NEW RECURRENT INEQUALITY ON A CLASS OF VERTEX FOLKMAN NUMBERS*

Nikolay R. Kolev, Nedyalko D. Nenov

Let G be a graph and $V(G)$ be the vertex set of G. Let a_{1}, \ldots, a_{r} be positive integers, $m=\sum_{i=1}^{r}\left(a_{i}-1\right)+1$ and $p=\max \left\{a_{1}, \ldots, a_{r}\right\}$. The symbol $G \rightarrow\left\{a_{1}, \ldots, a_{r}\right\}$ denotes that in every r-coloring of $V(G)$ there exists a monochromatic a_{i}-clique of color i for some $i=1, \ldots, r$. The vertex Folkman numbers $F\left(a_{1}, \ldots, a_{r} ; m-1\right)=\min \{|V(G)|$: $G \rightarrow\left(a_{1} \ldots a_{r}\right)$ and $\left.K_{m-1} \nsubseteq G\right\}$ are considered. In this paper we improve the known upper bounds on the numbers $F(2,2, p ; p+1)$ and $F(3, p ; p+1)$.

Introduction. We consider only finite, non-oriented graphs without loops and multiple edges. We call a p-clique of the graph G a set of p vertices, each two of which are adjacent. The largest positive integer p, such that the graph G contains a p-clique is denoted by $\operatorname{cl}(G)$. We denote by $V(G)$ and $E(G)$ the vertex set and the edge set of the graph G respectively. The symbol K_{n} denotes the complete graph on n vertices.

Let G_{1} and G_{2} be two graphs without common vertices. We denote by $G_{1}+G_{2}$ the graph G for which $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E^{\prime}$, where $E^{\prime}=\left\{[x, y] \mid x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$.

Definition. Let a_{1}, \ldots, a_{r} be positive integers. We say that the r-coloring

$$
V(G)=V_{1} \cup \ldots \cup V_{r}, \quad V_{i} \cap V_{j}=\emptyset, \quad i \neq j
$$

of the vertices of the graph G is $\left(a_{1}, \ldots, a_{r}\right)$ - free, if V_{i} does not contain an a_{i} - clique for each $i \in\{1, \ldots, r\}$. The symbol $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ means that there is not an $\left(a_{1}, \ldots, a_{r}\right)$ free coloring of the vertices of G.

We consider for arbitrary natural numbers a_{1}, \ldots, a_{r} and q

$$
H\left(a_{1}, \ldots, a_{r} ; q\right)=\left\{G: G \rightarrow\left(a_{1}, \ldots, a_{r}\right) \text { and } \operatorname{cl}(G)<q\right\} .
$$

The vertex Folkman numbers are defined by the equality

$$
F\left(a_{1}, \ldots, a_{r} ; q\right)=\min \left\{|V(G)|: G \in H\left(a_{1}, \ldots, a_{r} ; q\right)\right\}
$$

It is clear that $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ implies $c l(G) \geq \max \left\{a_{1}, \ldots, a_{r}\right\}$. Folkman [1] proved that there exists a graph G such that $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ and $\operatorname{cl}(G)=\max \left\{a_{1}, \ldots, a_{r}\right\}$. Therefore

$$
\begin{equation*}
F\left(a_{1}, \ldots, a_{r} ; q\right) \text { exists if and only if } q>\max \left\{a_{1}, \ldots, a_{r}\right\} \tag{1}
\end{equation*}
$$

[^0]If a_{1}, \ldots, a_{r} are positive integers, $r \geq 2$ and $a_{i}=1$ then it is easy to see that

$$
\begin{equation*}
G \rightarrow\left(a_{1}, \ldots, a_{r}\right) \Leftrightarrow G \rightarrow\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{r}\right) \tag{2}
\end{equation*}
$$

It is also easy to see that for an arbitrary permutation $\varphi \in S_{r}$ we have

$$
G \rightarrow\left(a_{1}, \ldots, a_{r}\right) \Leftrightarrow G \rightarrow\left(a_{\varphi(1)}, \ldots, a_{\varphi(r)}\right)
$$

That is why

$$
\begin{equation*}
F\left(a_{1}, \ldots, a_{r} ; q\right)=F\left(a_{\varphi(1)}, \ldots, a_{\varphi(r)}\right), \text { for each } \varphi \in S_{r} \tag{3}
\end{equation*}
$$

According to (2) and (3) it is enough to consider just such numbers $F\left(a_{1}, \ldots, a_{r} ; q\right)$ for which

$$
\begin{equation*}
2 \leq a_{1} \leq \ldots \leq a_{r} \tag{4}
\end{equation*}
$$

