МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2006 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2006 Proceedings of the Thirty Fifth Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 5–8, 2006

A CHARACTERIZATION OF DEVELOPABLE TWO-DIMENSIONAL SURFACES IN EUCLIDEAN SPACE^{*}

Velichka V. Milousheva

We prove that each developable two-dimensional surface in Euclidean space is a surface with flat normal connection. We give a characterization of the developable two-dimensional surfaces in terms of surfaces with flat normal connection. **2000 MS Classification:** 53A07; 53B20

Keywords: developable surfaces; surfaces with flat normal connection

A ruled two-dimensional surface M^2 in *n*-dimensional Euclidean space \mathbb{E}^n is a oneparameter system $\{\mathbb{E}^1(v)\}, v \in J$ of one-dimensional linear subspaces $\mathbb{E}^1(v)$ of \mathbb{E}^n , defined in an interval $J \subset \mathbb{R}$. The lines $\mathbb{E}^1(v)$ are called generators of M^2 . A ruled surface $M^2 = \{\mathbb{E}^1(v)\}, v \in J$ is said to be *developable*, if the tangent space T_pM^2 at all regular points p of an arbitrary fixed generator $\mathbb{E}^1(v)$ is one and the same.

Each ruled surface $M^2 = \{\mathbb{E}^1(v)\}, v \in J$ in \mathbb{E}^n can be parametrized as follows:

(1)
$$z(u,v) = x(v) + u e(v), \quad u \in \mathbb{R}, \ v \in J_{2}$$

where x(v) and e(v) are vector-valued functions, defined in J, such that the vectors e(v)and x'(v) + u e'(v) are linearly independent for all $v \in J$. The tangent space of M^2 is spanned by the vectors

$$z_u = e(v);$$

$$z_v = x'(v) + u e'(v)$$

Using that for a developable surface M^2 the space span $\{z_u, z_v\}$ is constant at the points of a fixed line $\mathbb{E}^1(v)$, we obtain that the ruled surface, defined by (1), is developable if and only if the vectors e(v), e'(v) and x'(v) are linearly dependent.

Proposition 1. Each developable two-dimensional surface in Euclidean space \mathbb{E}^n is a surface with flat normal connection.

Proof. Let M^2 be a developable surface, defined by equality (1), where e(v), e'(v) and x'(v) are linearly dependent vectors. Without loss of generality we assume that $e^2(v) = 1$. Then, the vector fields e(v) and e'(v) are orthogonal and the tangent space of M^2 is span $\{e(v), e'(v)\}$. Since $x'(v) \in span\{e(v), e'(v)\}$, then x'(v) is presented by x'(v) = p(v) e(v) + q(v) e'(v)

 $^{^{*}{\}rm The}$ research is financially supported by Contract No 164/2005, "L. Karavelov" Civil Engineering Higher School, Sofia, Bulgaria

for some functions p(v) and q(v). Hence, the tangent space of M^2 is spanned by

$$z_u = e;$$

$$z_v = p e + (u+q) e'.$$

Considering only the regular points of M^2 (where $u \neq -q$), we choose an orthonormal tangent frame field $\{X_1, X_2\}$ in the following way:

(2)
$$X_1 = e = z_u; \\ X_2 = \frac{e'}{\sqrt{(e')^2}} = -\frac{p}{(u+q)\sqrt{(e')^2}} z_u + \frac{1}{(u+q)\sqrt{(e')^2}} z_v.$$

Since the tangent space of M^2 does not depend on the parameter u, then the normal space of M^2 is spanned by vector fields $b_1(v), \ldots, b_{n-2}(v)$. With respect to the basis $\{e(v), e'(v), b_1(v), \ldots, b_{n-2}(v)\}$ of \mathbb{E}^n the derivatives of b_{α} , $\alpha = 1, \ldots, n-2$ are decomposed in the form

$$b'_{\alpha} = c_{\alpha} \, e' + c^{\beta}_{\alpha} \, b_{\beta},$$

where c_{α} and c_{α}^{β} , $\alpha, \beta = 1, \ldots, n-2$ are functions of v. Here and further on the summation convention is assumed.

