
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2006
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2006

Proceedings of the Thirty Fifth Spring Conference of
the Union of Bulgarian Mathematicians

Borovets, April 5–8, 2006

NEW RECURRENT INEQUALITY ON A CLASS OF
VERTEX FOLKMAN NUMBERS*

Nikolay R. Kolev, Nedyalko D. Nenov

Let G be a graph and V (G) be the vertex set of G. Let a1, . . . , ar be positive integers,
m =

Pr
i=1(ai−1)+1 and p = max{a1, . . . , ar}. The symbol G→ {a1, . . . , ar} denotes

that in every r-coloring of V (G) there exists a monochromatic ai-clique of color i for
some i = 1, . . . , r. The vertex Folkman numbers F (a1, . . . , ar;m− 1) = min{|V (G)| :
G→ (a1 . . . ar) and Km−1 6⊆ G} are considered. In this paper we improve the known
upper bounds on the numbers F (2, 2, p; p+ 1) and F (3, p; p+ 1).

Introduction. We consider only finite, non-oriented graphs without loops and
multiple edges. We call a p-clique of the graph G a set of p vertices, each two of which
are adjacent. The largest positive integer p, such that the graph G contains a p-clique is
denoted by cl(G). We denote by V (G) and E(G) the vertex set and the edge set of the
graph G respectively. The symbol Kn denotes the complete graph on n vertices.

Let G1 and G2 be two graphs without common vertices. We denote by G1 + G2 the
graph G for which V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ E′, where
E′ = {[x, y] | x ∈ V (G1), y ∈ V (G2)}.

Definition. Let a1, . . . , ar be positive integers. We say that the r-coloring
V (G) = V1 ∪ . . . ∪ Vr, Vi ∩ Vj = ∅, i 6= j,

of the vertices of the graph G is (a1, . . . , ar) – free, if Vi does not contain an ai – clique for
each i ∈ {1, . . . , r}. The symbol G→ (a1, . . . , ar) means that there is not an (a1, . . . , ar)-
free coloring of the vertices of G.

We consider for arbitrary natural numbers a1, . . . , ar and q
H(a1, . . . , ar; q) = {G : G→ (a1, . . . , ar) and cl(G) < q}.

The vertex Folkman numbers are defined by the equality
F (a1, . . . , ar; q) = min{|V (G)| : G ∈ H(a1, . . . , ar; q)}.

It is clear that G → (a1, . . . , ar) implies cl(G) ≥ max{a1, . . . , ar}. Folkman [1] proved
that there exists a graph G such that G → (a1, . . . , ar) and cl(G) = max{a1, . . . , ar}.
Therefore
(1) F (a1, . . . , ar; q) exists if and only if q > max{a1, . . . , ar}.
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If a1, . . . , ar are positive integers, r ≥ 2 and ai = 1 then it is easy to see that
(2) G→ (a1, . . . , ar)⇔ G→ (a1, . . . , ai−1, ai+1, . . . , ar).
It is also easy to see that for an arbitrary permutation ϕ ∈ Sr we have

G→ (a1, . . . , ar)⇔ G→ (aϕ(1), . . . , aϕ(r)).
That is why
(3) F (a1, . . . , ar; q) = F (aϕ(1), . . . , aϕ(r)), for each ϕ ∈ Sr
According to (2) and (3) it is enough to consider just such numbers F (a1, . . . , ar; q) for
which
(4) 2 ≤ a1 ≤ . . . ≤ ar.
For arbitrary positive integers a1, . . . , ar define:

p = p(a1, . . . , ar) = max{a1, . . . , ar};(5)

m = 1 +
r∑

i=1

(ai − 1)(6)

It is easy to see that Km → (a1, . . . , ar) and Km−1 6→ (a1, . . . , ar). Therefore
F (a1, . . . , ar; q) = m, if q > m.