For arbitrary positive integers a_{1}, \ldots, a_{r} define:

$$
\begin{gather*}
p=p\left(a_{1}, \ldots, a_{r}\right)=\max \left\{a_{1}, \ldots, a_{r}\right\} \tag{5}\\
m=1+\sum_{i=1}^{r}\left(a_{i}-1\right) \tag{6}
\end{gather*}
$$

It is easy to see that $K_{m} \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ and $K_{m-1} \nrightarrow\left(a_{1}, \ldots, a_{r}\right)$. Therefore

$$
F\left(a_{1}, \ldots, a_{r} ; q\right)=m, \text { if } q>m
$$

In [4] it was proved that $F\left(a_{1}, \ldots, a_{r} ; m\right)=m+p$, where m and p are defined by the equalities (5) and (6). About the numbers $F\left(a_{1}, \ldots, a_{r} ; m-1\right)$ we know that $F\left(a_{1}, \ldots, a_{r}\right.$; $m-1) \geq m+p+2, p \geq 2$ and according to [3]

$$
\begin{equation*}
F\left(a_{1}, \ldots, a_{r} ; m-1\right) \leq m+3 p \tag{7}
\end{equation*}
$$

The exact values of all numbers $F\left(a_{1}, \ldots, a_{r} ; m-1\right)$ for which $\max \left\{a_{1}, \ldots, a_{r}\right\} \leq 4$ are known. A detailed exposition of these results was given in [8]. We must add the equality $F(2,2,3 ; 4)=14$ obtained in [2] to this exposition. We do not know any exact values of $F\left(a_{1}, \ldots, a_{r} ; m-1\right)$ in the case when $\max \left\{a_{1}, \ldots, a_{r}\right) \geq 5$.

According to (1), $F\left(a_{1}, \ldots, a_{r} ; m-1\right)$ exists exactly when $m \geq p+2$. In this paper we shall improve inequality (7) in the boundary case when $m=p+2, p \geq 5$. From the equality $m=p+2$ and (4) it easily follows that there are two such numbers only: $F(2,2, p ; p+1)$ and $F(3, p ; p+1)$. It is clear that from $G \rightarrow(3, p)$ it follows $G \rightarrow(2,2, p)$. Therefore

$$
\begin{equation*}
F(2,2, p ; p+1) \leq F(3, p ; p+1) \tag{8}
\end{equation*}
$$

The inequality (7) gives us that:

$$
\begin{gather*}
F(3, p ; p+1) \leq 4 p+2 \tag{9}\\
F(2,2, p: p+1) \leq 4 p+2 \tag{10}
\end{gather*}
$$

Our goal is to improve the inequalities (9) and (10). We shall need the following
Lemma. Let G_{1} and G_{2} be two graphs such that

$$
\begin{equation*}
G_{1} \rightarrow\left(a_{1}, \ldots, a_{i-1}, a_{i}^{\prime}, a_{i+1}, \ldots, a_{r}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{2} \rightarrow\left(a_{1}, \ldots, a_{i-1}, a_{i}^{\prime \prime}, a_{i+1}, \ldots, a_{r}\right) \tag{12}
\end{equation*}
$$

Then

$$
\begin{equation*}
G_{1}+G_{2} \rightarrow\left(a_{1}, \ldots, a_{i-1}, a_{i}^{\prime}+a_{i}^{\prime \prime}, a_{i+1}, \ldots, a_{r}\right) \tag{13}
\end{equation*}
$$

Proof. Assume that (13) is wrong and let

$$
V_{1} \cup \ldots \cup V_{r}, \quad V_{i} \cap V_{j}=\emptyset, i \neq j
$$

be a $\left(a_{1}, \ldots, a_{i-1}, a_{i}^{\prime}+a_{i}^{\prime \prime}, a_{i+1}, \ldots, a_{r}\right)$-free r-coloring of $V\left(G_{1}+G_{2}\right)$. Let $V_{i}^{\prime}=V_{i} \cap V\left(G_{1}\right)$ and $V_{i}^{\prime \prime}=V_{i} \cap V\left(G_{2}\right)$, for $i=1, \ldots, r$. Then $V_{1}^{\prime} \cup \ldots \cup V_{r}^{\prime}$ is an r-coloring of $V\left(G_{1}\right)$, such that V_{j} does not contain an a_{j}-clique, $j \neq i$. Thus from (11) it follows that V_{i}^{\prime} contains an a_{i}^{\prime}-clique. Analogously from the r-colouring $V_{1}^{\prime \prime} \cup \ldots \cup V_{r}^{\prime \prime}$ of $V\left(G_{2}\right)$ it follows that $V_{i}^{\prime \prime}$ contains an $a_{i}^{\prime \prime}$-clique. Therefore $V_{i}=V_{i}^{\prime} \cup V_{i}^{\prime \prime}$ contains a $\left(a_{i}^{\prime}+a_{i}^{\prime \prime}\right)$-clique, which contradicts the assumption that $V_{1} \cup \ldots \cup V_{r}$ is a $\left(a_{1}, \ldots, a_{i-1}, a_{i}^{\prime}+a_{i}^{\prime \prime}, a_{i+1}, \ldots, a_{r}\right)$-free r-coloring of $V\left(G_{1}+G_{2}\right)$. This contradiction proves the Lemma.

