MATEMATUKA U MATEMATUHYECKO OBGPA30OBAHWE, 2006
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2006
Proceedings of the Thirty Fifth Spring Conference of

the Union of Bulgarian Mathematicians
Borovets, April 5-8, 2006

NEW RECURRENT INEQUALITY ON A CLASS OF
VERTEX FOLKMAN NUMBERS®

Nikolay R. Kolev, Nedyalko D. Nenov

Let G be a graph and V(G) be the vertex set of G. Let a1, ..., a,r be positive integers,
m =3 _,(ai—1)+1and p = max{as,...,a,}. The symbol G — {ai,...,a,} denotes
that in every r-coloring of V(G) there exists a monochromatic a;-clique of color ¢ for
some ¢ = 1,...,r. The vertex Folkman numbers F(ai,...,a,;m —1) = min{|V(G)] :
G — (a1...ar) and K,,—1 Z G} are considered. In this paper we improve the known
upper bounds on the numbers F(2,2,p;p+ 1) and F(3,p;p + 1).

Introduction. We consider only finite, non-oriented graphs without loops and
multiple edges. We call a p-clique of the graph G a set of p vertices, each two of which
are adjacent. The largest positive integer p, such that the graph G contains a p-clique is
denoted by cl(G). We denote by V(G) and E(G) the vertex set and the edge set of the
graph G respectively. The symbol K,, denotes the complete graph on n vertices.

Let G; and G5 be two graphs without common vertices. We denote by Gy + G5 the
graph G for which V(G) = V(G1) UV (G2) and E(G) = E(G1) U E(G2) U E’, where
E =A{[z,y] |z € V(G1),y € V(G2)}

Definition. Let ai,...,a, be positive integers. We say that the r-coloring
V(G)=ViU...UV,, V,nV; =0, i +#j,
of the vertices of the graph G is (a1, ... ,a,) — free, if V; does not contain an a; — clique for
each i € {1,...,r}. The symbol G — (ay,...,a,) means that there is not an (ai,...,a,)-

free coloring of the vertices of G.
We consider for arbitrary natural numbers a4, ..., a, and ¢
H(ay,...,a;59) ={G:G — (ay,...,a,) and cl(G) < q}.
The vertex Folkman numbers are defined by the equality
F(ay,...,ar;q) = min{|V(G)|: G € H(ay,...,ar;q)}.
It is clear that G — (a1,...,a,) implies c/(G) > max{a,...,a,}. Folkman [1] proved

that there exists a graph G such that G — (aq,...,a,) and c(G) = max{ai,...,a,}.
Therefore

(1) F(ay,...,ar;q) exists if and only if ¢ > max{aq,...,a,}.
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If ay,...,a, are positive integers, r > 2 and a; = 1 then it is easy to see that

(2) G—(a1,...,a.) G = (a1, ., Qim1, it 1, -5 Q).
It is also easy to see that for an arbitrary permutation ¢ € .S, we have
G — (a1,...,a;) < G = (ap(1), -+ Qp(r))-
That is why
(3) F(ay,...,a;3q) = F(ay1),- - 0p(r)), foreach ¢ e S,
According to (2) and (3) it is enough to consider just such numbers F(aq,...,a,;q) for
which
(4) 2<a; <...<a,.
For arbitrary positive integers a1, ..., a, define:
(5) p=play,...,a;) =max{ay,...,ar};

(6) m:1+Z(ai71)

It is easy to see that K,, — (a1,...,a,) and K,,_1 /4 (a1,...,a,). Therefore
F(ay,...,ar;9) =m, if ¢ > m.

In [4] it was proved that F(ai,...,a,;m) = m + p, where m and p are defined by the

equalities (5) and (6). About the numbers F(ay,...,a,;m—1) we know that F(ay,...,a,;

m—1) >m+p+2, p>2 and according to [3]

(7) F(ai,...,ar;m—1)<m+3p

The exact values of all numbers F'(ay,...,a,;m — 1) for which max{as,...,a,.} <4
are known. A detailed exposition of these results was given in [8]. We must add the
equality F(2,2,3;4) = 14 obtained in [2] to this exposition. We do not know any exact
values of F(aq,...,a,;m — 1) in the case when max{ay,...,a,) > 5.

According to (1), F(aq,...,a,;m — 1) exists exactly when m > p + 2. In this paper
we shall improve inequality (7) in the boundary case when m = p + 2, p > 5. From
the equality m = p + 2 and (4) it easily follows that there are two such numbers only:
F(2,2,p;p+1) and F(3,p;p+1). It is clear that from G — (3, p) it follows G — (2,2, p).
Therefore

(8) F(2,2,p;p+1) < F(3,pip+1).
The inequality (7) gives us that:

(9) FB,pip+1) <dp+2;
(10) F(2,2,p:p+1)<d4dp+2.

Our goal is to improve the inequalities (9) and (10). We shall need the following
Lemma. Let G1 and Gy be two graphs such that

(11) G1— (a1, .,0;-1,0;,ai41,-..,a;)

and

(12) Gy — (a1,...,a;-1,a] ,Qip1,. .., an).
Then

(13) G1+ Gy — (ar,...,a;_1,a; +a ai11,...,a.).

