(1)}, \dots, a_{\varphi(r)}), \text{ for each } \varphi \in S_r$

According to (2) and (3) it is enough to consider just such numbers $F(a_1, \ldots, a_r; q)$ for which

$$(4) 2 \le a_1 \le \ldots \le a_r$$

For arbitrary positive integers a_1, \ldots, a_r define:

(5)
$$p = p(a_1, \dots, a_r) = \max\{a_1, \dots, a_r\};$$

(6)
$$m = 1 + \sum_{i=1}^{r} (a_i - 1)$$

It is easy to see that $K_m \to (a_1, \ldots, a_r)$ and $K_{m-1} \not\to (a_1, \ldots, a_r)$. Therefore $F(a_1, \ldots, a_r; q) = m$, if q > m.

In [4] it was proved that
$$F(a_1, \ldots, a_r; m) = m + p$$
, where m and p are defined by the equalities (5) and (6). About the numbers $F(a_1, \ldots, a_r; m-1)$ we know that $F(a_1, \ldots, a_r; m-1) \ge m + p + 2$, $p \ge 2$ and according to [3]

(7)
$$F(a_1,\ldots,a_r;m-1) \le m+3p$$

The exact values of all numbers $F(a_1, \ldots, a_r; m-1)$ for which $\max\{a_1, \ldots, a_r\} \leq 4$ are known. A detailed exposition of these results was given in [8]. We must add the equality F(2, 2, 3; 4) = 14 obtained in [2] to this exposition. We do not know any exact values of $F(a_1, \ldots, a_r; m-1)$ in the case when $\max\{a_1, \ldots, a_r\} \geq 5$.

According to (1), $F(a_1, \ldots, a_r; m-1)$ exists exactly when $m \ge p+2$. In this paper we shall improve inequality (7) in the boundary case when m = p+2, $p \ge 5$. From the equality m = p+2 and (4) it easily follows that there are two such numbers only: F(2,2,p;p+1) and F(3,p;p+1). It is clear that from $G \to (3,p)$ it follows $G \to (2,2,p)$. Therefore

(8)
$$F(2,2,p;p+1) \le F(3,p;p+1).$$

The inequality (7) gives us that:

(9) $F(3, p; p+1) \le 4p+2;$

(10)
$$F(2,2,p:p+1) \le 4p+2$$

Our goal is to improve the inequalities (9) and (10). We shall need the following

Lemma. Let G_1 and G_2 be two graphs such that

- (11) $G_1 \to (a_1, \dots, a_{i-1}, a'_i, a_{i+1}, \dots, a_r)$
- and
- (12) $G_2 \to (a_1, \dots, a_{i-1}, a''_i, a_{i+1}, \dots, a_r).$
- Then
- (13) $G_1 + G_2 \to (a_1, \dots, a_{i-1}, a'_i + a''_i, a_{i+1}, \dots, a_r).$

165

Proof. Assume that (13) is wrong and let

 V_{\cdot}

$$V_1 \cup \ldots \cup V_r, \ V_i \cap V_j = \emptyset, \ i \neq j$$

be a $(a_1, \ldots, a_{i-1}, a'_i + a''_i, a_{i+1}, \ldots, a_r)$ -free *r*-coloring of $V(G_1 + G_2)$. Let $V'_i = V_i \cap V(G_1)$ and $V''_i = V_i \cap V(G_2)$, for $i = 1, \ldots, r$. Then $V'_1 \cup \ldots \cup V'_r$ is an *r*-coloring of $V(G_1)$, such that V_j does not contain an a_j -clique, $j \neq i$. Thus from (11) it follows that V'_i contains an a'_i -clique. Analogously from the *r*-colouring $V''_1 \cup \ldots \cup V''_r$ of $V(G_2)$ it follows that V''_i contains an a''_i -clique. Therefore $V_i = V'_i \cup V''_i$ contains a $(a'_i + a''_i)$ -clique, which contradicts the assumption that $V_1 \cup \ldots \cup V_r$ is a $(a_1, \ldots, a_{i-1}, a'_i + a''_i, a_{i+1}, \ldots, a_r)$ -free *r*-coloring of $V(G_1 + G_2)$. This contradiction proves the Lemma.

