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Let A be a positive definite real or complex matrix. We characterize the Frechét
derivatives of matrix valued functions X 7→ Xp at the point A, where p is a rational
number, as special types of Lyapunov operators.

Introduction. In this paper we derive explicit expressions for the Frechét derivatives
of the matrix valued function fp : Sn×n

+ → Kn×n, defined by fp(X) = Xp, where p ∈ Q

and Sn×n
+ ⊂ Kn×n is the set of Hermitian positively definite n × n matrices. We note

that although Xp is well defined for X ∈ Sn×n
+ and all p ∈ R, only for rational values of

p one may determine reasonably the derivatives of fp.
The Frechét derivative f ′

p(A) of fp at a given point A ∈ Sn×n
+ may be used to

compute the absolute condition number of the problem B = fp(A) as the induced norm
of the operator f ′

p(A). This is important in analyzing the sensitivity of the corresponding
computational problem and finding error estimates for the computed solution. We note
that when using the Frobenius matrix norm, the induced norm of the operator f ′

p(A) is
equal to the 2–norm of its matrix.

The Frechét derivatives and condition numbers for the function X 7→ a0I + a1X +
a2X

2 + · · · , X ∈ Kn×n, defined by convergent power series, has been studied in [2].
Structured condition numbers (with restrictions on the matrix argument) for such series
have been considered in [1].

Further on we use the following general notations: Kn×n – the space of n×n matrices
over the field K = R or K = C; In – the identity n×n matrix; A – the complex conjugate of

the matrix A; A> – the transpose of A; AH = A
>

– the transposed complex conjugate of
A; spect(A) = {λ1(A), λ2(A), . . . , λn(A)} – the full spectrum of the matrix A ∈ Kn×n, i.e.
the collection of its eigenvalues λi(A), counted according to their algebraic multiplicity;
U(n) ⊂ Cn×n – the group of unitary matrices U ∈ Cn×n (UHU = In); Sn×n

+ ⊂ Kn×n

– the set of Hermitian positively definite n × n matrices; λmax(A) ≥ λmin(A) > 0 – the

maximal and minimal eigenvalues of A ∈ Sn×n
+ ; vec(A) ∈ Kn2

– the column-wise vector

representation of the matrix A ∈ Kn×n; Pn2 ∈ Rn2
×n2

– the vec–permutation matrix
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such that vec(A>) = Pn2vec(A), A ∈ Kn×n; A ⊗ B – the Kronecker product of the
matrices A and B; ‖ · ‖2 – the Euclidean norm in Kn or the spectral norm in Kn×n; ‖ · ‖F

– the Frobenius norm in Kn×n.

Matrix operators. Let L(n, K) be the space of linear operators F : Kn×n → Kn×n

and Mat(F) ∈ Kn2
×n2

be the matrix of the linear operator F ∈ L(n, K) such that
vec(F(A)) = Mat(F)vec(A), A ∈ Kn×n. Denote by I the identity operator on L(n, K),
i.e. Mat(I) = In2 . For M, N ∈ Kn×n and F ∈ L(n, K) we denote by MFN the linear
operator, defined by (MFN)(X) = MF(X)N . Using the identity vec(MY N) = (N> ⊗
M)vec(Y ), we see that Mat(MFN) = (N> ⊗ M)Mat(F).

For any F ∈ L(n, K) with Sylvester index r (see [3]) there exist 2r matrices Ak, Bk

such that F(X) =
r

∑

k=1

AkXBk and, hence, Mat(F) =
r
∑

r=1

B>

k ⊗ Ak . More general linear

matrix operators Km×n → Km×n may be defined by the same formula with Ak ∈ Km×m

and Bk ∈ Kn×n.
For F ,G ∈ L(n, K) let F ◦G ∈ L(n, K) be the composition of F and G, i.e. F ◦G(X) =

F(G(X)). We have Mat(F ◦G) = Mat(F)Mat(G) and Mat(F−1) = (Mat(F))−1 whenever
F is invertible. The norm of the operator F may be defined as ‖F‖ := max{‖F(X)‖F :
‖X‖F = 1} = max{‖vec(F(X))‖2 : ‖vec(X)‖2 = 1} = max{‖Mat(F)vec(X)‖2 :
‖vec(X)‖2 = 1} = ‖Mat(F)‖2.

The relative condition number of the invertible operator F ∈ L(n, K) is the quantity
cond(F) := ‖F‖ ‖F−1‖ = ‖Mat(F)‖2‖(Mat(F))−1‖2. Hence, cond(F) = cond2(Mat(F)).

The nonzero n × n matrix X is called an eigenmatrix of the operator F ∈ L(n, K)
if there is a scalar α such that F(X) = αX . The quantity α is an eigenvalue of this
operator. Note that for F ∈ L(n, R) the eigenpair (α, X) of F may be complex. The
eigenvalues of F are the eigenvalues of its matrix Mat(F) and, if X is an eigenmatrix of
F , then vec(X) is an eigenvector of Mat(F).