Let ∇' be the Levi-Civita connection of the standard metric \langle, \rangle in \mathbb{E}^n . We denote by D the normal connection of M^2 . Using (2) and (3) we get

(4)
$$\nabla'_{X_1} b_{\alpha} = 0; \\ \nabla'_{X_2} b_{\alpha} = \frac{c_{\alpha}}{u+q} X_2 + \frac{c_{\alpha}^{\beta}}{(u+q)\sqrt{(e')^2}} b_{\beta}; \quad \alpha = 1, \dots, n-2.$$

Having in mind the Weingarten formula, we obtain

(5)
$$D_{X_1}b_{\alpha} = 0;$$
$$D_{X_2}b_{\alpha} = \frac{c_{\alpha}^{\beta}}{(u+q)\sqrt{(e')^2}} b_{\beta}; \quad \alpha = 1, \dots, n-2$$

The normal curvatures $R_{b_{\alpha}}$, $\alpha = 1, \ldots, n-2$ of M^2 , corresponding to the normal vector fields b_{α} , $\alpha = 1, \ldots, n-2$, are given by

$$R_{b_{\alpha}}(X_1, X_2) = D_{X_1} D_{X_2} b_{\alpha} - D_{X_2} D_{X_1} b_{\alpha} - D_{[X_1, X_2]} b_{\alpha}, \quad \alpha = 1, \dots, n-2.$$

Using (2) we calculate

(3)

(6)
$$[X_1, X_2] = -\frac{1}{u+q} X_2$$

From (5) and (6) we obtain

$$R_{b_{\alpha}}(X_1, X_2) = 0, \quad \alpha = 1, \dots, n-2,$$

which implies that M^2 is a surface with flat normal connection.

Remark: Each two-dimensional plane \mathbb{E}^2 in \mathbb{E}^n can be considered as a trivial developable surface. Obviously, each plane \mathbb{E}^2 is a surface with flat normal connection.

Our aim is to characterize the two-dimensional surfaces with flat normal connection, which are developable surfaces.

Let M^2 be a two-dimensional surface in \mathbb{E}^n with flat normal connection. According to [1] locally there exist n-2 mutually orthogonal unit normal vector fields b_1, \ldots, b_{n-2} , which are parallel in the normal bundle. Moreover, there exist two mutually orthogonal unit tangent vector fields X_1 and X_2 on M^2 , such that with respect to the frame $X_1, X_2, b_1, \ldots, b_{n-2}$ the shape operators $A_{b_{\alpha}}$, corresponding to b_{α} , $\alpha = 1, \ldots, n-2$, are given by [2]

$$A_{b_{\alpha}} = \begin{pmatrix} \kappa_1^{\alpha} & 0\\ 0 & \kappa_2^{\alpha} \end{pmatrix}, \quad \alpha = 1, \dots, n-2,$$

where κ_1^{α} and κ_2^{α} , $\alpha = 1, \ldots, n-2$ are functions on M^2 . The vector fields X_1 and X_2 determine the principal directions of M^2 . The derivative formulas of M^2 with respect to the frame $X_1, X_2, b_1, \ldots, b_{n-2}$ look like

(7)

$$\begin{aligned}
\nabla'_{X_1} X_1 &= f_1 X_2 + \kappa_1^{\alpha} b_{\alpha}; \\
\nabla'_{X_1} X_2 &= -f_1 X_1; \\
\nabla'_{X_2} X_1 &= -f_2 X_2; \\
\nabla'_{X_2} X_2 &= f_2 X_1 + \kappa_2^{\alpha} b_{\alpha}.
\end{aligned}$$

 $\nabla'_{X_2} X_2 = f_2 X_1$ where $f_1 = \langle \nabla'_{X_1} X_1, X_2 \rangle$; $f_2 = \langle \nabla'_{X_2} X_2, X_1 \rangle$ and $\nabla'_{Y_2} h_2 = -\kappa^{\alpha} X_1$.

