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In this paper we study the Cauchy problem of semilinear parabolic equation ∂tu −
∆u+ v(x)u = F (t, x, u), where v(x) 6= 0. An estimate on lifespan for nonlinearities of
the type |F (t, x, λ)| ≤ const.λ1+α, α > 0 is found. In cases when the solution blows
up are found sufficiently general conditions on the impulsive sources which lead to
global existence of solution of the impulsive parabolic Cauchy problem.

1. Introduction. In this paper we study the existence of solution of the Cauchy
problem
(1) Lv(u) = F (t, x, u) in ST = (0, T )× Rn

(2) u(0, x) = f(x) on Rn

where Lv(u) = ∂tu−∆u+ v(x)u, ∂t =
∂

∂t
, ∆ =

∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

, 0 < T ≤ ∞ and F , f

and the potential v are given functions.
There are many papers which treat the case v(x) = 0 and F (t, x, λ) = λ1+α. The

results of Fujita [1] and Weissler [5] show that the solution exists if α > 2
n . If α ≤ 2

n .
then the solution blows up for a finite time (see also Samarski et al. [6]).

More general nonlinearities F , including ∇u, are considered by Klainerman [2], Ponce
[3]. In M. L. Marinov, V. S. Georgiev [7] is treated the case v(x) 6= 0. In the case v(x) ≥ 0
it is proved global existence of solution of the Cauchy problem with small initial condition,
when |F (t, x, λ)| ≤ C|λ|1+α, α > 2

n .
The study of impulsive partial differential equations started recently by a paper of

Erbe, Freedman, Liu an Wu [8]. Bainov, Kolev and Nakagawa [9] considered initial
boundary value problem for semilinear parabolic equations with impulsive effect. In the
case when the initial data are not too small they investigate how to control the impulsive
source to delay the blowing-up time T ∗.

In this paper we obtain:
1) The estimate on time of local existence of solution of the Cauchy problem.
2) Sufficiently general condition on the impulsive source which leads to global solution

of the impulsive Cauchy problem.
3) The estimate on the lifespan of solution for arbitrary potentials v(x).
2. Notations and main assumptions. We denote byX the Banach space L1(Rn)∩

C0(Rn), with norm | · |X = ‖ · ‖L1(Rn)+‖ · ‖L∞(Rn). Here C0(Rn) is the closure of functions
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f ∈ C∞0 (Rn) with respect to the norm ‖f‖∞ = sup
x∈Rn

|f(x)|. The space C0(Rn) consists

of all continuous functions which tend to zero at infinity.
For any t > 0 we define U0(t) : X → X with

U0(f)(t, x) =
∫

Rn
Γ(t, x− y)f(y)dy

where Γ(t, x) = (4πt)−
n
2 exp

{−|x|2
4t

}
.

In addition we introduce the following notations: R+ = (0,∞); Q(T ) = (0, T ) × Rn,
0 < T ≤ ∞; C(0, T ;X) is the Banach space of all continuous functions u : [0, T ] → X
with norm |u|C = sup

[0,T ]

|u(t)|X .

Let 0 = T0 < T1 < T1 < · · ·Tk < Tk+1 < · · · , and lim
k→∞

Tk = ∞. We define the

following sets: Pk = {(Tk, x): x ∈ Rn}; P =
∞∪
k=1

Pk;
◦
R = R+ \ {Tk} and C(

◦
R;X) is the

set of all functions u: R̄+ → X which satisfy the conditions
(i) u(t, ·) ∈ C(Tk−1, Tk;X), k ∈ N = {1, 2, . . . };
(ii) lim

t→Tk−
u(t, x) = u(Tk−, x) ∈ X, k ∈ N .

Now we formulate the main assumptions.
(H1) The potential v(x) is bounded, Hölder continuous function.

(H2)





There exist suitable positive constants a, α and C such that F (t, x, λ) ∈
C1(R+ × Rn × R); |F (t, x, λ)| ≤ C|λ|1+α and |F ′λ(t, x, λ)| ≤ C, ∀ (t, x, λ) ∈
[0,∞)× Rn × [−a, a].

3. Main result.

Theorem 1. Suppose that the assumptions (H1) and (H2) are fulfilled. Then for any
f ∈ X with |f |X <

a

2
the solution of the Cauchy problem

(3)
{

(a) ∂tu−∆u+ v(x)u = F (t, x, u) in Q(T )
(b) u(0, x) = f(x)

exists and u ∈ C(0, τ ;X) for

τ = min
{

1
2

[‖v‖∞ +M(a)aα]−1,
1
2

[‖v‖∞ +M(a)]−1

}
,

where

M(s) = sup
0<|λ|≤s

{
|λ|−1−α sup

(t,x)

{|F (t, x, λ)|}
}

+ sup
0<|λ|≤s

{
sup
(t,x)