Results. The main result in this paper is the following
Theorem. Let $a_{1} \leq \ldots \leq a_{r}, r \geq 2$ be positive integers and $a_{r}=b_{1}+\ldots+b_{s}$, where b_{i} are positive integers, such that $b_{i} \geq a_{r-1}, \quad i=1, \ldots, s$. Then

$$
\begin{equation*}
F\left(a_{1}, \ldots, a_{r} ; a_{r}+1\right) \leq \sum_{i=1}^{s} F\left(a_{1}, \ldots, a_{r-1}, b_{i} ; b_{i}+1\right) \tag{14}
\end{equation*}
$$

Proof. We shall prove the Theorem by induction on s. As the inductive step is trivial we shall just prove the inductive base $s=2$. Let G_{1} and G_{2} be two graphs such that $\operatorname{cl}\left(G_{1}\right)=b_{1}$ and $\operatorname{cl}\left(G_{2}\right)=b_{2}, a_{r}=b_{1}+b_{2}, b_{1} \geq a_{r-1}, b_{2} \geq a_{r-1}$ and

$$
\begin{aligned}
& G_{1} \rightarrow\left(a_{1}, \ldots, a_{r-1}, b_{1}\right),\left|V\left(G_{1}\right)\right|=F\left(a_{1}, \ldots, a_{r-1}, b_{1} ; b_{1}+1\right) \\
& G_{2} \rightarrow\left(a_{1}, \ldots, a_{r-1}, b_{2}\right),\left|V\left(G_{2}\right)\right|=F\left(a_{1}, \ldots, a_{r-1}, b_{2} ; b_{2}+1\right)
\end{aligned}
$$

According to the Lemma, $G_{1}+G_{2} \rightarrow\left(a_{1}, \ldots, a_{r-1}, a_{r}\right)$. As $\operatorname{cl}\left(G_{1}+G_{2}\right)=\operatorname{cl}\left(G_{1}\right)+$ $c l\left(G_{2}\right)=b_{1}+b_{2}=a_{r}$, we have

$$
F\left(a_{1}, \ldots, a_{r} ; a_{r}+1\right) \leq\left|V\left(G_{1}+G_{2}\right)\right|=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right| .
$$

From here the inequality (14) trivially follows when $s=2$ and hence, for arbitrary s, as explained above. The Proof is completed.

We shall derive some corollaries from the Theorem. Let $p \geq 4$ and $p=4 k+l$, $0 \leq l \leq 3$. Then from (14) it easily follows that

$$
\begin{gather*}
F(3, p ; p+1) \leq(k-1) F(3,4, ; 5)+F(3,4+l ; 5+l) \tag{15}\\
F(2,2, p ; p+1) \leq(k-1) F(2,2,4 ; 5)+F(2,2,4+l ; 5+l) \tag{16}
\end{gather*}
$$

From (15), (9) $(p=5,6,7)$ and the equality $F(3,4 ; 5)=13$ (see [6]), we obtain
Corollary 1. Let $p \geq 4$. Then:

$$
\begin{gathered}
F(3, p ; p+1) \leq \frac{13 p}{4} \text { for } p \equiv 0 \quad \bmod 4 \\
F(3, p ; p+1) \leq \frac{13 p+23}{4} \text { for } p \equiv 1 \quad \bmod 4 \\
F(3, p ; p+1) \leq \frac{13 p+26}{4} \text { for } p \equiv 2 \quad \bmod 4 \\
F(3, p ; p+1) \leq \frac{13 p+29}{4} \text { for } p \equiv 3 \quad \bmod 4
\end{gathered}
$$

From (16), the equality $F(2,2,4 ; 5)=13$ (see [7]), the inequality (10) $(p=5)$ and both inequalities $F(2,2,6 ; 7) \leq 22$ and $F(2,2,7 ; 8) \leq 27$ (see [9]) we obtain

Corollary 2. Let $p \geq 4$. Then

$$
\begin{gathered}
F(2,2, p ; p+1) \leq \frac{13 p}{4} \text { for } p \equiv 0 \bmod 4 \\
F(2,2, p ; p+1) \leq \frac{13 p+23}{4} \text { for } p \equiv 1 \bmod 4 \\
F(2,2, p ; p+1) \leq \frac{13 p+10}{4} \text { for } p \equiv 2 \quad \bmod 4 \\
F(2,2, p ; p+1) \leq \frac{13 p+17}{4} \text { for } p \equiv 3 \quad \bmod 4 .
\end{gathered}
$$