(8)
$$\begin{aligned}
\nabla_{X_1} b_\alpha &= -\kappa_1^\alpha X_1; \\
\nabla_{X_2} b_\alpha &= -\kappa_2^\alpha X_2;
\end{aligned}
\qquad \alpha = 1, \dots, n-2$$

If $\bar{b}_1, \ldots, \bar{b}_{n-2}$ is another normal frame field, consisting of parallel normal vector fields of M^2 , then b_1, \ldots, b_{n-2} and $\bar{b}_1, \ldots, \bar{b}_{n-2}$ are connected by a constant orthogonal matrix. Obviously, the following lemma holds true.

Lemma 2. Let M^2 be a two-dimensional surface in \mathbb{E}^n with flat normal connection. M^2 is locally a plane if and only if $\kappa_i^{\alpha} = 0$, $i = 1, 2, \alpha = 1, \ldots, n-2$.

We shall describe the two-dimensional surfaces in \mathbb{E}^n with flat normal connection, for which $\kappa_1^{\alpha}\kappa_2^{\alpha} = 0$, $\alpha = 1, \ldots, n-2$ for each parallel normal frame field.

Lemma 3. Let M^2 be a two-dimensional surface in \mathbb{E}^n with flat normal connection and $\kappa_1^{\alpha}\kappa_2^{\alpha} = 0$, $\alpha = 1, \ldots, n-2$ for each parallel normal frame field. Then, there exists a neighborhood $U \subset M^2$, such that $\kappa_1^{\alpha}|_U = 0$ for all $\alpha = 1, \ldots, n-2$ (or $\kappa_2^{\alpha}|_U = 0$ for all $\alpha = 1, \ldots, n-2$).

Proof. Let M^2 be a surface with flat normal connection and $X_1, X_2, b_1, \ldots, b_{n-2}$ be a frame field of M^2 , satisfying (8), where $\kappa_1^{\alpha} \kappa_2^{\alpha} = 0$, $\alpha = 1, \ldots, n-2$.

If there exist a point $p \in M^2$ and an index $\alpha \in \{1, \ldots, n-2\}$, such that $\kappa_1^{\alpha}(p) \neq 0$, then there exists a neighborhood U of p, in which $\kappa_1^{\alpha} \neq 0$. Hence, $\kappa_{2|U}^{\alpha} = 0$. We shall prove that $\kappa_{2|U}^{\beta} = 0$ for all $\beta = 1, \ldots, n-2$. Suppose that there exist a point $q \in U$ and an index $\beta \neq \alpha$, such that $\kappa_2^{\beta}(q) \neq 0$. Then, there exists a neighborhood $U_1 \subset U$, $q \in U_1$, such that $\kappa_{2|U_1}^{\beta} \neq 0$. Hence, $\kappa_{1|U_1}^{\beta} = 0$. Without loss of generality we assume that $\alpha = 1, \beta = 2$ (up to numeration). Let us consider the parallel normal frame field $\{\overline{b}_1, \overline{b}_2, b_3, \ldots, b_{n-2}\}$, where

$$\bar{b}_1 = \frac{b_1 + b_2}{\sqrt{2}}; \quad \bar{b}_2 = \frac{b_1 - b_2}{\sqrt{2}}$$

Then, for the parallel normal vector fields \overline{b}_1 and \overline{b}_2 we have

$$\overline{\kappa}_1^1 = \frac{\kappa_1^1 + \kappa_1^2}{\sqrt{2}}; \quad \overline{\kappa}_2^1 = \frac{\kappa_2^1 + \kappa_2^2}{\sqrt{2}}; \quad \overline{\kappa}_1^2 = \frac{\kappa_1^1 - \kappa_1^2}{\sqrt{2}}; \quad \overline{\kappa}_2^2 = \frac{\kappa_2^1 - \kappa_2^2}{\sqrt{2}}.$$

Hence, $\overline{\kappa}_1^{\alpha} \overline{\kappa}_2^{\alpha}|_{U_1} \neq 0$, $\alpha = 1, 2$, which contradicts the condition $\kappa_1^{\alpha} \kappa_2^{\alpha} = 0$, $\alpha = 1, \ldots, n-2$ for each parallel normal frame field.