{|F ′λ(t, x, λ)|}
}

If |f |X < η, 0 < η ≤ 1
2
a, then u(t, x) satisfies the following estimates

(4)





(a) sup
[0,τ ]

{|u(t, ·)− U0(f)|X} ≤ η

(b) |u(t, ·)|X ≤ 2η, ∀ t ∈ [0, τ ].
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Proof. The function U0(f) ∈ C(0,∞;X) and is the classical solution of the problem{
∂tu−∆u = 0 in Q(∞)
u(0, x) = f(x) on Rn

(see [4]). Using the fact that et∆ = U0 is a contraction semigroup in the class C0, and
also using the Duhamel’s principal (see [10]), we verify, that the problem{

∂tu−∆u = F0(t, x) in Q(∞)
u(0, x) = f(x) on Rn,

for f(x) ∈ X and F0 ∈ C(0,∞;X) has the unique solution

u(t, x) = U0(f)(t, x) +

t∫

0

U0(F0(s, ·))(t− s, x)ds,

which belongs to C(0,∞;X). Besides that, the solution u(t, x) satisfies the estimate
(5) |u(t, ·)− U0(f)(t, ·)|X ≤ t sup

0≤s≤t
{|F0(s, ·)|X}.

This allows us to solve the problem (3) by using the contraction principle. We study
the Cauchy problem via the corresponding integral equation u = J(u), where

(6) J(u) = U0(f)(t, x) +

t∫

0

U0(Fv(s, ·, u(s, ·))(t− s, x)ds

and
Fv(s, y, u(s, y)) = −v(y)u(s, y) + F (s, y, u(s, y)).

For arbitrary η > 0 we define the set
B(η) = {u ∈ C(0, τ ;X) : sup

0≤t≤τ
{|u(t, ·)− U0(f)(t, ·)|X ≤ η}.

We point out that B(η) is convex and closed subset of the Banach space C(0, τ ;X).
We will prove that if 0 < η ≤ a

2
, we have

J(B(η)) ⊂ B(η).
Let u ∈ B(η). Then using again that et∆ is a contraction semigroup we prove:

|u(t, ·)|X ≤ |u(t, ·)− U0(f)(t, ·)|X + |U0(f)(t, ·)|X ≤ η + |f |X
Hence, if |f |X < η, then
(7) |u(t, ·)|X < 2η ≤ a, ∀ t ∈ (0, τ ].
Thus, ‖u(t, ·)‖L∞x ≤ |u(t, ·)|X < a and it follows from the condition (H2) that
(8) |Fv(s, ·, u(s, ·))|X ≤ (‖v‖∞ +M(a)aα)|u(s, ·)|X , ∀ s ∈ [0, τ ].

From the inequalities (5), (8) и (7) we get that ∀ t ∈ [0, τ ]
|J(u)(t, ·)− U0(f)(t, ·)|X ≤ τ(‖v‖∞ +M(a)aα)2η ≤ η

and therefore J(u)(t, x) ∈ B(η).
To apply the contraction principle we must estimate the norm of

J(u1)− J(u2) =

t∫

0

U0(Φ(u1, u2))(t− s, x)ds,
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where
Φ(u1, u2)(s, y) = v(y)[u2(s, y)− u1(s, y)] + F (s, y, u1(s, y))− F (s, y, u2(s, y)).

Once again, using that the semigroup et∆ is contraction and similarly to the inequality
(5), we get

|J(u1)(t, ·)− J(u2)(t, ·)|X ≤ t sup
0≤s≤t

|Φ(u1, u2)(s, ·)|X ≤

≤ τ sup
0≤s≤τ

{(‖v‖∞ +M(a))|u1(s, ·)− u2(s, ·)|X} ≤

≤ τ(‖v‖∞ +M(a))|u1 − u2|C ≤ 1
2
|u1 − u2|C .

Then

|J(u1)− J(u2)|C ≤ 1
2
|u1 − u2|C

and the contraction principle is applicable.
Hence, in B(η) there exists a unique solution on the equation u = J(u), which

apparently satisfies (4a) and because of the inequality (7) the inequality (4b) is satisfied.
This completes the proof of Theorem 1. �

Theorem 2.Assume that conditions (H1) and (H2) hold and the positive constant
τ is defined in Theorem 1. Then for any f ∈ X with |f |X ≤ 2−ka, k ∈ N , the Cauchy
problem (3) has a unique solution u ∈ C(0, kτ ;X). The solution u(t, x) satisfies the
estimate

|u(t, ·)|X ≤ 2−k+ia, ∀ t ∈ ((i− 1)τ, iτ ], ∀ i ∈ {1, 2, . . . , k}.

Proof. Let f ∈ X and |f |X ≤ 2−ka for some k ∈ N. By Theorem 1 we have unique
solution u0 ∈ C(0, τ ;X), to the Cauchy problem (3) with initial data u0(0, x) = f(x).
The solution u0(t, x) satisfies the estimate

|u0(t, .)|X ≤ 2−k+1a, t ∈ [0, τ ].

