МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2006 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2006 Proceedings of the Thirty Fifth Spring Conference of the Union of Bulgarian Mathematicians
 Borovets, April 5-8, 2006

A CHARACTERIZATION OF DEVELOPABLE TWO-DIMENSIONAL SURFACES IN EUCLIDEAN SPACE*

Velichka V. Milousheva

Abstract

We prove that each developable two-dimensional surface in Euclidean space is a surface with flat normal connection. We give a characterization of the developable two-dimensional surfaces in terms of surfaces with flat normal connection. 2000 MS Classification: 53A07; 53B20 Keywords: developable surfaces; surfaces with flat normal connection

A ruled two-dimensional surface M^{2} in n-dimensional Euclidean space \mathbb{E}^{n} is a oneparameter system $\left\{\mathbb{E}^{1}(v)\right\}, v \in J$ of one-dimensional linear subspaces $\mathbb{E}^{1}(v)$ of \mathbb{E}^{n}, defined in an interval $J \subset \mathbb{R}$. The lines $\mathbb{E}^{1}(v)$ are called generators of M^{2}. A ruled surface $M^{2}=\left\{\mathbb{E}^{1}(v)\right\}, v \in J$ is said to be developable, if the tangent space $T_{p} M^{2}$ at all regular points p of an arbitrary fixed generator $\mathbb{E}^{1}(v)$ is one and the same.

Each ruled surface $M^{2}=\left\{\mathbb{E}^{1}(v)\right\}, v \in J$ in \mathbb{E}^{n} can be parametrized as follows:

$$
\begin{equation*}
z(u, v)=x(v)+u e(v), \quad u \in \mathbb{R}, v \in J, \tag{1}
\end{equation*}
$$

where $x(v)$ and $e(v)$ are vector-valued functions, defined in J, such that the vectors $e(v)$ and $x^{\prime}(v)+u e^{\prime}(v)$ are linearly independent for all $v \in J$. The tangent space of M^{2} is spanned by the vectors

$$
\begin{aligned}
& z_{u}=e(v) ; \\
& z_{v}=x^{\prime}(v)+u e^{\prime}(v) .
\end{aligned}
$$

Using that for a developable surface M^{2} the space $\operatorname{span}\left\{z_{u}, z_{v}\right\}$ is constant at the points of a fixed line $\mathbb{E}^{1}(v)$, we obtain that the ruled surface, defined by (1), is developable if and only if the vectors $e(v), e^{\prime}(v)$ and $x^{\prime}(v)$ are linearly dependent.

Proposition 1. Each developable two-dimensional surface in Euclidean space \mathbb{E}^{n} is a surface with flat normal connection.

Proof. Let M^{2} be a developable surface, defined by equality (1), where $e(v), e^{\prime}(v)$ and $x^{\prime}(v)$ are linearly dependent vectors. Without loss of generality we assume that $e^{2}(v)=1$. Then, the vector fields $e(v)$ and $e^{\prime}(v)$ are orthogonal and the tangent space of M^{2} is $\operatorname{span}\left\{e(v), e^{\prime}(v)\right\}$. Since $x^{\prime}(v) \in \operatorname{span}\left\{e(v), e^{\prime}(v)\right\}$, then $x^{\prime}(v)$ is presented by

$$
x^{\prime}(v)=p(v) e(v)+q(v) e^{\prime}(v)
$$

[^0]for some functions $p(v)$ and $q(v)$. Hence, the tangent space of M^{2} is spanned by
\[

$$
\begin{aligned}
& z_{u}=e \\
& z_{v}=p e+(u+q) e^{\prime}
\end{aligned}
$$
\]

Considering only the regular points of $M^{2}($ where $u \neq-q)$, we choose an orthonormal tangent frame field $\left\{X_{1}, X_{2}\right\}$ in the following way:

$$
\begin{align*}
& X_{1}=e=z_{u} \\
& X_{2}=\frac{e^{\prime}}{\sqrt{\left(e^{\prime}\right)^{2}}}=-\frac{p}{(u+q) \sqrt{\left(e^{\prime}\right)^{2}}} z_{u}+\frac{1}{(u+q) \sqrt{\left(e^{\prime}\right)^{2}}} z_{v} \tag{2}
\end{align*}
$$

Since the tangent space of M^{2} does not depend on the parameter u, then the normal space of M^{2} is spanned by vector fields $b_{1}(v), \ldots, b_{n-2}(v)$. With respect to the basis $\left\{e(v), e^{\prime}(v), b_{1}(v), \ldots, b_{n-2}(v)\right\}$ of \mathbb{E}^{n} the derivatives of $b_{\alpha}, \alpha=1, \ldots, n-2$ are decomposed in the form

$$
\begin{equation*}
b_{\alpha}^{\prime}=c_{\alpha} e^{\prime}+c_{\alpha}^{\beta} b_{\beta} \tag{3}
\end{equation*}
$$

where c_{α} and $c_{\alpha}^{\beta}, \alpha, \beta=1, \ldots, n-2$ are functions of v. Here and further on the summation convention is assumed.

