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In this paper we study the Cauchy problem of semilinear parabolic equation d,u —
Au+v(x)u = F(t,z,u), where v(z) # 0. An estimate on lifespan for nonlinearities of
the type |F(t,z,\)| < const.A\'™ a > 0 is found. In cases when the solution blows
up are found sufficiently general conditions on the impulsive sources which lead to
global existence of solution of the impulsive parabolic Cauchy problem.

1. Introduction. In this paper we study the existence of solution of the Cauchy
problem

(1) Ly(u)=F(t,z,u) in Sp=(0,T)xR"

2) w(0,2) = f(z) on R

here £, (u) = Ou — Au + v(z)u, O _9 A—a—2+~~+a—2 0<T<ooand F, f
w v — Ut ’ t78t7 761‘% 333%’ = ’

and the potential v are given functions.

There are many papers which treat the case v(z) = 0 and F(t,z,\) = A\*®. The
results of Fujita [1] and Weissler [5] show that the solution exists if o > 2. If o < 2.
then the solution blows up for a finite time (see also Samarski et al. [6]).

More general nonlinearities F', including Vu, are considered by Klainerman [2], Ponce
[3]. In M. L. Marinov, V. S. Georgiev [7] is treated the case v(x) # 0. In the case v(z) > 0
it is proved global existence of solution of the Cauchy problem with small initial condition,
when [F(t,z, \)| < C]AMTe, a> 2.

The study of impulsive partial differential equations started recently by a paper of
Erbe, Freedman, Liu an Wu [8]. Bainov, Kolev and Nakagawa [9] considered initial
boundary value problem for semilinear parabolic equations with impulsive effect. In the
case when the initial data are not too small they investigate how to control the impulsive
source to delay the blowing-up time T*.

In this paper we obtain:

1) The estimate on time of local existence of solution of the Cauchy problem.

2) Sufficiently general condition on the impulsive source which leads to global solution
of the impulsive Cauchy problem.

3) The estimate on the lifespan of solution for arbitrary potentials v(x).

2. Notations and main assumptions. We denote by X the Banach space L' (R")N
Co(R™), withnorm | - |x = || - [[L1@n)+| - [| o (n). Here Co(R™) is the closure of functions
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f € C§°(R™) with respect to the norm || f|lcc = sup |f(x)]. The space Co(R") consists
TER™

of all continuous functions which tend to zero at infinity.

For any ¢t > 0 we define Up(t) : X — X with
to(f)(t,3) = [ Tt~ )iy

R™

12
where ['(¢,z) = (47t) % exp{ Z' }

In addition we introduce the following notations: Ry = (0,00); Q(T) = (0,T) x R,
0 < T < o0; C(0,T;X) is the Banach space of all continuous functions v : [0,7] — X
with norm |u|c = sup |u(¢)|x.

Let 0 =Ty <1y <Ty < -+ T < Tjyq1 < ---, and klim T, = oco. We define the

following sets: P, = {(Ty,xz): z € R"}; P = kOL_jl Pi; R =Ry \ {7} and C(R; X) is the
set of all functions u: Ry — X which satisfy the conditions
(1) u(t,") € C(Tp—1,Ti; X), ke N={1,2,... };
(ii) . 1i¥1 u(t,z) =u(Ty—,x) € X, k€ N.
— 1, —

Now we formulate the main assumptions.
(H1) The potential v(x) is bounded, Hélder continuous function.
A)

There exist suitable positive constants a, o and C such that F(¢,x,
Vo (t,z,\)

t
(H2) ¢ CY(R4 x R" x R); |F(t,z,\)| < C|A**® and |F{(t,z,\)| < C,
[0,00) x R" x [—a,a].

m M

3. Main result.

Theorem 1. Suppose that the assumptions (H1) and (H2) are fulfilled. Then for any
feX with |f|lx < g the solution of the Cauchy problem

(a) Owu—Au+v(z)u =F(t,z,u) in Q)
¥ L u(0,2) = f(x)
exists and v € C(0,7; X) for
. 1 al—1 1 -1
7= min {3 llvlle + M(@a*], ol + D@}
where

M(s) = sup {IAIQ(SJII;{IF(t%/\)I}}Jr sup {sup{lFﬁ(tw’)\)H}

0<|A|<s 0<|A<s | (t,x)

