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We prove that each developable two-dimensional surface in Euclidean space is a
surface with flat normal connection. We give a characterization of the developable
two-dimensional surfaces in terms of surfaces with flat normal connection.
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A ruled two-dimensional surface M2 in n-dimensional Euclidean space En is a one-
parameter system {E1(v)}, v ∈ J of one-dimensional linear subspaces E1(v) of En, defined
in an interval J ⊂ R. The lines E1(v) are called generators of M2. A ruled surface
M2 = {E1(v)}, v ∈ J is said to be developable, if the tangent space TpM2 at all regular
points p of an arbitrary fixed generator E1(v) is one and the same.

Each ruled surface M2 = {E1(v)}, v ∈ J in En can be parametrized as follows:
(1) z(u, v) = x(v) + u e(v), u ∈ R, v ∈ J,
where x(v) and e(v) are vector-valued functions, defined in J , such that the vectors e(v)
and x′(v) + u e′(v) are linearly independent for all v ∈ J . The tangent space of M2 is
spanned by the vectors

zu = e(v);
zv = x′(v) + u e′(v).

Using that for a developable surface M2 the space span{zu, zv} is constant at the
points of a fixed line E1(v), we obtain that the ruled surface, defined by (1), is developable
if and only if the vectors e(v), e′(v) and x′(v) are linearly dependent.

Proposition 1.Each developable two-dimensional surface in Euclidean space En is
a surface with flat normal connection.

Proof. Let M2 be a developable surface, defined by equality (1), where e(v), e′(v)
and x′(v) are linearly dependent vectors. Without loss of generality we assume that
e2(v) = 1. Then, the vector fields e(v) and e′(v) are orthogonal and the tangent space of
M2 is span{e(v), e′(v)}. Since x′(v) ∈ span{e(v), e′(v)}, then x′(v) is presented by

x′(v) = p(v) e(v) + q(v) e′(v)
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for some functions p(v) and q(v). Hence, the tangent space of M2 is spanned by
zu = e;
zv = p e+ (u+ q) e′.

Considering only the regular points ofM2 (where u 6= −q), we choose an orthonormal
tangent frame field {X1, X2} in the following way:

(2)
X1 = e = zu;

X2 =
e′√
(e′)2

= − p

(u+ q)
√

(e′)2
zu +

1
(u+ q)

√
(e′)2

zv.

Since the tangent space of M2 does not depend on the parameter u, then the normal
space of M2 is spanned by vector fields b1(v), . . . , bn−2(v). With respect to the basis
{e(v), e′(v), b1(v), . . . , bn−2(v)} of En the derivatives of bα, α = 1, . . . , n−2 are decomposed
in the form
(3) b′α = cα e

′ + cβα bβ ,

where cα and cβα, α, β = 1, . . . , n−2 are functions of v. Here and further on the summation
convention is assumed.

Let ∇′ be the Levi-Civita connection of the standard metric 〈, 〉 in En. We denote by
D the normal connection of M2. Using (2) and (3) we get

(4)
∇′X1

bα = 0;

∇′X2
bα =

cα
u+ q

X2 +
cβα

(u+ q)
√

(e′)2
bβ ; α = 1, . . . , n− 2.

Having in mind the Weingarten formula, we obtain

(5)
DX1bα = 0;

DX2bα =
cβα

(u+ q)
√

(e′)2
bβ ; α = 1, . . . , n− 2.

The normal curvatures Rbα , α = 1, . . . , n − 2 of M2, corresponding to the normal
vector fields bα, α = 1, . . . , n− 2, are given by

Rbα(X1, X2) = DX1DX2bα −DX2DX1bα −D[X1,X2]bα, α = 1, . . . , n− 2.
Using (2) we calculate

(6) [X1, X2] = − 1
u+ q

X2.