In [4] it was proved that F (a1, . . . , ar;m) = m + p, where m and p are defined by the
equalities (5) and (6). About the numbers F (a1, . . . , ar;m−1) we know that F (a1, . . . , ar;
m− 1) ≥ m+ p+ 2, p ≥ 2 and according to [3]
(7) F (a1, . . . , ar;m− 1) ≤ m+ 3p

The exact values of all numbers F (a1, . . . , ar;m − 1) for which max{a1, . . . , ar} ≤ 4
are known. A detailed exposition of these results was given in [8]. We must add the
equality F (2, 2, 3; 4) = 14 obtained in [2] to this exposition. We do not know any exact
values of F (a1, . . . , ar;m− 1) in the case when max{a1, . . . , ar) ≥ 5.

According to (1), F (a1, . . . , ar;m − 1) exists exactly when m ≥ p + 2. In this paper
we shall improve inequality (7) in the boundary case when m = p + 2, p ≥ 5. From
the equality m = p + 2 and (4) it easily follows that there are two such numbers only:
F (2, 2, p; p+ 1) and F (3, p; p+ 1). It is clear that from G→ (3, p) it follows G→ (2, 2, p).
Therefore
(8) F (2, 2, p; p+ 1) ≤ F (3, p; p+ 1).
The inequality (7) gives us that:

F (3, p; p+ 1) ≤ 4p+ 2;(9)
F (2, 2, p : p+ 1) ≤ 4p+ 2.(10)

Our goal is to improve the inequalities (9) and (10). We shall need the following
Lemma. Let G1 and G2 be two graphs such that

(11) G1 → (a1, . . . , ai−1, a
′
i, ai+1, . . . , ar)

and
(12) G2 → (a1, . . . , ai−1, a

′′
i , ai+1, . . . , ar).

Then
(13) G1 +G2 → (a1, . . . , ai−1, a

′
i + a′′i , ai+1, . . . , ar).
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Proof. Assume that (13) is wrong and let
V1 ∪ . . . ∪ Vr, Vi ∩ Vj = ∅, i 6= j,

be a (a1, . . . , ai−1, a
′
i+a

′′
i , ai+1, . . . , ar)-free r-coloring of V (G1+G2). Let V ′i = Vi∩V (G1)

and V ′′i = Vi ∩V (G2), for i = 1, . . . , r. Then V ′1 ∪ . . .∪V ′r is an r-coloring of V (G1), such
that Vj does not contain an aj−clique, j 6= i. Thus from (11) it follows that V ′i contains
an a′i−clique. Analogously from the r-colouring V ′′1 ∪ . . . ∪ V ′′r of V (G2) it follows that
V ′′i contains an a′′i -clique. Therefore Vi = V ′i ∪ V ′′i contains a (a′i + a′′i )-clique, which
contradicts the assumption that V1 ∪ . . .∪ Vr is a (a1, . . . , ai−1, a

′
i + a′′i , ai+1, . . . , ar)-free

r-coloring of V (G1 +G2). This contradiction proves the Lemma.

Results. The main result in this paper is the following

Theorem. Let a1 ≤ . . . ≤ ar, r ≥ 2 be positive integers and ar = b1 + . . .+ bs, where
bi are positive integers, such that bi ≥ ar−1, i = 1, . . . , s. Then

(14) F (a1, . . . , ar; ar + 1) ≤
s∑

i=1

F (a1, . . . , ar−1, bi; bi + 1).

Proof. We shall prove the Theorem by induction on s. As the inductive step is trivial
we shall just prove the inductive base s = 2. Let G1 and G2 be two graphs such that
cl(G1) = b1 and cl(G2) = b2, ar = b1 + b2, b1 ≥ ar−1, b2 ≥ ar−1 and

G1 → (a1, . . . , ar−1, b1), |V (G1)| = F (a1, . . . , ar−1, b1; b1 + 1),
G2 → (a1, . . . , ar−1, b2), |V (G2)| = F (a1, . . . , ar−1, b2; b2 + 1).

