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The well known Laplace-Young equation asserts that the pressure difference across
the film or a membrane in a equilibruim is proportional to the mean curvature with
a proportionality constant the surface tension of the interface. Here we present two
variants of this equation leading to the surfaces of Delaunay and the mylar balloon
and in this way provide their nonvariational characterization.

1. Introduction. The equilibrium conditions for axisymmetric membrane lead to
highly nonlinear equations that sometimes can be solved exactly to give the shape. The
quantities that play the most crucial role in this sort of problems are membrane weight
density, circumferential and meridional stresses and the differential pressure. Besides in
Biology membrane models have found many nice applications in other scientific and
technological areas such as the design and production of large scientific balloons used by
space agencies to carry out research in the upper stratosphere. Guided by mechanical
ideas we derive two classes of shapes having quite interesting geometrical properties.

2. Axisymmetric membranes. In order to parametrize an axisymmetric membrane
we need to define its generating profile curve. Let s −→ (u(s), v(s)) be such a curve in
some meridional slice where s is the natural parameter provided by the corresponding
arclength. The total arclength is denoted by L. We parametrize the membrane surface
S in the ordinary Euclidean space R

3 with a fixed orthonormal basis (i, j,k) by making
use of s and the angle ϕ specifying the rotation of the XOY plane via the vector-valued
function

(1) x(s, ϕ) = u(s)e1(ϕ) + v(s)e3(ϕ), 0 < s ≤ L, 0 ≤ ϕ < 2π.

Here the vector e1(ϕ) is the new position of i after the rotation given by

(2) e1(ϕ) = cosϕi + sin ϕj .

The second vector in the equation (1) is along the axis around which the rotation takes
place and, therefore, remains constant, i.e., e3(ϕ) = const = k. The set {e1, e3} can be
completed to an orthonormal basis (e1, e2, e3) of R

3 by a third vector e2(ϕ) which is
introduced as a cross product of the vectors e3(ϕ) and e1(ϕ), i.e.,

e2(ϕ) = e3(ϕ) × e1(ϕ) = k× e1(ϕ) = − sinϕi + cosϕj .
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In order to determine some important characteristics specifying the membrane’s shape,
we calculate the derivatives of x(s, ϕ). The derivative with respect to s gives us the
tangent vector at each point along the generating curve

t(s, ϕ) = xs(s, ϕ) = u′(s)e1(ϕ) + v′(s)k.

In view of what follows we introduce also θ(s), which measures the angle spanned between
the tangent vector t and k. The coordinates u(s) and v(s) depend on θ(s) by the equations

(3) u′(s) = sin θ(s)

(4) v′(s) = cos θ(s).

Using (3) and (4), the equation for the tangent vector becomes

(5) t(s, ϕ) = sin θ(s)e1(ϕ) + cos θ(s)k.

The second derivative with respect to the parameter s of x(s, ϕ) is

(6) xss = θ′(s) cos θ(s)e1(ϕ) − θ′(s) sin θ(s)k.

Next, we find the first and second order derivatives of x(s, ϕ) with respect to ϕ

xϕ = u(s)(e1(ϕ))ϕ = u(s)e2(ϕ)(7)

xϕϕ = u(s)(e2(ϕ))ϕ = −u(s)e1(ϕ)(8)

and, finally, the mixed derivative

(9) xsϕ = xϕs = sin θ(s)e2(ϕ).

We need also to find out the outward normal n(s, ϕ). It can be presented as a cross
product of the tangent vector t(s, ϕ) and e2(ϕ), i.e.,

(10) n(s, ϕ) = t(s, ϕ) × e2(ϕ) = − cos θ(s)e1(ϕ) + sin θ(s)k.

By means of the coefficients of the first fundamental form

(11) E = x2

s
= 1, F = xs.xϕ = 0, G = x2

ϕ
= u2(s),

and those of the second fundamental form of S,

(12) L = n.xss = −θ′(s), M = n.xsϕ = 0, N = n.xϕϕ = u(s) cos θ(s).

one can find easily the mean curvature H (meaning average) of the membrane surface
under consideration.