1
If|flx <n, 0<n< 3% then u(t, x) satisfies the following estimates

(a) soup]{IU(t )= Uo(f)lx} <

(4)
(b) Ju(t,)|x <271, Vte[0,7]
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Proof. The function Uy(f) € C(0,00; X) and is the classical solution of the problem
Ou—Au=0 in Q(o0)
u(0,z) = f(z) onR"
(see [4]). Using the fact that e'® = U° is a contraction semigroup in the class Cp, and
also using the Duhamel’s principal (see [10]), we verify, that the problem
Opu — Au = Fy(t,z) in Q(o0)
u(0,2) = f(z)  onR”
for f(x) € X and Fy € C(0, 00; X) has the unique solution
¢
u(t,z) =Uo(f)(t,z) + /UO(FO(S, N — s, x)ds,
0
which belongs to C(0, 00; X). Besides that, the solution u(t,x) satisfies the estimate

(5) fult, ) = Uo(F) () [x <t sup {[Fo(s,)lx}-

This allows us to solve the problem (3) by using the contraction principle. We study
the Cauchy problem via the corresponding integral equation u = J(u), where
t

(6) NW:%WW@+/%W$mM&MF&@@
0
and

Fv(sa Y, U(S, y)) = _U(y)u(sv y) + F(S7 Y, U(S, y))
For arbitrary n > 0 we define the set

B(n) ={ue C(0,7;X): sup {lu(t,) —Uo(f)(t,-)|x <n}.

0<t<r
We point out that B(n) is convex and closed subset of the Banach space C(0,7; X).
We will prove that if 0 < n < g, we have
J(B(n)) € B(n).
Let u € B(n). Then using again that e'® is a contraction semigroup we prove:
lu(t, )|x < fult, ) = Uo()(E-)|x + [Uo(f)(E-)lx < n+[flx
Hence, if [f|x <, then

(7) lu(t, )|x <2n<a, Vte(0,7]
Thus, [Ju(t, )|z < |u(t,)|x < a and it follows from the condition (H2) that
(8) [Fo(s, -5 (s, ) |x < ([[vlleo + M(a)a®)[u(s,)|x, ¥ s €[0,7].

From the inequalities (5), (8) u (7) we get that V ¢t € [0, 7]
| J(u)(t, ) = Uo(f)(E, ) x < T([[v]lc + M(a)a™)2n <7
and therefore J(u)(t,x) € B(n).
To apply the contraction principle we must estimate the norm of

J(ur) — J(ug) = /L{O(Cb(ul,uQ))(t — s,x)ds,
0
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where
P (ur,u2)(s,y) = v(y)[ua(s, y) — u1(s,y)] + F(s,y,u1(s,y)) — F(s,y,u2(s,y)).

Once again, using that the semigroup e*® is contraction and similarly to the inequality
(5), we get

() = () () x S sup (@, u2)(s ) x <

<7 s {([vfloo + M(a))ur(s,) = uals, ) [x} <

1
< 7(l[vlleo + M(a))fur — uzle < Flur — uzle.
Then
1
|J(u1) — J(u2)|c < §|u1 — uz|c

and the contraction principle is applicable.

Hence, in B(n) there exists a unique solution on the equation w = J(u), which
apparently satisfies (4a) and because of the inequality (7) the inequality (4b) is satisfied.
This completes the proof of Theorem 1. O

Theorem 2. Assume that conditions (H1) and (H2) hold and the positive constant
7 is defined in Theorem 1. Then for any f € X with |f|x < 2 %a, k € N, the Cauchy
problem (3) has a unique solution v € C(0,k7;X). The solution u(t,z) satisfies the
estimate

lu(t,")|x <27%a,  Vte((i—1)rir], Vie{l,2,...,k}.

Proof. Let f € X and |f|x < 2 %a for some k € N. By Theorem 1 we have unique
solution ug € C(0,7;X), to the Cauchy problem (3) with initial data ug(0,z) = f(x).
The solution ug(t, x) satisfies the estimate

luo(t, )|x <27 % ta, teo,1].
Now, let u; € C(0,7;X) be the solution of the Cauchy problem (3) with initial data
UZ(O,.T) = fl(‘r)7 where fl(x) = ui,1(7,$)7 i€ {17 ) k— 1}
From Theorem 1 we get
lui—1(t,.)|x <2 %, te(0,7] and
|filx <277 a, i€{l,2,....k}.
Therefore, if
u(t,z) = u;(t —ir,x), telir,(i+1)7], i€{0,1,2,...,k—1}
then u € C(0,k7; X) and is a solution of the Cauchy problem (4) in Q(k7).