The full spectrum (the collection of eigenvalues counted according to algebraic multi-
plicity) of the linear matrix operator F : Km×n → Km×n, defined by F(X) =

∑

i,j

AiXBj ,

where A ∈ Km×m and B ∈ Kn×n are fixed matrices, is

(1)







∑

i,j

λiµj : λ ∈ spect(A), µ ∈ spect(B)







.

We recall [3, 4] that F ∈ L(n, K) is a Lyapunov operator if (F(A))H = F(AH),
A ∈ Kn×n. The necessary and sufficient condition for F to be a Lyapunov operator
is Pn2Mat(F) = Mat(F)Pn2 . We note that the sets of Hermitian and skew–Hermitian
(resp. symmetric and skew–symmetric) matrices are invariant sets for complex (resp.
real) Lyapunov operators.

Problem statement. Let A ∈ Sn×n
+ and p ∈ R. Then the matrix Ap is correctly

defined as follows. There exists a matrix U ∈ U(n) such that A = UΛUH, where Λ =
diag(λ1, λ2, . . . , λn) and 0 < λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A. Here Λ is
the (diagonal) Schur form of A. Now we may define the power p of A as Ap := UΛpUH,
Λp := diag (λp

1, λ
p
2, . . . , λ

p
n). Here λp

k is the positive (real) p–th degree of λk > 0.
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In a more general setting suppose that the matrix A has positive eigenvalues and
diagonal Jordan form Λ = V −1XV , where V is an invertible matrix. Then we may define
Ap := V ΛpV −1.

In order to obtain meaningful results we restrict ourselves to the case when p = ± r/s
is a rational number, where r, s ∈ N are coprime. To define correctly the matrix quantity
(A + E)p, where A ∈ Sn×n

+ and E ∈ Kn×n is a given increment, we may suppose that E
is Hermitian and A+E ∈ Sn×n

+ . In particular, we may assume that E varies over the set
Eα ⊂ Kn×n of all Hermitian matrices with ‖E‖2 < α := λmin(A).

Both conditions E = EH and ‖E‖2 < α are in certain sense necessary in order to
define (A+E)p. Indeed, there exist non–Hermitian and arbitrarily small matrices E such
that A + E has complex eigenvalues and there arises the problem to choose a suitable
branch of the root (A + E)1/s when 1 < s ∈ N. Let for example A = I2 and E = [eik]
be anti-diagonal with e12 = −e21 = ε, where ε > 0 is a small parameter. Then A + E
has complex eigenvalues 1± iε, where i2 = −1. Conversely, if ‖E‖2 ≥ α, then the matrix
A + E may have zero eigenvalues and its negative powers will not exist.

Under the above restrictions we may define the Frechét derivative F(p, A) := f ′
p(A)

of the function fp at the point A ∈ Sn×n
+ as the linear operator such that fp(A + E) =

(A + E)p = Ap + F(p, A)(E) + O(‖E‖2), E → 0, E ∈ Eα. Note that for non–integer
values of p the operator F(p, A) is defined only on the set Eα.

Main results. We shall consider successively the five cases p = r, p = −r, p = 1/s,
p = r/s and p = −r/s, where r, s ∈ N, giving explicit expressions for the operator
F(p, A). For the first two cases we also derive expressions for the eigenvalues and condition
numbers of this operator.

(i) The case p = r, r ∈ N. Since (A + E)r = Ar +
r−1
∑

k=0

Ar−1−kEAk + O(‖E‖2) it

follows that F(r, A)(E) =
r−1
∑

k=0

Ar−1−kEAk and hence

(2) F(r, A) =
r−1
∑

k=0

Ar−1−kIAk .

Note that F(r, A) ∈ L(n, K), i.e. F(r, A)(E) is defined for all E ∈ Kn×n.
For r = 1 we have the trivial result F(1, A)(E) = E, i.e. F(1, A) does not depend on

A and is equal to I. Since the matrix A is Hermitian (AH = A), we see that for r = 2
the operator F(2, A), given by F(2, A)(E) = AE + EA = AHE + EA, is the standard
Lyapunov operator arising in the theory of linear continuous–time systems. Moreover,
F(r, A) is a Lyapunov operator for all r ∈ N.

For r, s ∈ N we have

(A + E)r+s = Ar+s + ArF(s, A)(E) + F(r, A)(E)As + O(‖E‖2), E → 0.

Hence

(3) F(r + s, A) = ArF(s, A) + F(r, A)As = AsF(r, A) + F(s, A)Ar.

The matrix of the operator F(r, A) is given by

(4) Mat(F(r, A)) =
r−1
∑

k=0

(A>)k ⊗ Ar−1−k =
r−1
∑

k=0

A
k
⊗ Ar−1−k.
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Since A ∈ Sn×n
+ the matrix Mat(F(r, A)) is Hermitian. The collection of its eigenvalues

(i.e. the eigenvalues of F(r, A)) according to (1) is

spect(F(r, A)) =
{

r−1
∑

k=0

λk
i λr−1−k

j : i, j = 1, 2, . . . , n
}

.