Let ∇^{\prime} be the Levi-Civita connection of the standard metric \langle,$\rangle in \mathbb{E}^{n}$. We denote by D the normal connection of M^{2}. Using (2) and (3) we get

$$
\begin{align*}
\nabla_{X_{1}}^{\prime} b_{\alpha} & =0 \\
\nabla_{X_{2}}^{\prime} b_{\alpha} & =\frac{c_{\alpha}}{u+q} X_{2}+\frac{c_{\alpha}^{\beta}}{(u+q) \sqrt{\left(e^{\prime}\right)^{2}}} b_{\beta} ; \quad \alpha=1, \ldots, n-2 \tag{4}
\end{align*}
$$

Having in mind the Weingarten formula, we obtain

$$
\begin{align*}
& D_{X_{1}} b_{\alpha}=0 \tag{5}\\
& D_{X_{2}} b_{\alpha}=\frac{c_{\alpha}^{\beta}}{(u+q) \sqrt{\left(e^{\prime}\right)^{2}}} b_{\beta} ; \quad \alpha=1, \ldots, n-2
\end{align*}
$$

The normal curvatures $R_{b_{\alpha}}, \alpha=1, \ldots, n-2$ of M^{2}, corresponding to the normal vector fields $b_{\alpha}, \alpha=1, \ldots, n-2$, are given by

$$
R_{b_{\alpha}}\left(X_{1}, X_{2}\right)=D_{X_{1}} D_{X_{2}} b_{\alpha}-D_{X_{2}} D_{X_{1}} b_{\alpha}-D_{\left[X_{1}, X_{2}\right]} b_{\alpha}, \quad \alpha=1, \ldots, n-2 .
$$

Using (2) we calculate

$$
\begin{equation*}
\left[X_{1}, X_{2}\right]=-\frac{1}{u+q} X_{2} \tag{6}
\end{equation*}
$$

From (5) and (6) we obtain

$$
R_{b_{\alpha}}\left(X_{1}, X_{2}\right)=0, \quad \alpha=1, \ldots, n-2
$$

which implies that M^{2} is a surface with flat normal connection.
Remark: Each two-dimensional plane \mathbb{E}^{2} in \mathbb{E}^{n} can be considered as a trivial developable surface. Obviously, each plane \mathbb{E}^{2} is a surface with flat normal connection.

Our aim is to characterize the two-dimensional surfaces with flat normal connection, which are developable surfaces.

Let M^{2} be a two-dimensional surface in \mathbb{E}^{n} with flat normal connection. According to [1] locally there exist $n-2$ mutually orthogonal unit normal vector fields b_{1}, \ldots, b_{n-2}, which are parallel in the normal bundle. Moreover, there exist two mutually orthogonal unit tangent vector fields X_{1} and X_{2} on M^{2}, such that with respect to the frame
$X_{1}, X_{2}, b_{1}, \ldots, b_{n-2}$ the shape operators $A_{b_{\alpha}}$, corresponding to $b_{\alpha}, \alpha=1, \ldots, n-2$, are given by [2]

$$
A_{b_{\alpha}}=\left(\begin{array}{cc}
\kappa_{1}^{\alpha} & 0 \\
0 & \kappa_{2}^{\alpha}
\end{array}\right), \quad \alpha=1, \ldots, n-2
$$

where κ_{1}^{α} and $\kappa_{2}^{\alpha}, \alpha=1, \ldots, n-2$ are functions on M^{2}. The vector fields X_{1} and X_{2} determine the principal directions of M^{2}. The derivative formulas of M^{2} with respect to the frame $X_{1}, X_{2}, b_{1}, \ldots, b_{n-2}$ look like

$$
\begin{array}{lr}
\nabla_{X_{1}}^{\prime} X_{1} & =f_{1} X_{2}+\kappa_{1}^{\alpha} b_{\alpha} \\
\nabla_{X_{1}}^{\prime} X_{2} & =-f_{1} X_{1} ; \\
\nabla_{X_{2}}^{\prime} X_{1} & =-f_{2} X_{2} \tag{7}\\
\nabla_{X_{2}}^{\prime} X_{2} & =f_{2} X_{1} \\
\end{array}
$$