165



Proof. Assume that (13) is wrong and let
Viu...uV,, VinV; =0, i #3j,

bea (ai,...,a;—1,a;+al,a;41,...,a,)-free r-coloring of V(G1+Gs). Let V! = V;NV(G,)
and V' =V;NV(Gs), for i =1,...,r. Then V{ U...UV] is an r-coloring of V(Gy), such
that V; does not contain an a;—clique, j # 4. Thus from (11) it follows that V;' contains
an a,—clique. Analogously from the r-colouring Vi’ U ... UV of V(G2) it follows that
V" contains an af-clique. Therefore V; = V/ UV} contains a (a} + a})-clique, which
contradicts the assumption that Vi U...UV, is a (a1,...,a;—1,a; +a,aiy1,...,a,)-free
r-coloring of V(G + G2). This contradiction proves the Lemma.

Results. The main result in this paper is the following

Theorem. Let a1 < ... < a,, v > 2 be positive integers and a, = by + ...+ bs, where
b; are positive integers, such that b; > a,_1, i =1,...,s. Then

(14) F(al,. e, Ay ].) < ZF(GQ, .. .7CLT,1,bi;bi + ].)
i=1

Proof. We shall prove the Theorem by induction on s. As the inductive step is trivial
we shall just prove the inductive base s = 2. Let G; and G2 be two graphs such that
c(G1) = by and cl(Ga) = be, a, = by + ba, b1 > a1, by > a,—1 and

Gi1— (a1,...,a;-1,b1), |V(G1)|=F(a1,...,ar_1,b1;b1 + 1),
G2 - (ala- --aa7'—17b2)7 |V(G2)| = F(ala"'aar—labQ;bQ =+ 1)

According to the Lemma, Gy + G2 — (a1,...,a,-1,a.). As cl(G1 + G2) = cl(Gy) +
cl(Gz) = by + by = a,, we have
Flay,...;ar;a; +1) < |V(G1 + Go)| = [V(G1)| + [V(G2)]-
From here the inequality (14) trivially follows when s = 2 and hence, for arbitrary s,
as explained above. The Proof is completed.

We shall derive some corollaries from the Theorem. Let p > 4 and p = 4k + [,
0 <1< 3. Then from (14) it easily follows that

(15) FB3,pip+1) < (k—1)F(3,4,;5) + F(3,4+ ;5 +1)

(16) F(2,2,p;p+1) < (k- 1)F(2,2,4:5) + F(2,2,4 + ;5 + 1).

From (15), (9) (p = 5,6,7) and the equality F(3,4;5) = 13 (see [6]), we obtain
Corollary 1. Let p > 4. Then:

13
F(37P;p+1)§7p for p=0 mod 4;

13 23
F(37p;p+1)§% for p=1 mod 4;

13 26
F(&ﬁ%p-ﬁ-US% for p=2 mod 4;

13 29
F(37p;p+1)é% for p=3 mod 4.
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From (16), the equality F(2,2,4;5) = 13 (see [7]), the inequality (10) (p = 5) and
both inequalities F'(2,2,6;7) < 22 and F(2,2,7;8) < 27 (see [9]) we obtain

Corollary 2. Let p > 4. Then
13
F(2,2,p;p+1) < Tp for p=0 mod 4;

1 2
F(ZZPW—FI)S% for p=1 mod 4;

1 1
F(2’23p;p+1)gw for p=2 mod 4;

1 1
F(QaQ,P;PJrl)S% for p=3 mod 4.

We conjecture that the following inequalities hold:

13
(17) F(3,p;p+1)§7p for p > 4;
1
(18) F(2,2,p;p+1)§% for p > 4.
From the Theorem it follows that
(19) F@B,pip+1) < F(3,p—4p—3)+ F(3,4;5),p > 8;
(20) F(2,2,p;p+1) < F(2,2,p—4;p—3)+ F(2,2,4;5),p > 8.

From F(3,4;5) = 13 (see [6]) and (19) we obtain

Corollary 3. If the inequality (17) holds for p = 5, 6 and 7, then (17) is true for
every p > 4.

From F(2,2,4;5) = 13 (see [7]) and from (20) it follows

Corollary 4. If the inequality (18) holds for p =5, 6 and 7 then (18) is true for every
p =>4

At the end in regard with (8) we shall pose the following
Problem. Is there a positive integer p, for which F(2,2,p;p+ 1) # F(3,p;p+1)?
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HOBA PEKYPEHTHA BPbB3KA 3A KJIAC OT BbPXOBUI
DOOJIKMAHOBU YUCJIA

Hukounaii P. Koxes, Hensnko /1. Henos

Heka G e rpad u V(G) e muoxkecrBoro or BbpxoBere Ha G. Heka a1, ..., ar ca
ecrecrBenn yncna u m = y . (a; — 1) + 1 u p = max{a1,...,ar}. Cumsoasr G —
{a1,...,a,} o3HAuaBA, e BB BCsiKO r-ouseTsiBade Ha V (G) nMa eJHOIBETHA (;-KJIMKA
oT UBAT ¢ 3a HaAKoe ¢ = 1,...,r. Pasrimexxmar ce BbpxoBuTe POJIKMAHOBU UHUCIIA
F(ai,...,ap;m —1) = min{|V(G)| : G — (a1...ar) 1 K;m—1 € G}. B Ta3u pabora
noso6psiBaMe U3BECTHUTE ONEHKH OT Tope 3a uncaara F(2,2,p;p+1) u F(3,p;p+1).
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