From (5) and (6) we obtain
Rbα(X1, X2) = 0, α = 1, . . . , n− 2,

which implies that M2 is a surface with flat normal connection.
Remark: Each two-dimensional plane E2 in En can be considered as a trivial developable

surface. Obviously, each plane E2 is a surface with flat normal connection.
Our aim is to characterize the two-dimensional surfaces with flat normal connection,

which are developable surfaces.
Let M2 be a two-dimensional surface in En with flat normal connection. According

to [1] locally there exist n−2 mutually orthogonal unit normal vector fields b1, . . . , bn−2,
which are parallel in the normal bundle. Moreover, there exist two mutually orthogonal
unit tangent vector fields X1 and X2 on M2, such that with respect to the frame
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X1, X2, b1, . . . , bn−2 the shape operators Abα , corresponding to bα, α = 1, . . . , n − 2,
are given by [2]

Abα =
(
κα1 0
0 κα2

)
, α = 1, . . . , n− 2,

where κα1 and κα2 , α = 1, . . . , n − 2 are functions on M2. The vector fields X1 and X2

determine the principal directions of M2. The derivative formulas of M2 with respect to
the frame X1, X2, b1, . . . , bn−2 look like

(7)

∇′X1
X1 = f1X2 + κα1 bα;

∇′X1
X2 = −f1X1;

∇′X2
X1 = −f2X2;

∇′X2
X2 = f2X1 + κα2 bα,

where f1 = 〈∇′X1
X1, X2〉; f2 = 〈∇′X2

X2, X1〉 and

(8)
∇′X1

bα = −κα1 X1;
∇′X2

bα = −κα2X2; α = 1, . . . , n− 2.

If b1, . . . , bn−2 is another normal frame field, consisting of parallel normal vector fields
ofM2, then b1, . . . , bn−2 and b1, . . . , bn−2 are connected by a constant orthogonal matrix.

Obviously, the following lemma holds true.
Lemma 2. Let M2 be a two-dimensional surface in En with flat normal connection.

M2 is locally a plane if and only if καi = 0, i = 1, 2, α = 1, . . . , n− 2.
We shall describe the two-dimensional surfaces in En with flat normal connection, for

which κα1κα2 = 0, α = 1, . . . , n− 2 for each parallel normal frame field.
Lemma 3. Let M2 be a two-dimensional surface in En with flat normal connection

and κα1κα2 = 0, α = 1, . . . , n − 2 for each parallel normal frame field. Then, there exists
a neighborhood U ⊂M2, such that κα1 |U = 0 for all α = 1, . . . , n− 2 (or κα2 |U = 0 for all
α = 1, . . . , n− 2).

Proof. Let M2 be a surface with flat normal connection and X1, X2, b1, . . . , bn−2 be
a frame field of M2, satisfying (8), where κα1κα2 = 0, α = 1, . . . , n− 2.

If there exist a point p ∈ M2 and an index α ∈ {1, . . . , n − 2}, such that κα1 (p) 6= 0,
then there exists a neighborhood U of p, in which κα1 6= 0. Hence, κα2 |U = 0. We shall prove
that κβ2 |U = 0 for all β = 1, . . . , n−2. Suppose that there exist a point q ∈ U and an index
β 6= α, such that κβ2 (q) 6= 0. Then, there exists a neighborhood U1 ⊂ U, q ∈ U1, such that
κβ2 |U1

6= 0. Hence, κβ1 |U1
= 0. Without loss of generality we assume that α = 1, β = 2

(up to numeration). Let us consider the parallel normal frame field {b1, b2, b3, . . . , bn−2},
where

b1 =
b1 + b2√

2
; b2 =

b1 − b2√
2

.

Then, for the parallel normal vector fields b1 and b2 we have

κ1
1 =

κ1
1 + κ2

1√
2

; κ1
2 =

κ1
2 + κ2

2√
2

; κ2
1 =

κ1
1 − κ2

1√
2

; κ2
2 =

κ1
2 − κ2

2√
2

.

Hence, κα1κ
α
2 |U1

6= 0, α = 1, 2, which contradicts the condition κα1κα2 = 0, α = 1, . . . , n−2
for each parallel normal frame field.
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Consequently, κβ2 |U = 0 for each β = 1, . . . , n− 2.
We give a characterization of the developable two-dimensional surfaces in the following

theorem.

Theorem 4. Let M2 be a two-dimensional surface in En with flat normal connection.
Then, M2 is locally a developable surface if and only if κα1κα2 = 0, α = 1, . . . , n − 2 for
each parallel normal frame field.

Proof. Let M2 be a surface with flat normal connection and X1, X2, b1, . . . , bn−2 be
a frame field of M2, for which formulas (7) and (8) hold good.

I. Suppose that κα1κα2 = 0, α = 1, . . . , n− 2. We shall prove that locally M2 is either
a plane or a non-trivial developable surface.