where $f_{1}=\left\langle\nabla_{X_{1}}^{\prime} X_{1}, X_{2}\right\rangle ; f_{2}=\left\langle\nabla_{X_{2}}^{\prime} X_{2}, X_{1}\right\rangle$ and

$$
\begin{align*}
& \nabla_{X_{1}}^{\prime} b_{\alpha}=-\kappa_{1}^{\alpha} X_{1} ; \tag{8}\\
& \nabla_{X_{2}}^{\prime} b_{\alpha}=-\kappa_{2}^{\alpha} X_{2} ;
\end{align*} \quad \alpha=1, \ldots, n-2
$$

If $\bar{b}_{1}, \ldots, \bar{b}_{n-2}$ is another normal frame field, consisting of parallel normal vector fields of M^{2}, then b_{1}, \ldots, b_{n-2} and $\bar{b}_{1}, \ldots, \bar{b}_{n-2}$ are connected by a constant orthogonal matrix. Obviously, the following lemma holds true.
Lemma 2. Let M^{2} be a two-dimensional surface in \mathbb{E}^{n} with flat normal connection. M^{2} is locally a plane if and only if $\kappa_{i}^{\alpha}=0, i=1,2, \alpha=1, \ldots, n-2$.

We shall describe the two-dimensional surfaces in \mathbb{E}^{n} with flat normal connection, for which $\kappa_{1}^{\alpha} \kappa_{2}^{\alpha}=0, \alpha=1, \ldots, n-2$ for each parallel normal frame field.

Lemma 3. Let M^{2} be a two-dimensional surface in \mathbb{E}^{n} with flat normal connection and $\kappa_{1}^{\alpha} \kappa_{2}^{\alpha}=0, \alpha=1, \ldots, n-2$ for each parallel normal frame field. Then, there exists a neighborhood $U \subset M^{2}$, such that $\kappa_{1 \mid U}^{\alpha}=0$ for all $\alpha=1, \ldots, n-2$ (or $\kappa_{2 \mid U}^{\alpha}=0$ for all $\alpha=1, \ldots, n-2$).

Proof. Let M^{2} be a surface with flat normal connection and $X_{1}, X_{2}, b_{1}, \ldots, b_{n-2}$ be a frame field of M^{2}, satisfying (8), where $\kappa_{1}^{\alpha} \kappa_{2}^{\alpha}=0, \alpha=1, \ldots, n-2$.

If there exist a point $p \in M^{2}$ and an index $\alpha \in\{1, \ldots, n-2\}$, such that $\kappa_{1}^{\alpha}(p) \neq 0$, then there exists a neighborhood U of p, in which $\kappa_{1}^{\alpha} \neq 0$. Hence, $\kappa_{2 \mid U}^{\alpha}=0$. We shall prove that $\kappa_{2 \mid U}^{\beta}=0$ for all $\beta=1, \ldots, n-2$. Suppose that there exist a point $q \in U$ and an index $\beta \neq \alpha$, such that $\kappa_{2}^{\beta}(q) \neq 0$. Then, there exists a neighborhood $U_{1} \subset U, q \in U_{1}$, such that $\kappa_{2 \mid U_{1}}^{\beta} \neq 0$. Hence, $\kappa_{1 \mid U_{1}}^{\beta}=0$. Without loss of generality we assume that $\alpha=1, \beta=2$ (up to numeration). Let us consider the parallel normal frame field $\left\{\bar{b}_{1}, \bar{b}_{2}, b_{3}, \ldots, b_{n-2}\right\}$, where

$$
\bar{b}_{1}=\frac{b_{1}+b_{2}}{\sqrt{2}} ; \quad \bar{b}_{2}=\frac{b_{1}-b_{2}}{\sqrt{2}}
$$

Then, for the parallel normal vector fields \bar{b}_{1} and \bar{b}_{2} we have

$$
\bar{\kappa}_{1}^{1}=\frac{\kappa_{1}^{1}+\kappa_{1}^{2}}{\sqrt{2}} ; \quad \bar{\kappa}_{2}^{1}=\frac{\kappa_{2}^{1}+\kappa_{2}^{2}}{\sqrt{2}} ; \quad \bar{\kappa}_{1}^{2}=\frac{\kappa_{1}^{1}-\kappa_{1}^{2}}{\sqrt{2}} ; \quad \bar{\kappa}_{2}^{2}=\frac{\kappa_{2}^{1}-\kappa_{2}^{2}}{\sqrt{2}} .
$$

Hence, $\bar{\kappa}_{1}^{\alpha} \bar{\kappa}_{2}^{\alpha}{\mid U_{1}}^{=}=0, \alpha=1,2$, which contradicts the condition $\kappa_{1}^{\alpha} \kappa_{2}^{\alpha}=0, \alpha=1, \ldots, n-2$ for each parallel normal frame field.

