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SOME OPTIMAL CONTROL PROBLEMS*
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The paper suggests a sufficient condition for convexity of the objective functional of
some optimal control problems. It is written on the basis of Mangasarian sufficient
condition for optimality. The condition for convexity of the functional can be used to
prove the convergence of a minimizing sequence to an optimal solution when optimal
control problem is solved numerically.

1. Introduction. The convex functionals have some important for the optimal
control theory properties. It is known, that if a convex functional has a point of local
minimum on a convex set, then that local minimum is a global one. In the numerical
methods of the extremal problems the convexity of the objective functional is a condition
for establishment of convergence and for estimation of the velocity of the convergence
of a minimizing sequence. Let is considered a problem for finding of a minimum of a
convex functional on a bounded closed convex subset of a reflexive Banach space. For
this problem it is known, that every minimizing sequence is weakly convergent to the set
of the solutions [3, p. 53]. Besides, if the minimizing sequence is obtained on the basis of
some gradient method, then there is an estimation of the velocity of the convergence of
the objective functional to its minimal value [3, p. 70, p. 75, p. 80].

Our aim in this paper is to find criteria for convexity of the objective functional in
the optimal control problems. Our basic result is the sufficient condition, which is given
as Theorem 3 of Section 4. Some additional results are formulated without proofs in the
conclusion.

In the paper we denote by x(·) the relation t → x(t), where t is the argument, and
x(t) is the value of the function. The scalar product of the vectors x and y we write as
(x, y), but in the space Rn – simply as x y. The symbol � we use to indicate the end of
a proof.

2. Statement of the main problem. We shall consider the following optimal
control problem: Minimize the functional

(1) J(u(·)) =

T∫

0

f0(x, t, u)dt
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subjected to
(2) ẋ = f(x, t, u), x(0) = x0

(3) u(·) ∈ U ⊂ L2[0, T ], U is a convex set
Here the state vector x ∈ Rn, the control vector u ∈ Rr, and the phase speed

f(x, t, u) ∈ Rn. The terminal time T and the state x0 are fixed, and the terminal state
is free.

We want to emphasize, that the problem (1)–(3) consists of finding a conditional
extremum of the functional J on a subset U of a Hilbert space. The value of the functional
depends only on the element u(·) ∈ U and is calculated by the formulas (1) and (2).

For solving the problem (1)–(3) the following Hamilton’s function is used1 :
(4) H(x, t, u, p) = f0(x, t, u) + pf(x, t, u)

We say, that the trajectory x(·) corresponds to the control u(·), if it is solution of the
Cauchy problem (2), in which u is the given control. The adjoint vector p(·) corresponds
to x(·) and u(·), if it is solution of the next adjoint Cauchy problem:

(5) ṗ = −∂H(x, t, u, p)
∂x

, p(T ) = 0

in which x and u are the given trajectory and control, respectively.
3. Some auxiliary results. From now on we use some conditions for convexity and

for reaching an extremum of a functional. The next two theorems are well known:
Theorem 1. Let U ⊂ H be a nonempty convex subset of the Hilbert space H, and J

be a continuously differentiable in Frechet sense functional.
A necessary and sufficient condition for convexity of J in U is for each two elements

u, u+ δu ∈ U to be fulfilled the inequality
(6) J(u+ δu) ≥ J(u) + (J ′(u), δu),
where J ′(u) is the Frechet derivative of the functional J(u).

Theorem 2. Let the condition of the Theorem 1 be fulfilled. Besides, let J be a convex
functional. Then, the functional J reaches its minimum at the point u ∈ U if and only if
(7) (J ′(u), v − u) ≥ 0 ∀v ∈ U.

These theorems can be found in [2], on page 103 and page 109, respectively. It is
necessary the notion function to be replaced by functional only.Theorem 1 is formulated
in [3, p. 24] also. In the monograph [2] this theorem is proved only for open convex sets
under weaker conditions, while in [3] it is given for arbitrary convex sets.

4. The main result. In the next theorem we suggest a sufficient condition for
convexity of the objective functional of the problen (1)–(3), obtained on the basis of the
Mangasarian sufficient condition for optimality [1, p. 105].

Theorem 3.Assume that f and f0 are jointly continuous of their arguments together
with their partial derivatives with respect to x and u. Besides, let f , ∂f/∂x, ∂f/∂u,
∂f0/∂x and ∂f0/∂u be Lipschitzian functions of x and u.

1 In some bibliographic sources as [3], [4] etc, this function is introduced and used with the opposite
sign.
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For the convexity of the objective functional J it is sufficient the Hamilton’s func-
tion H to be jointly convex in (x, u) for each solution p of the adjoint Cauchy’s problem
(5), which corresponds to some control v ∈ U .