Results. The main result in this paper is the following

Theorem. Let $a_1 \leq \ldots \leq a_r$, $r \geq 2$ be positive integers and $a_r = b_1 + \ldots + b_s$, where b_i are positive integers, such that $b_i \geq a_{r-1}$, $i = 1, \ldots, s$. Then

(14)
$$F(a_1, \dots, a_r; a_r + 1) \le \sum_{i=1}^{s} F(a_1, \dots, a_{r-1}, b_i; b_i + 1).$$

Proof. We shall prove the Theorem by induction on s. As the inductive step is trivial we shall just prove the inductive base s = 2. Let G_1 and G_2 be two graphs such that $cl(G_1) = b_1$ and $cl(G_2) = b_2$, $a_r = b_1 + b_2$, $b_1 \ge a_{r-1}$, $b_2 \ge a_{r-1}$ and

$$G_1 \to (a_1, \dots, a_{r-1}, b_1), \ |V(G_1)| = F(a_1, \dots, a_{r-1}, b_1; b_1 + 1),$$

$$G_2 \to (a_1, \dots, a_{r-1}, b_2), \ |V(G_2)| = F(a_1, \dots, a_{r-1}, b_2; b_2 + 1).$$

According to the Lemma, $G_1 + G_2 \to (a_1, ..., a_{r-1}, a_r)$. As $cl(G_1 + G_2) = cl(G_1) + cl(G_2) = b_1 + b_2 = a_r$, we have

$$F(a_1, \ldots, a_r; a_r + 1) \le |V(G_1 + G_2)| = |V(G_1)| + |V(G_2)|.$$

From here the inequality (14) trivially follows when s = 2 and hence, for arbitrary s, as explained above. The Proof is completed.

We shall derive some corollaries from the Theorem. Let $p \ge 4$ and p = 4k + l, $0 \le l \le 3$. Then from (14) it easily follows that

(15)
$$F(3, p; p+1) \le (k-1)F(3, 4, ; 5) + F(3, 4+l; 5+l)$$

(16)
$$F(2,2,p;p+1) \le (k-1)F(2,2,4;5) + F(2,2,4+l;5+l)$$

From (15), (9) (p = 5, 6, 7) and the equality F(3, 4; 5) = 13 (see [6]), we obtain

Corollary 1. Let $p \ge 4$. Then:

$$F(3, p; p+1) \le \frac{13p}{4} \quad \text{for} \quad p \equiv 0 \mod 4;$$

$$F(3, p; p+1) \le \frac{13p+23}{4} \quad \text{for} \quad p \equiv 1 \mod 4;$$

$$F(3, p; p+1) \le \frac{13p+26}{4} \quad \text{for} \quad p \equiv 2 \mod 4;$$

$$F(3, p; p+1) \le \frac{13p+29}{4} \quad \text{for} \quad p \equiv 3 \mod 4.$$

166

From (16), the equality F(2, 2, 4; 5) = 13 (see [7]), the inequality (10) (p = 5) and both inequalities $F(2, 2, 6; 7) \leq 22$ and $F(2, 2, 7; 8) \leq 27$ (see [9]) we obtain

Corollary 2. Let $p \ge 4$. Then

$$F(2,2,p;p+1) \leq \frac{13p}{4} \text{ for } p \equiv 0 \mod 4;$$

$$F(2,2,p;p+1) \leq \frac{13p+23}{4} \text{ for } p \equiv 1 \mod 4;$$

$$F(2,2,p;p+1) \leq \frac{13p+10}{4} \text{ for } p \equiv 2 \mod 4;$$

$$F(2,2,p;p+1) \leq \frac{13p+17}{4} \text{ for } p \equiv 3 \mod 4.$$

We conjecture that the following inequalities hold:

(17)
$$F(3,p;p+1) \le \frac{13p}{4}$$
 for $p \ge 4$;