Consequently, $\kappa_{2 \mid U}^{\beta}=0$ for each $\beta=1, \ldots, n-2$.
We give a characterization of the developable two-dimensional surfaces in the following theorem.

Theorem 4. Let M^{2} be a two-dimensional surface in \mathbb{E}^{n} with flat normal connection. Then, M^{2} is locally a developable surface if and only if $\kappa_{1}^{\alpha} \kappa_{2}^{\alpha}=0, \alpha=1, \ldots, n-2$ for each parallel normal frame field.

Proof. Let M^{2} be a surface with flat normal connection and $X_{1}, X_{2}, b_{1}, \ldots, b_{n-2}$ be a frame field of M^{2}, for which formulas (7) and (8) hold good.
I. Suppose that $\kappa_{1}^{\alpha} \kappa_{2}^{\alpha}=0, \alpha=1, \ldots, n-2$. We shall prove that locally M^{2} is either a plane or a non-trivial developable surface.

According to Lemma $3, \kappa_{2}^{\alpha}=0$ for all $\alpha=1, \ldots, n-2$ in a neighborhood $U \subset M^{2}$. Let p be an arbitrary point of U and c_{2} be the integral curve of X_{2}, passing through p. Since $\nabla_{X_{2}}^{\prime} b_{\alpha}=0, \alpha=1, \ldots, n-2$, then the normal space $\operatorname{span}\left\{b_{1}, \ldots, b_{n-2}\right\}$ of M^{2} is constant at the points of c_{2} and hence, the tangent space $\operatorname{span}\left\{X_{1}, X_{2}\right\}$ of M^{2} at the points of c_{2} is one and the same. Using the derivative formulas (7) of M^{2} we get

$$
\begin{align*}
& \nabla_{X_{2}}^{\prime} X_{2}=f_{2} X_{1} ; \tag{9}\\
& \nabla_{X_{2}}^{\prime} X_{1}=-f_{2} X_{2}
\end{align*}
$$

Let the curve c_{2} be parametrized by $x=x(v), v \in J$ and $x^{\prime}(v)=t=X_{2}$. Then, by the Frenet's formulas of c_{2} and (9) we get that the curvature of c_{2} is $\kappa= \pm f_{2}$ and the principal normal is $n= \pm X_{1}$.

If $f_{2}=0$, i.e. $\kappa=0$, then c_{2} is a straight line. Consequently, for each point $p \in U$ there exists a straight line passing through p, i.e. M^{2} is locally a ruled surface. Moreover, since the tangent space of M^{2} at the points of each line is one and the same, then M^{2} is locally a developable surface.

If $f_{2}(q) \neq 0$ at a point $q \in U$, then there exists a neighborhood $\widetilde{U} \subset U, q \in \widetilde{U}$, such that $f_{2 \mid \widetilde{U}} \neq 0$. From the equalities (9) we get

$$
\begin{aligned}
& t^{\prime}=\kappa n \\
& n^{\prime}=-\kappa t
\end{aligned}
$$

i.e. c_{2} is a plane curve, lying in its osculating plane $\operatorname{span}\{t, n\}=\operatorname{span}\left\{X_{1}, X_{2}\right\}$. Consequently, for each point $p \in U$ there exists a plane curve, passing through p, i.e. M^{2} is locally a one-parameter system $\left\{c_{2}(u)\right\}, u \in I$ of plane curves $c_{2}(u)$, defined in an interval $I \subset \mathbb{R}$. Let for a fixed $u \in I$ the curve $c_{2}(u)$ lie in a plane $\mathbb{E}^{2}(u)$ spanned by the vectors $e_{1}(u)$ and $e_{2}(u)$. Hence, the surface M^{2} has a local parametrization, given by

$$
\begin{equation*}
z(u, v)=a_{1}(v) e_{1}(u)+a_{2}(v) e_{2}(u), \quad u \in I, v \in J \tag{10}
\end{equation*}
$$

for some functions $a_{1}(v)$ and $a_{2}(v)$. Then, the tangent space of M^{2} is spanned by

$$
\begin{aligned}
& z_{u}=a_{1}(v) e_{1}^{\prime}(u)+a_{2}(v) e_{2}^{\prime}(u) \\
& z_{v}=a_{1}^{\prime}(v) e_{1}(u)+a_{2}^{\prime}(v) e_{2}(u)
\end{aligned}
$$