Suppose that the spectrum of A consists of m pairwise distinct eigenvalues λ1, λ2, . . . , λm

with algebraic multiplicities k1, k2, . . . , km, respectively. Then the full spectrum
spect(F(r, A)) of F(r, A) consists of n2 elements, namely of k2

i quantities rλr−1

i , i =
1, 2, . . . , m and 2kikj quantities (λr

i −λr
j)/(λi−λj), i = 1, 2, . . . , r−1, j = i+1, i+2, . . . , r.

In particular

λmin(Mat(F(r, A))) = r(λmin(A))r−1, λmax(Mat(F(r, A))) = r(λmax(A))r−1

and hence

cond(F(r, A)) = cond2(Mat(F(r, A))) = (λmax(A)/λmin(A))
r−1

= (cond2(A))r−1.

The composition of two operators F(r, A) and F(s, A) is a Lyapunov operator (for
A = AH) and has the form

F(r, A) ◦ F(s, A) = F(s, A) ◦ F(r, A) =

t−1
∑

k=0

AkF(r + s − 1 − 2k, A)Ak, t := min{r, s}.

Consider the matrix valued function X 7→ g(X) :=
∞
∑

r=0

arX
r, ‖X‖ < ρ. The Frechét

derivative g′(A) ∈ L(n, K) of G at any point A, where A is arbitrary with ‖A‖ < ρ, is

g′(A) =
∞
∑

r=1

arF(r, A). Under the above assumptions on the spectrum of A it may be

shown that the full spectrum of g′(A) consists of n2 elements, namely of the k2
i numbers

g′(λi), i = 1, 2, . . . , m and the 2kikj numbers (g(λi)−g(λj))/(λi−λj), i = 1, 2, . . . , r−1,
j = i + 1, i + 2, . . . , r.

(ii) The case p = −r, r ∈ N. We have

(A + E)p = A−r − A−rF(r, A)(E)A−r + O(‖E‖2), E → 0.

Therefore, F(−r, A)(E) = −A−rF(r, A)(E)A−r = −
r−1
∑

k=0

A−1−kEAk−r, or

(5) F(−r, A) = −A−rF(r, A)A−r = F(−1, Ar) ◦ F(r, A).

In particular, we have the relations F(−1, A) = −A−1IA−1, F(−1, A−1) = −AIA and
F(−1, A) ◦ F(−1, A−1) = I.

The operator F(−r, A) is a Lyapunov operator. Its matrix and its full spectrum are

given by Mat(F(−r, A)) = −
r−1
∑

k=0

A
k−r

⊗ A−1−k and

spect(F(−r, A)) =
{

−
r−1
∑

k=0

λk−r
i λ−1−k

j : i, j = 1, 2, . . . , n
}

.

In particular, we have

λmin(Mat(F(−r, A))) = r(λmax(A))−r−1, λmax(Mat(F(−r, A))) = r(λmin(A))−r−1.
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Therefore,

cond(F(−r, A)) = cond2(Mat(F(−r, A)))

= (λmax(A)/λmin(A))
r+1

= (cond(A))r+1.

(iii) The case p = 1/s, s ∈ N. Here we may take the s–th power from both sides
of the equality (A + E)1/s = A1/s +F(1/s, A)(E) + O(‖E‖2), E → 0, in order to obtain
A+E = A+F(s, A1/s)(F(1/s, A)(E))+O(‖E‖2), E → 0. Hence, F(s, A1/s)◦F(1/s, A) =
I and

(6) F(1/s, A) = (F(s, A1/s))−1.

In this case the operatorF(1/s, A), being the inverse of the Lyapunov operatorF(s, A1/s),
is again a Lyapunov operator, see [3].

(iv) The case p = r/s; r, s ∈ N. It follows from the previous results that

(A + E)r/s = Ar/s + F(r, A1/s)(F(1/s, A)(E)) + O(‖E‖2).

Hence,

(7) F(r/s, A) = F(r, A1/s) ◦ F(1/s, A) = F(r, A1/s) ◦ (F(s, A1/s))−1.

(v) The case p = −r/s; r, s ∈ N. Since

(A + E)−r/s = A−r/s − A−r/sF(r/s, A)(E)A−r/s + O(‖E‖2),

we obtain

(8) F(−r/s, A) = −A−r/sF(r/s, A)A−r/s = F(−1, Ar/s) ◦ F(r/s, A).

Thus we have proved the following result.

Theorem 1.For all cases of rational degrees p described in (i), (ii), (iii), (iv) and

(v), the operator F(p, A) is given by the relations (2), (5), (6), (7) and (8), respectively.
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ПРОИЗВОДНИ НА ФРЕШЕ НА РАЦИОНАЛНО–СТЕПЕННИ
МАТРИЧНИ ФУНКЦИИ

Михаил М. Константинов, Юлиана К. Бонева, Петко Х. Петков

Нека A е положително дефинитна реална или комплексна матрица. Описани са
производните на Фреше на матричните функции X 7→ Xp в точката A, където p

е рационално число, като специален тип оператори на Ляпунов.

174