Making use of the standard formula for H in the textbooks on classical differential
geometry (see e.g. [10])

H =
LG − 2MF + NE

2(EG − F 2)
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we end up with the following result

(13) H = −1

2

(

θ′(s) − cos θ(s)

u(s)

)

.

3. Equilibrium equations. Let us consider now the forces acting on the membrane
surface. The internal forces are

(14) f1(s, ϕ) = σm(s)t(s, ϕ) and f2(s, ϕ) = σc(s)e2(ϕ).

In the left-hand side of equation (14) σm means the meridional stress resultant and in
the right-hand one σc is the circumferential stress resultant (for more details see [1]).
Let us mention that the situation when σc ≡ 0 is referred in ballooning literature as the
natural shape model.
The external forces depend on the pressure and the density of the membrane’s material,
namely,

(15) f(s, ϕ) = −p(s)n(s, ϕ) − w(s)k.

Here p(s) is the hydrostatic differential pressure and w(s) is the weight density of the
film. Balancing the internal and external forces we are led to the following equilibrium
equations

(16) (σmu(s)t)s − σce1(ϕ) + u(s)f(s, ϕ) = 0.

We can project the above vectorial equation onto n and t and this gives us respectively

(σmu(s))
dθ

ds
= σc cos θ(s) − w(s)u(s) sin θ(s) − p(s)u(s)(17)

d(σmu(s))

ds
= σc sin θ(s) + w(s)u(s) cos θ(s).(18)

4. Shapes and related surfaces. In the period between 1960 and 1970 J. Smalley
did an extensive work on axisymmetric balloon shapes and implement these models on
a digital computer (all relevant references on the subject can be found in [1]).
As most of Smalley’s considerations were of numerical origin it deserve to look for those
models possessing analytical solutions. Despite that the system governing these shapes
is highly nonlinear we have been successful in finding a few exact solutions which are
presented below.
Let us start with the case when we can neglect the film weight contribution, i.e., we
suppose that w(s) ≡ 0, and, hence, in such a case we have instead the equations (17)
and (18) the system

(σmu(s))
dθ

ds
= σc cos θ(s) − p(s)u(s)(19)

d(σmu(s))

ds
= σc sin θ(s).(20)
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In order to be coherent with the geometrical relation (3), the last equation implies
that the meridional and circumferential stresses are constant and of the same magnitude,
i.e., σm = σc = σ = constant, while (19) specifies the mean curvature of S, namely

(21) H =
p(s)

2σ
·

As it can be recognized immediately, if we can arrange that the hydrostatic pressure
is also a constant, i.e., p(s) = po = constant, then we end up with a surface of constant
mean curvature

(22) H =
po

2σ
= constant.
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Fig. 1. The profile curves of Delaunay’s surfaces obtained by rolling the conics listed below the
horizontal line on it.

Delaunay [3] has isolated this class of surfaces guided by a genuine geometrical
argument – all they are just the traces of the foci of the non-degenerate conics when
they roll along a straight line in a plane (roulettes in French). In an Appendix to the
same paper Sturm characterizes Delaunay’s surfaces variationally as those surfaces of
revolution having a minimal lateral area at a fixed volume. That in turn revealed why
these surfaces make their appearance as soap bubbles and liquid drops [4, 9] or cells
under compression [14] and now as balloons shape. The complete list of Delaunay’s

surfaces includes cylinders of radius R and mean curvature H =
1

2R
, spheres of radius

R and mean curvature H =
1

R
, catenoids of mean curvature H = 0, unduloids of mean

curvature H 6= 0, and nodoids of mean curvature H 6= 0 with profile curves shown at
the end in Fig. 1. The analytical description of the three last and most interesting cases
from the list above can be found in [6], while in [7] one can find a lot of graphics which
are skipped here because of the shortage of space.

Following the plan, we switch to the other example in which the system of equations
(17) and (18) can be solved up to the very end. Now we assume that w(s) = σc = 0 and
p(s) = po = is a non-zero constant. In these circumstances the system formed by (17)
and (18) reduces to the equations
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(σmu(s))
dθ(s)

ds
= −pou(s)(23)

d(σmu(s))

ds
= 0.(24)

The last one says that σmu(s) is a constant as well and allows the previous one to be
rewritten as

(25)
dθ(s)

ds
= −

◦

pu(s),

where
◦

p is a new constant which can be easily expressed via the other constants of the
natural shape model. Combined with (3) this equation produces the geometrical relation

(26) u2(s) =
2
◦

p
cos θ(s),

which, as we shall see, characterizes uniquely the surface in question as follows. Let us
solve first (26) for u(s) and after that replace it in (25) in order to get an equation in
which the variables are separated

(27)
dθ√
cos θ

= −
√

2
◦

p ds.