Using that the tangent space of M^{2} is span $\left\{e_{1}(u), e_{2}(u)\right\}$, we obtain that $e_{1}^{\prime}(u), e_{2}^{\prime}(u) \in$ $\operatorname{span}\left\{e_{1}(u), e_{2}(u)\right\}$, which implies that $\mathbb{E}^{2}(u)$ is a constant plane \mathbb{E}_{0}^{2}. Let $e_{1}^{0}=$ const, $e_{2}^{0}=$ const be an orthonormal basis of \mathbb{E}_{0}^{2}. Then,

$$
\begin{align*}
& e_{1}(u)=\cos \varphi(u) e_{1}^{0}+\sin \varphi(u) e_{2}^{0} \\
& e_{2}(u)=-\sin \varphi(u) e_{1}^{0}+\cos \varphi(u) e_{2}^{0} \tag{11}
\end{align*}
$$

for some function $\varphi(u)$. Using (10) and (11) and setting $z^{1}(u, v)=a_{1}(v) \cos \varphi(u)-$ $a_{2}(v) \sin \varphi(u) ; z^{2}(u, v)=a_{1}(v) \sin \varphi(u)+a_{2}(v) \cos \varphi(u)$, we obtain the following local parametrization of M^{2} :

$$
\begin{equation*}
z(u, v)=z^{1}(u, v) e_{1}^{0}(u)+z^{2}(u, v) e_{2}^{0}(u) \tag{12}
\end{equation*}
$$

The equality (12) implies that M^{2} lies in the plane \mathbb{E}_{0}^{2}, i.e. M^{2} is locally a plane.
II. Let M^{2} be a developable surface, defined by (1), where $e(v), e^{\prime}(v)$ and $x^{\prime}(v)$ are linearly dependent vectors. We consider the frame field $\left\{X_{1}, X_{2}, b_{1}, \ldots, b_{n-2}\right\}$ of M^{2}, determined in the same way as in the proof of Proposition 1. So, formulas (4) hold good. Let N_{1}, \ldots, N_{n-2} be a normal frame field of M^{2}, consisting of parallel normal vector fields. Using (4) we obtain

$$
\begin{aligned}
& \nabla_{X_{1}}^{\prime} N_{\alpha}=0 \\
& \nabla_{X_{2}}^{\prime} N_{\alpha}=\frac{\sigma_{\alpha}^{\beta} c_{\beta}}{u+q} X_{2} ; \quad \alpha=1, \ldots, n-2,
\end{aligned}
$$

where $\sigma_{\alpha}^{\beta}=\left\langle N_{\alpha}, b_{\beta}\right\rangle ; \alpha, \beta=1, \ldots, n-2$. Hence,

$$
\kappa_{1}^{\alpha}=0 ; \quad \kappa_{2}^{\alpha}=-\frac{\sigma_{\alpha}^{\beta} c_{\beta}}{u+q} ; \quad \alpha=1, \ldots, n-2
$$

Consequently, $\kappa_{1}^{\alpha} \kappa_{2}^{\alpha}=0, \alpha=1, \ldots, n-2$.

REFERENCES

[1] B.-Y. Chen. Geometry of submanifolds. Marcel Dekker, Inc., New York, 1973.
[2] B.-Y. Chen. Some results for surfaces with flat normal connection. Atti-Accad.-Naz.-Lincei-Rend.-Cl.-Sci.-Fis.-Mat.-Natur. (8) 56 (1974), 180-188.

Velichka Milousheva
"L. Karavelov" Civil Engineering Higher School
Department of Mathematics
32, Suhodolska Str.
1373 Sofia, Bulgaria
e-mail: milousheva@vsu.bg

ЕДНА ХАРАКТЕРИЗАЦИЯ НА РАЗВИВАЕМИТЕ ДВУМЕЛНИ ПОВЪРХНИНИ В ЕВКЛИДОВО ПРОСТРАНСТВО

Величка В. Милушева

Доказваме, че всяка развиваема двумелна повърхнина в n-мерно евклидово пространство има плоска нормална свързаност. Даваме характеризацията на развиваемите двумерни повърхнини на езика на повърхнините с плоска нормална свързаност.

[^0]: *The research is financially supported by Contract No $164 / 2005$, "L. Karavelov" Civil Engineering Higher School, Sofia, Bulgaria