(18)
$$F(2,2,p;p+1) \le \frac{13p}{4} \text{ for } p \ge 4.$$

From the Theorem it follows that

(19)
$$F(3,p;p+1) \le F(3,p-4;p-3) + F(3,4;5), p \ge 8;$$

(20)
$$F(2,2,p;p+1) \le F(2,2,p-4;p-3) + F(2,2,4;5), p \ge 8.$$

From F(3, 4; 5) = 13 (see [6]) and (19) we obtain

Corollary 3. If the inequality (17) holds for p = 5, 6 and 7, then (17) is true for every $p \ge 4$.

From F(2, 2, 4; 5) = 13 (see [7]) and from (20) it follows

Corollary 4. If the inequality (18) holds for p = 5, 6 and 7 then (18) is true for every $p \ge 4$.

At the end in regard with (8) we shall pose the following

Problem. Is there a positive integer p, for which $F(2, 2, p; p+1) \neq F(3, p; p+1)$?

REFERENCES

[1] J. FOLKMAN. Graphs with monochromatic complete subgraphs in every edge coloring. *SIAM J. Appl. Math.*, **18** (1970), 19–24.

[2] J. COLES, S. RADJISZOWSKI. Computing the vertex Folkman number $F_v(2, 2, 3; 4)$, to appear in JCMCC (see http://www.cs.rit.edu/ $\tilde{s}pr/PUBL/paper50.pdf$).

[5] N. NENOV. On a class of vertex Folkman graphs. Annuaire Univ. Sofia, Fac. Math. Inform., 94 (2000), 15–25.

[6] N. NENOV. On the vertex Folkman number F(3,4). Compt. rend. Acad. bulg. Sci., 54 (2001), No 2, 23–26.

^[3] N. KOLEV, N. NENOV. New upper bound on a class of vertex Folkman numbers, submitted.
[4] T. LUCZAK, A. RUCINSKI, S. URBANSKI. On the minimal vertex Folkman graphs. *Discrete mathematics*, 236 (2001), 245–262.

[7] N. NENOV. On the 3-coloring vertex Folkman number F(2, 2, 4). Serdica Math. J., 27 (2001), 131–136.

[8] N. NENOV. On a class of vertex Folkman numbers. Serdica Math. J., 28 (2002), 219–232.

[9] N. NENOV. Computation of the vertex Folkman numbers F(2, 2, 2, 3; 5) and F(2, 3, 3; 5). Annuaire Univ. Sofia, Fac. Math. Inform., **95** (2001), 17–27.

[10] K. PIWAKOVSKI, S. RADZISZOWSKI. Computation of the Folkman number $F_e(3,3;5)$. J. Graph Theory, **32** (1999), 41–49.

N. Kolev Department of Algebra Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier Blvd 1164 Sofia, Bulgaria e-mail: nickyxy@mail.bg N. Nenov Department of Algebra Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier Blvd 1164 Sofia, Bulgaria e-mail: nenov@fmi.uni-sofia.bg

НОВА РЕКУРЕНТНА ВРЪЗКА ЗА КЛАС ОТ ВЪРХОВИ ФОЛКМАНОВИ ЧИСЛА

Николай Р. Колев, Недялко Д. Ненов

Нека G е граф и V(G) е множеството от върховете на G. Нека a_1, \ldots, a_r са естествени числа и $m = \sum_{i=1}^r (a_i - 1) + 1$ и $p = \max\{a_1, \ldots, a_r\}$. Символът $G \to \{a_1, \ldots, a_r\}$ означава, че във всяко r-оцветяване на V(G) има едноцветна a_i -клика от цвят i за някое $i = 1, \ldots, r$. Разглеждат се върховите Фолкманови числа $F(a_1, \ldots, a_r; m - 1) = \min\{|V(G)| : G \to (a_1 \ldots a_r)$ и $K_{m-1} \not\subseteq G\}$. В тази работа подобряваме известните оценки от горе за числата F(2, 2, p; p + 1) и F(3, p; p + 1).