Proof. Under the hypothesis of the theorem, the objective functional is differentiable.
The Frechet derivative is [3, p. 93]:

(8) J ′(u(·)) =
∂H(x(·), t, u(·), p(·))

∂u
,

where x is the corresponding to u trajectory, and p is the corresponding to x and u adjoint
variable. Besides, the derivative is continuous with respect to the variable u. In order to
prove the convexity of J , it is sufficient to prove that for each two controls u, u+ δu ∈ U
the inequality (6) is fulfilled. In other words, we must prove the inequality

(9) J(u+ δu) ≥ J(u) +

T∫

0

∂H(x, t, u, p)
∂u

δu dt

The proof of this inequality looks like the suggested in [1, p. 104] proof of Mangasarian
theorem. LetH is jointly convex by (x, u) for every t ∈ [0, T ] and for every adjoint variable
p, which corresponds to some control v ∈ U . According to Theorem 1 the inequality

H(x+ δx, t, u+ δu, p)−H(x, t, u, p) ≥ ∂H(x, t, u, p)
∂x

δx+
∂H(x, t, u, p)

∂u
δu

is fulfilled.

This inequality is fulfilled when x corresponds to u, p corresponds to (x, u) and x+δx
corresponds to u+δu. By integrating this inequality and using the equation (5) we obtain

T∫

0

(H(x+ δx, t, u+ δu, p)−H(x, t, u, p)) dt ≥ −
T∫

0

ṗδx dt+

T∫

0

∂H

∂u
δu dt

= −pδx
∣∣∣
T

0
+

T∫

0

pδẋdt+

T∫

0

∂H

∂u
δu dt

The first term in the right-hand side is equal to zero, because p(T ) = 0 and δx(0) = 0.
By using that δẋ = f(x+ δx, t, u+ δu)− f(x, t, u), we obtain

(10)
T∫

0

(H(x+ δx, t, u+ δu, p)−H(x, t, u, p)) dt ≥

≥
T∫

0

p(f(x+ δx, t, u+ δu)− f(x, t, u)) dt+

T∫

0

∂H

∂u
δu dt

Using the definition of the Hamiltonian we can give an expression of the function f0

as a function of independent variables. This expression is
H(x, t, u, p)− pf(x, t, u) = f0(x, t, u).
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By using this expression, from the inequality (10) we obtain

(11)

T∫

0

f0(x+ δx, t, u+ δu) dt−
T∫

0

f0(x, t, u) dt ≥
T∫

0

∂H

∂u
δu dt

which actually is the inequality (9). Therefore, the sufficient condition is proved. �
If we use the above suggested theorem, we are able to prove immediately the Manga-

sarian sufficient condition, that was already mentioned.
Corollary (The Mangasarian theorem).Assume that for the control u∗ the condi-

tions from the Pontryagin’s minimum principle2 are fulfilled. In other words, u∗ is an
admissible control for the problem (1) − (3) and the Hamilton’s function H(x, t, u, p)
reaches its minimum at u∗ for the respective solutions of (2) for the trajectory, and of (5)
for the adjoint variable. Besides, assume that there are fulfilled the conditions of Theorem
3 and Hamilton’s function H(x, t, u, p) is jointly convex by (x, u) for every t ∈ [0, T ] and
every adjoint variable p that corresponds to some control v ∈ U . Then, u∗ is an optimal
control.

Proof. Since H contains his minimum, according to Theorem 2 there is fulfilled the
inequality

T∫

0

∂H(x∗, t, ψ∗, u∗)
∂u

δu dt ≥ 0

From it and from the inequality (11) it follows the truth of the corollary. �
5. Conclusion. The sufficient condition for convexity, which we suggested in Theo-

rem 3, is used for more wide class of optimal control problems. Let be given a problem
of Bolza with fixed time and with convex sets of the initial and the terminal states.
A sufficient condition for convexity of the objective functional of this problem is the
Hamiltonian to be jointly convex by (x, u), the terminal term to be convex and the
adjoint variable to satisfy a transversality condition. As a particular case of our sufficient
conditions we may consider the condition suggested in the example in [3, p. 34]. But
there is a requirement the phase trajectories to be solutions of a linear by (x, u) system
of differential equations.

Analogous sufficient conditions can be suggested for the strong convexity of the
objective functional of the optimal control problems.

As we noticed, the considered sufficient conditions are obtained on the basis of
the Mangasarian sufficient condition for optimality. Its application is limited by the
requirement for convexity of the Hamiltonian. Unfortunately, this requirement can not
be relaxed by deriving sufficient conditions on the basis of the Arrow’s condition [1, p.
107].

These additional results are available to the author. We don’t include their proofs for
the sake of the limited size of the paper.

2 It is known as the maximum principle, see the note 1.
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ИЗПЪКНАЛОСТ НА ЦЕЛЕВИЯ ФУНКЦИОНАЛ В НЯКОИ
ЗАДАЧИ НА ОПТИМАЛНОТО УПРАВЛЕНИЕ

Владимир Й. Кръстев

В настоящата публикация е предложено достатъчно условие за изпъкналост на
целевия функционал за някои задачи на оптималното управление. То е получено
на основата на достатъчното условие на Мангасарян за оптималност. Условието
за изпъкналост на функционала може да се използва за установяване на сходи-
мостта на минимизираща редица към оптимално решение при числено решаване
на задача на оптималното управление
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