188

Consequently, $\kappa_{2|U}^{\beta} = 0$ for each $\beta = 1, \ldots, n-2$.

We give a characterization of the developable two-dimensional surfaces in the following theorem.

Theorem 4. Let M^2 be a two-dimensional surface in \mathbb{E}^n with flat normal connection. Then, M^2 is locally a developable surface if and only if $\kappa_1^{\alpha}\kappa_2^{\alpha} = 0$, $\alpha = 1, \ldots, n-2$ for each parallel normal frame field.

Proof. Let M^2 be a surface with flat normal connection and $X_1, X_2, b_1, \ldots, b_{n-2}$ be a frame field of M^2 , for which formulas (7) and (8) hold good.

I. Suppose that $\kappa_1^{\alpha}\kappa_2^{\alpha} = 0$, $\alpha = 1, \ldots, n-2$. We shall prove that locally M^2 is either a plane or a non-trivial developable surface.

According to Lemma 3, $\kappa_2^{\alpha} = 0$ for all $\alpha = 1, \ldots, n-2$ in a neighborhood $U \subset M^2$. Let p be an arbitrary point of U and c_2 be the integral curve of X_2 , passing through p. Since $\nabla'_{X_2}b_{\alpha} = 0$, $\alpha = 1, \ldots, n-2$, then the normal space span $\{b_1, \ldots, b_{n-2}\}$ of M^2 is constant at the points of c_2 and hence, the tangent space span $\{X_1, X_2\}$ of M^2 at the points of c_2 is one and the same. Using the derivative formulas (7) of M^2 we get

(9)
$$\nabla'_{X_2} X_2 = f_2 X_1; \\ \nabla'_{X_2} X_1 = -f_2 X_2.$$

Let the curve c_2 be parametrized by x = x(v), $v \in J$ and $x'(v) = t = X_2$. Then, by the Frenet's formulas of c_2 and (9) we get that the curvature of c_2 is $\kappa = \pm f_2$ and the principal normal is $n = \pm X_1$.

If $f_2 = 0$, i.e. $\kappa = 0$, then c_2 is a straight line. Consequently, for each point $p \in U$ there exists a straight line passing through p, i.e. M^2 is locally a ruled surface. Moreover, since the tangent space of M^2 at the points of each line is one and the same, then M^2 is locally a developable surface.

If $f_2(q) \neq 0$ at a point $q \in U$, then there exists a neighborhood $\widetilde{U} \subset U$, $q \in \widetilde{U}$, such that $f_{2|\widetilde{U}} \neq 0$. From the equalities (9) we get

$$t' = \kappa n;$$

$$n' = -\kappa t$$

i.e. c_2 is a plane curve, lying in its osculating plane span $\{t, n\} = \text{span}\{X_1, X_2\}$. Consequently, for each point $p \in U$ there exists a plane curve, passing through p, i.e. M^2 is locally a one-parameter system $\{c_2(u)\}, u \in I$ of plane curves $c_2(u)$, defined in an interval $I \subset \mathbb{R}$. Let for a fixed $u \in I$ the curve $c_2(u)$ lie in a plane $\mathbb{E}^2(u)$ spanned by the vectors $e_1(u)$ and $e_2(u)$. Hence, the surface M^2 has a local parametrization, given by