According to Lemma 3, κα2 = 0 for all α = 1, . . . , n − 2 in a neighborhood U ⊂ M2.
Let p be an arbitrary point of U and c2 be the integral curve of X2, passing through p.
Since ∇′X2

bα = 0, α = 1, . . . , n − 2, then the normal space span{b1, . . . , bn−2} of M2 is
constant at the points of c2 and hence, the tangent space span{X1, X2} of M2 at the
points of c2 is one and the same. Using the derivative formulas (7) of M2 we get

(9)
∇′X2

X2 = f2X1;
∇′X2

X1 = −f2X2.

Let the curve c2 be parametrized by x = x(v), v ∈ J and x′(v) = t = X2. Then, by
the Frenet’s formulas of c2 and (9) we get that the curvature of c2 is κ = ±f2 and the
principal normal is n = ±X1.

If f2 = 0, i.e. κ = 0, then c2 is a straight line. Consequently, for each point p ∈ U
there exists a straight line passing through p, i.e.M2 is locally a ruled surface. Moreover,
since the tangent space of M2 at the points of each line is one and the same, then M2 is
locally a developable surface.

If f2(q) 6= 0 at a point q ∈ U , then there exists a neighborhood Ũ ⊂ U, q ∈ Ũ , such
that f2|eU 6= 0. From the equalities (9) we get

t′ = κn;
n′ = −κ t,

i.e. c2 is a plane curve, lying in its osculating plane span{t, n} = span{X1, X2}. Consequently,
for each point p ∈ U there exists a plane curve, passing through p, i.e. M2 is locally a
one-parameter system {c2(u)}, u ∈ I of plane curves c2(u), defined in an interval I ⊂ R.
Let for a fixed u ∈ I the curve c2(u) lie in a plane E2(u) spanned by the vectors e1(u)
and e2(u). Hence, the surface M2 has a local parametrization, given by
(10) z(u, v) = a1(v) e1(u) + a2(v) e2(u), u ∈ I, v ∈ J
for some functions a1(v) and a2(v). Then, the tangent space of M2 is spanned by

zu = a1(v) e′1(u) + a2(v) e′2(u);
zv = a′1(v) e1(u) + a′2(v) e2(u).

Using that the tangent space ofM2 is span{e1(u), e2(u)}, we obtain that e′1(u), e′2(u) ∈
span{e1(u), e2(u)}, which implies that E2(u) is a constant plane E2

0. Let e0
1 = const, e0

2 =
const be an orthonormal basis of E2

0. Then,

(11)
e1(u) = cosϕ(u) e0

1 + sinϕ(u) e0
2;

e2(u) = − sinϕ(u) e0
1 + cosϕ(u) e0

2
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for some function ϕ(u). Using (10) and (11) and setting z1(u, v) = a1(v) cosϕ(u) −
a2(v) sinϕ(u); z2(u, v) = a1(v) sinϕ(u) + a2(v) cosϕ(u), we obtain the following local
parametrization of M2:
(12) z(u, v) = z1(u, v) e0

1(u) + z2(u, v) e0
2(u).

The equality (12) implies that M2 lies in the plane E2
0, i.e. M2 is locally a plane.

II. Let M2 be a developable surface, defined by (1), where e(v), e′(v) and x′(v) are
linearly dependent vectors. We consider the frame field {X1, X2, b1, . . . , bn−2} of M2,
determined in the same way as in the proof of Proposition 1. So, formulas (4) hold good.
Let N1, . . . , Nn−2 be a normal frame field of M2, consisting of parallel normal vector
fields. Using (4) we obtain

∇′X1
Nα = 0;

∇′X2
Nα =

σβα cβ
u+ q

X2;
α = 1, . . . , n− 2,

where σβα = 〈Nα, bβ〉; α, β = 1, . . . , n− 2. Hence,

κα1 = 0; κα2 = −σ
β
α cβ
u+ q

; α = 1, . . . , n− 2.

Consequently, κα1κα2 = 0, α = 1, . . . , n− 2.
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ЕДНА ХАРАКТЕРИЗАЦИЯ НА РАЗВИВАЕМИТЕ ДВУМЕЛНИ
ПОВЪРХНИНИ В ЕВКЛИДОВО ПРОСТРАНСТВО

Величка В. Милушева

Доказваме, че всяка развиваема двумелна повърхнина в n-мерно евклидово прос-
транство има плоска нормална свързаност. Даваме характеризацията на раз-
виваемите двумерни повърхнини на езика на повърхнините с плоска нормална
свързаност.
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