Now, let ui ∈ C(0, τ ;X) be the solution of the Cauchy problem (3) with initial data
ui(0, x) = fi(x), where fi(x) = ui−1(τ, x), i ∈ {1, . . . , k − 1}.

From Theorem 1 we get
|ui−1(t, .)|X ≤ 2−k+ia, t ∈ (0, τ ] and
|fi|X ≤ 2−k+ia, i ∈ {1, 2, . . . , k}.

Therefore, if
u(t, x) = ui(t− iτ, x), t ∈ [iτ, (i+ 1)τ ], i ∈ {0, 1, 2, . . . , k − 1}

then u ∈ C(0, kτ ;X) and is a solution of the Cauchy problem (4) in Q(kτ).
From Theorem 2 we get an estimate on the lifespan of the solution of the Cauchy

problem (1), (2).

Corollary 1. Suppose that the assumptions (H1) and (H2) are fulfilled. Then for any
number M > 0 there exists δ > 0 such that the lifespan T ∗ of the solution of (1), (2)
satisfies the estimate T ∗ > M provided |f |X < δ.
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Next we study the impulsive parabolic Cauchy problem (IPCP)

(9)





(a) Lv(w(t, x)) = F (t, x, w) in Q(∞) \ P
(b) w(0, x) = f(x) on Rn

(c) w(Tk, x) = Ik(w(Tk−, x)) on Pk, ∀ k ∈ N.
where the “impulsive source” in (9(c)) is represented by the mapping Ik: X → X, k ∈ N .

A function w: R+ → X is called a solution of the IPCP (9) if w(t, x) ∈ C(
◦
R;X) and

satisfies (9).
The following theorem gives a condition which guarantees the existence of global

solution of the IPCP (9).
Theorem 3.Assume that the IPCP (9) satisfies the following four hypothesis: (H1),

(H2) and
(H3) The sequence of impulsive sources {Ik} satisfies the estimate

(10) |Ik(f)|X ≤ 2−mk |f |X , ∀ k ∈ N, ∀ f ∈ Ka = {f ∈ X : |f |X < a}
where mk =

[
Tk−1 − Tk

τ

]
+ 1 ∈ N and τ is given in Theorem 1.

(H4) The initial condition f(x) ∈ X and satisfies
|f |X ≤ 2−m0a,

where m0 =
[
T1

τ

]
+ 1.

Then the IPCP (9) has a unique solution w(t, x) ∈ C(
◦
R;X). The solution w(t, x)

satisfies the estimate
|w(t, .)|X ≤ a, t ∈ R̄+.

Proof. From Theorem 2 we get that the Cauchy problem{ Lv(u0) = F (t, x, u0) in Q(m0τ)

u0(0, x) = f(x)
has a solution u0(t, x) ∈ C(0,m0τ ;X).

Because 0 < T1 < m0τ , we define f1(x) = u0(T1, x).
If for some k ∈ N are defined uk−1(t, x) and fk(x), then we solve the Cauchy problem{ Lv(uk) = F (t, x, uk) in Q(m0τ)

uk(0, x) = Ik(fk) on Rn

Theorem 2 gives the existence of the solution uk(t, x) from the class C(0,mkτ ;X). Since
0 < Tk+1 − Tk < mkτ , we define fk+1(x) = uk(Tk+1 − Tk, x).

Using the above defined sequence {uk(t, x)} we find
w(t, x) = uk(t− Tk, x), ∀ t ∈ [Tk, Tk+1), k ∈ {0, 1, 2, . . . }.

The function w(t, x) is a solution of (IPCP), and the uniqueness is а corollary from the
uniqueness part of Theorem 1.

Note 1. All the theorems and proofs remain the same, if the Hölder continuity of the
potential v(x) is replaced with the condition of Dini. It is known that (see [4]), that this
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is the broadest class of potentials for which Lv(u) has a classical fundamental solution.
Note 2. The above proved results holds also in the case when the potential v(x) and

the initial conditions f(x) belong to Lp(Rn) ∩ L∞(Rn), p > 1.
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СЪЩЕСТВУВАНЕ НА РЕШЕНИЕ НА ЗАДАЧАТА НА КОШИ ЗА
ПОЛУЛИНЕЙНОТО УРАВНЕНИЕ НА ТОПЛОПРОВОДНОСТТА

Марин Л. Маринов

За задачата на Коши за полулинейното параболично уравнение с потенциал е
доказана оценка за времето на локално съществуване, която зависи само от мак-
симума на потенциала и нелинейността. В случая когато решението избухва е
оценено времето на съществуване на решението и са получени общи условия
върху импулсите за които стандартната задача с импулси има глобално реше-
ние.
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