(10)
$$z(u,v) = a_1(v) e_1(u) + a_2(v) e_2(u), \quad u \in I, \ v \in J.$$

for some functions $a_1(v)$ and $a_2(v)$. Then, the tangent space of M^2 is spanned by

$$z_u = a_1(v) e'_1(u) + a_2(v) e'_2(u);$$

$$z_v = a'_1(v) e_1(u) + a'_2(v) e_2(u).$$

Using that the tangent space of M^2 is span $\{e_1(u), e_2(u)\}$, we obtain that $e'_1(u), e'_2(u) \in$ span $\{e_1(u), e_2(u)\}$, which implies that $\mathbb{E}^2(u)$ is a constant plane \mathbb{E}^2_0 . Let $e^0_1 = const$, $e^0_2 = const$ be an orthonormal basis of \mathbb{E}^2_0 . Then,

(11)
$$e_{1}(u) = \cos \varphi(u) e_{1}^{0} + \sin \varphi(u) e_{2}^{0}; \\ e_{2}(u) = -\sin \varphi(u) e_{1}^{0} + \cos \varphi(u) e_{2}^{0}$$

189

for some function $\varphi(u)$. Using (10) and (11) and setting $z^1(u,v) = a_1(v)\cos\varphi(u) - a_2(v)\sin\varphi(u)$; $z^2(u,v) = a_1(v)\sin\varphi(u) + a_2(v)\cos\varphi(u)$, we obtain the following local parametrization of M^2 :

(12)
$$z(u,v) = z^{1}(u,v) e_{1}^{0}(u) + z^{2}(u,v) e_{2}^{0}(u).$$

The equality (12) implies that M^2 lies in the plane \mathbb{E}_0^2 , i.e. M^2 is locally a plane.

II. Let M^2 be a developable surface, defined by (1), where e(v), e'(v) and x'(v) are linearly dependent vectors. We consider the frame field $\{X_1, X_2, b_1, \ldots, b_{n-2}\}$ of M^2 , determined in the same way as in the proof of Proposition 1. So, formulas (4) hold good. Let N_1, \ldots, N_{n-2} be a normal frame field of M^2 , consisting of parallel normal vector fields. Using (4) we obtain

$$\nabla'_{X_1} N_{\alpha} = 0;$$

$$\nabla'_{X_2} N_{\alpha} = \frac{\sigma_{\alpha}^{\beta} c_{\beta}}{u+q} X_2;$$

$$\alpha = 1, \dots, n-2,$$

where $\sigma_{\alpha}^{\beta} = \langle N_{\alpha}, b_{\beta} \rangle$; $\alpha, \beta = 1, \dots, n-2$. Hence,

$$\kappa_1^{\alpha} = 0; \quad \kappa_2^{\alpha} = -\frac{\sigma_{\alpha}^{\beta} c_{\beta}}{u+q}; \quad \alpha = 1, \dots, n-2.$$

Consequently, $\kappa_1^{\alpha}\kappa_2^{\alpha} = 0, \ \alpha = 1, \dots, n-2.$

REFERENCES

 B.-Y. CHEN. Geometry of submanifolds. Marcel Dekker, Inc., New York, 1973.
 B.-Y. CHEN. Some results for surfaces with flat normal connection. Atti-Accad.-Naz.-Lincei-Rend.-Cl.-Sci.-Fis.-Mat.-Natur. (8) 56 (1974), 180–188.

Velichka Milousheva "L. Karavelov" Civil Engineering Higher School Department of Mathematics 32, Suhodolska Str. 1373 Sofia, Bulgaria e-mail: milousheva@vsu.bg

ЕДНА ХАРАКТЕРИЗАЦИЯ НА РАЗВИВАЕМИТЕ ДВУМЕЛНИ ПОВЪРХНИНИ В ЕВКЛИДОВО ПРОСТРАНСТВО

Величка В. Милушева

Доказваме, че всяка развиваема двумелна повърхнина в *n*-мерно евклидово пространство има плоска нормална свързаност. Даваме характеризацията на развиваемите двумерни повърхнини на езика на повърхнините с плоска нормална свързаност.