The later can be easily solved by making use of the standard trigonometric identity
cosα = 1 − 2 sin2 α/2 which leads to

(28)
d(θ/2)

√

1 − 2 sin2(θ/2)
= −

√

◦

p

2
ds.

The integral on the right hand side is trivial while that on the left is just the elliptic
integral of the first kind F (θ/2,

√
2) which can be inverted to produce

(29)
θ

2
= am(−

√

◦

p

2
s,
√

2)

where am(t, k) is the Jacobian amplitude function of the argument t and the elliptic

module k (for more details on the elliptic functions, their integrals and properties see e.g.
[5]). The above mentioned trigonometric identity now gives

(30) cos θ = 1 − 2 sin2 θ/2 = 1 − 2sn2(

√

◦

p

2
s,
√

2) = dn2(

√

◦

p

2
s,
√

2)

and therefore by (26)

(31) u(s) =

√

2
◦

p
cos θ =

√

2
◦

p
dn(

√

◦

p

2
s,
√

2).
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Making use of the relation between Jacobian elliptic functions

(32) dn(t/k, k) = cn(t, 1/k)

the result for u(s) can be rewritten finally in the form

(33) u(s) =

√

2
◦

p
cn(

√

◦

ps,
1√
2
).

In order to find v(s) we can use either (4) (in conjuction with the equations (30) and
(32)), or the defining arclength equation

(34)
dv(s)

ds
=

√

1 −
(

du(s)

ds

)2

.

Both ways produce the equation

(35)
dv(s)

ds
= cn2(

√

◦

ps,
1√
2
).

Details about its integration can be found in [8] and the result is

(36) v(s) =
2
√

◦

p

[

E

(

am(

√

◦

ps,
1√
2
),

1√
2

)

− 1

2
F

(

am(

√

◦

ps,
1√
2
),

1√
2

)]

.

Fig. 2. The profile of the mylar balloon in
XOZ plane.
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Fig. 3. An open part of the mylar balloon

Comparing the obtained parametrization of the profile curve (u(s), v(s)) given by
(33) and (36) with one in [8] it is easy to conclude that we are dealing here with the
mylar balloon. For commercial purposes the just mentioned mylar balloon is fabricated
from two circular disks of mylar, sewing them along their boundaries and then inflating.
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Surprisingly enough, these balloons are not spherical as one naively might expect from
the well-known fact that the sphere possesses the maximal volume for a given surface
area. An experimental fact like this suggests a mathematical problem regarding the exact
shape of the balloon when it is fully inflated.

This problem was first spelled out by Paulsen in a variational setting [11] while here
we have provided in fact its non-variational characterization. One should mention also
the remarkable scale invariance (i.e. independence of the actual size) of the thickness to
diameter ratio of the inflated balloon which turns out to be with a good approximation
0.599. Another important fact about this surface is the very simple expression for its area
given by the formula A = π2r2 where r is the radius of the inflated balloon. Detailed
proofs and comments can be found in the above cited papers [6, 7, 8].
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БАЛОНИ, МЕМБРАНИ И ПОВЪРХНИНИТЕ СВЪРЗАНИ С ТЯХ

Елена Р. Попова, Мариана Цв. Хаджилазова, Ивайло M. Младенов

Добре известното уравнение на Лаплас-Юнг дава връзката между налягането в
отделните фази от двете страни на мембраната или филма и средната кривина
на повърхнината, която ги разделя посредством коефициент на пропорционал-
ност носещ името повърхностно напрежение. В настоящата работа са разгледани
два случая на споменатото уравнение, които определят повърхнините на Делоне
и полиестерният балон и осигуряват тяхното описание, което е независимо от
вариационните методи използвани за първоначалното им въвеждане.
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