We conjecture that the following inequalities hold:

$$
\begin{gather*}
F(3, p ; p+1) \leq \frac{13 p}{4} \text { for } p \geq 4 \tag{17}\\
F(2,2, p ; p+1) \leq \frac{13 p}{4} \text { for } p \geq 4 \tag{18}
\end{gather*}
$$

From the Theorem it follows that

$$
\begin{gather*}
F(3, p ; p+1) \leq F(3, p-4 ; p-3)+F(3,4 ; 5), p \geq 8 \tag{19}\\
F(2,2, p ; p+1) \leq F(2,2, p-4 ; p-3)+F(2,2,4 ; 5), p \geq 8 \tag{20}
\end{gather*}
$$

From $F(3,4 ; 5)=13$ (see [6]) and (19) we obtain
Corollary 3. If the inequality (17) holds for $p=5,6$ and 7, then (17) is true for every $p \geq 4$.

From $F(2,2,4 ; 5)=13$ (see [7]) and from (20) it follows
Corollary 4. If the inequality (18) holds for $p=5,6$ and 7 then (18) is true for every $p \geq 4$.

At the end in regard with (8) we shall pose the following
Problem. Is there a positive integer p, for which $F(2,2, p ; p+1) \neq F(3, p ; p+1)$?

REFERENCES

[1] J. Folkman. Graphs with monochromatic complete subgraphs in every edge coloring. SIAM J. Appl. Math., 18 (1970), 19-24.
[2] J. Coles, S. Radjiszowski. Computing the vertex Folkman number $F_{v}(2,2,3 ; 4)$, to appear in JCMCC (see http://www.cs.rit.edu/s̃pr/PUBL/paper50.pdf).
[3] N. Kolev, N. Nenov. New upper bound on a class of vertex Folkman numbers, submitted. [4] T. Luczak, A. Rucinski, S. Urbanski. On the minimal vertex Folkman graphs. Discrete mathematics, 236 (2001), 245-262.
[5] N. Nenov. On a class of vertex Folkman graphs. Annuaire Univ. Sofia, Fac. Math. Inform., 94 (2000), 15-25.
[6] N. Nenov. On the vertex Folkman number F(3,4). Compt. rend. Acad. bulg. Sci., 54 (2001), No $2,23-26$.
[7] N. Nenov. On the 3-coloring vertex Folkman number $F(2,2,4)$. Serdica Math. J., 27 (2001), 131-136.
[8] N. Nenov. On a class of vertex Folkman numbers. Serdica Math. J., 28 (2002), 219-232.
[9] N. Nenov. Computation of the vertex Folkman numbers $F(2,2,2,3 ; 5)$ and $F(2,3,3 ; 5)$. Annuaire Univ. Sofia, Fac. Math. Inform., 95 (2001), 17-27.
[10] K. Piwakovski, S. Radziszowski. Computation of the Folkman number $F_{e}(3,3 ; 5)$. J. Graph Theory, 32 (1999), 41-49.
N. Kolev

Department of Algebra
Faculty of Mathematics and Informatics
"St. Kl. Ohridski" University of Sofia
5, J. Bourchier Blvd
1164 Sofia, Bulgaria
e-mail: nickyxy@mail.bg
N. Nenov

Department of Algebra
Faculty of Mathematics and Informatics
"St. Kl. Ohridski" University of Sofia
5, J. Bourchier Blvd
1164 Sofia, Bulgaria
e-mail: nenov@fmi.uni-sofia.bg

НОВА РЕКУРЕНТНА ВРЪЗКА ЗА КЛАС ОТ ВЪРХОВИ ФОЛКМАНОВИ ЧИСЛА

Николай Р. Колев, Недялко Д. Ненов

Нека G е граф и $V(G)$ е множеството от върховете на G. Нека a_{1}, \ldots, a_{r} са естествени числа и $m=\sum_{i=1}^{r}\left(a_{i}-1\right)+1$ и $p=\max \left\{a_{1}, \ldots, a_{r}\right\}$. Символът $G \rightarrow$ $\left\{a_{1}, \ldots, a_{r}\right\}$ означава, че във всяко r-оцветяване на $V(G)$ има едноцветна a_{i}-клика от цвят i за някое $i=1, \ldots, r$. Разглеждат се върховите Фолкманови числа $F\left(a_{1}, \ldots, a_{r} ; m-1\right)=\min \left\{|V(G)|: G \rightarrow\left(a_{1} \ldots a_{r}\right)\right.$ и $\left.K_{m-1} \nsubseteq G\right\}$. В тази работа подобряваме известните оценки от горе за числата $F(2,2, p ; p+1)$ и $F(3, p ; p+1)$.

[^0]: *Key words: r-coloring, Folkman numbers
 2000 Mathematics Subject Classification: 05C55