From Theorem 2 we get an estimate on the lifespan of the solution of the Cauchy
problem (1), (2).

Corollary 1. Suppose that the assumptions (H1) and (H2) are fulfilled. Then for any
number M > 0 there exists § > 0 such that the lifespan T of the solution of (1), (2)
satisfies the estimate T* > M provided |f|x < 6.
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Next we study the impulsive parabolic Cauchy problem (IPCP)
(a) Ly(w(t,z))=F({t,z,w) inQ(co)\P
(9) (b) w(0,2) = () on R
(¢) w(Tg,z) =Ix(w(Tx—,x)) onP,, VkeN.
where the “impulsive source” in (9(c)) is represented by the mapping I: X — X, k € N.
A function w: Ry — X is called a solution of the IPCP (9) if w(¢, x) € C(HOQ;X) and
satisfies (9).

The following theorem gives a condition which guarantees the existence of global
solution of the IPCP (9).

Theorem 3. Assume that the IPCP (9) satisfies the following four hypothesis: (H1),
(H2) and

(H3) The sequence of impulsive sources {Ir} satisfies the estimate
(10) k(f)lx <27™|flx, VEeN, VfeK,={feX:|flx <a}

[Th—1 — Ty,
T

where my, = + 1€ N and 7 is given in Theorem 1.

(H4) The initial condition f(x) € X and satisfies
[flx <27,

[T
where mg = 1} + 1.
T

Then the IPCP (9) has a unique solution w(t,z) € C(R;X). The solution w(t,x)
satisfies the estimate

lw(t,.)|x <a, t€Ry.

Proof. From Theorem 2 we get that the Cauchy problem
{ Ly(ug) = F(t,z,up) in Q(moT)
UO(Oax) = f(d))

has a solution ug(t, ) € C(0, moT; X).

Because 0 < Ty < moT, we define fi(z) = uo(T1, x).

If for some k € N are defined ug_1(¢,2) and f(z), then we solve the Cauchy problem

{ Ev(uk) = F(taxauk) in Q(mOT)
ug(0,2) = I (fr) on R"

Theorem 2 gives the existence of the solution u(t, z) from the class C(0, my7; X). Since
0 < Tiy1 — T < my7, we define fri1(z) = up(Tht1 — T, ).

Using the above defined sequence {uy(t,z)} we find

w(t,z) = ug(t — Tg,x), Vte ([T, Tkt1), k€{0,1,2,...}.

The function w(t, z) is a solution of (IPCP), and the uniqueness is a corollary from the
uniqueness part of Theorem 1.

Note 1. All the theorems and proofs remain the same, if the Holder continuity of the
potential v(x) is replaced with the condition of Dini. It is known that (see [4]), that this
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is the broadest class of potentials for which £,(u) has a classical fundamental solution.
Note 2. The above proved results holds also in the case when the potential v(z) and
the initial conditions f(x) belong to LP(R™) N L*(R"), p > 1.
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CBIIMECTBYBAHE HA PEIITEHUE HA 3AJAYATA HA KOIIIN 3A
ITOJIVVIMHEVMHOTO YPABHEHUE HA TOIILJIOIIPOBOJHOCTTA

Mapun JI. MapuHos

3a 3aja4gara Ha Kommm 3a MOJIyJIMHEHHOTO 1apabOIMYHO YyPaBHEHHE C IIOTEHIUAJ €
JOKa3aHa OIEHKAa 33 BPEMETO Ha JIOKAJIHO ChIIECTBYBaHe, KOATO 3aBUCU CaMO OT MaK-
cuMyMa Ha IOTEHIHaJa U HejnHeiiHOCTTAa. B ciydast KoraTto peleHnero n3byxsa e
OIIEHEHO BPEMETO Ha CBINECTBYBAaHE Ha DeEIIeHNETO M Ca IIOJIydeHHM OOIIU yCJIOBUSI
BbPXY HMILYJICUTE 3a KOHTO CTAHJAPTHATA 3aJada C UMIIYJICH UMa IVIOOAJIHO pellre-
HHe.
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