According to the Lemma, G1 + G2 → (a1, . . . , ar−1, ar). As cl(G1 + G2) = cl(G1) +
cl(G2) = b1 + b2 = ar, we have

F (a1, . . . , ar; ar + 1) ≤ |V (G1 +G2)| = |V (G1)|+ |V (G2)|.
From here the inequality (14) trivially follows when s = 2 and hence, for arbitrary s,

as explained above. The Proof is completed.
We shall derive some corollaries from the Theorem. Let p ≥ 4 and p = 4k + l,

0 ≤ l ≤ 3. Then from (14) it easily follows that
F (3, p; p+ 1) ≤ (k − 1)F (3, 4, ; 5) + F (3, 4 + l; 5 + l)(15)

F (2, 2, p; p+ 1) ≤ (k − 1)F (2, 2, 4; 5) + F (2, 2, 4 + l; 5 + l).(16)
From (15), (9) (p = 5, 6, 7) and the equality F (3, 4; 5) = 13 (see [6]), we obtain

Corollary 1. Let p ≥ 4. Then:

F (3, p; p+ 1) ≤ 13p
4

for p ≡ 0 mod 4;

F (3, p; p+ 1) ≤ 13p+ 23
4

for p ≡ 1 mod 4;

F (3, p; p+ 1) ≤ 13p+ 26
4

for p ≡ 2 mod 4;

F (3, p; p+ 1) ≤ 13p+ 29
4

for p ≡ 3 mod 4.
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From (16), the equality F (2, 2, 4; 5) = 13 (see [7]), the inequality (10) (p = 5) and
both inequalities F (2, 2, 6; 7) ≤ 22 and F (2, 2, 7; 8) ≤ 27 (see [9]) we obtain

Corollary 2. Let p ≥ 4. Then

F (2, 2, p; p+ 1) ≤ 13p
4

for p ≡ 0 mod 4;

F (2, 2, p; p+ 1) ≤ 13p+ 23
4

for p ≡ 1 mod 4;

F (2, 2, p; p+ 1) ≤ 13p+ 10
4

for p ≡ 2 mod 4;

F (2, 2, p; p+ 1) ≤ 13p+ 17
4

for p ≡ 3 mod 4.

We conjecture that the following inequalities hold:

F (3, p; p+ 1) ≤ 13p
4

for p ≥ 4;(17)

F (2, 2, p; p+ 1) ≤ 13p
4

for p ≥ 4.(18)

From the Theorem it follows that
(19) F (3, p; p+ 1) ≤ F (3, p− 4; p− 3) + F (3, 4; 5), p ≥ 8;

(20) F (2, 2, p; p+ 1) ≤ F (2, 2, p− 4; p− 3) + F (2, 2, 4; 5), p ≥ 8.
From F (3, 4; 5) = 13 (see [6]) and (19) we obtain
Corollary 3. If the inequality (17) holds for p = 5, 6 and 7, then (17) is true for

every p ≥ 4.
From F (2, 2, 4; 5) = 13 (see [7]) and from (20) it follows
Corollary 4. If the inequality (18) holds for p = 5, 6 and 7 then (18) is true for every

p ≥ 4.
At the end in regard with (8) we shall pose the following
Problem. Is there a positive integer p, for which F (2, 2, p; p+ 1) 6= F (3, p; p+ 1)?
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НОВА РЕКУРЕНТНА ВРЪЗКА ЗА КЛАС ОТ ВЪРХОВИ
ФОЛКМАНОВИ ЧИСЛА

Николай Р. Колев, Недялко Д. Ненов

Нека G е граф и V (G) е множеството от върховете на G. Нека a1, . . . , ar са
естествени числа и m =

Pr
i=1(ai − 1) + 1 и p = max{a1, . . . , ar}. Символът G →

{a1, . . . , ar} означава, че във всяко r-оцветяване на V (G) има едноцветна ai-клика
от цвят i за някое i = 1, . . . , r. Разглеждат се върховите Фолкманови числа
F (a1, . . . , ar;m − 1) = min{|V (G)| : G → (a1 . . . ar) и Km−1 6⊆ G}. В тази работа
подобряваме известните оценки от горе за числата F (2, 2, p; p+ 1) и F (3, p; p+ 1).
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