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The class of the manifolds which are conformally equivalent to the Kähler manifolds
with Norden metric is considered. The curvature tensor on such four-dimensional
manifolds is obtained. The case of isotropic Kähler manifolds with Norden metric is
studied. A transformation of the Levi-Civita connections of two Norden metrics is
considered. Some invariant tensors of this transformation are obtained.

1. Preliminaries. Let (M,J, g) be a 2n-dimensional almost complex manifold with
Norden metric, i.e. J is an almost complex structure and g is a metric on M such that:
(1.1) J2X = −X, g(JX, JY ) = −g(X,Y ), X, Y ∈ X(M).
The associated metric g̃ of g on M given by g̃(X,Y ) = g(X,JY ) is a Norden metric too.
Both metrics are necessarily of signature (n, n).

Further, X,Y, Z,W (x, y, z, w, respectively) will stand for arbitrary differentiable
vector fields on M (vectors in TpM , p ∈M , respectively).

Let ∇ be the Levi-Civita connection of the metric g. Then, the tensor field F of type
(0, 3) on M is defined by
(1.2) F (X,Y, Z) = g ((∇XJ)Y,Z) .
It has the following symmetries
(1.3) F (X,Y, Z) = F (X,Z, Y ) = F (X,JY, JZ).

Let {ei} (i = 1, 2, . . . , 2n) be an arbitrary basis of TpM at a point p of M . The
components of the inverse matrix of g are denoted by gij with respect to the basis {ei}.

The Lie form θ associated with F is defined by
(1.4) θ(z) = gijF (ei, ej , z)
and the corresponding Lie vector is denoted by Ω, i.e. θ(z) = g(z,Ω).

A classification of the considered manifolds with respect to the tensor F is given
in [1]. Eight classes of almost complex manifolds with Norden metric are characterized
there according to the properties of F . The three basic classes W1, W2, W3 and the class
W1 ⊕W2 of the complex manifolds with Norden metric are given as follows:

(1.5)
W1 : F (X,Y, Z) =

1
2n

[g(X,Y )θ(Z) + g(X,Z)θ(Y )

+g(X, JY )θ(JZ) + g(X, JZ)θ(JY )] ;
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W2 : F (X,Y, JZ) + F (Y, Z, JX) + F (Z,X, JY ) = 0, θ = 0;

W3 : F (X,Y, Z) + F (Y, Z,X) + F (Z,X, Y ) = 0;

(1.6) W1 ⊕W2 : F (X,Y, JZ) + F (Y, Z, JX) + F (Z,X, JY ) = 0.
The special class W0 of the Kähler manifolds with Norden metric belonging to any other
class is determined by the condition F = 0.

Let R be the curvature tensor of ∇, i.e.
(1.7) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The corresponding tensor of type (0, 4) is denoted by the same letter and is given by
R(X,Y, Z,W ) = g (R(X,Y )Z,W ).

A tensor L of type (0, 4) is called a curvature-like tensor if it satisfies the following
conditions for any X,Y, Z,W ∈ X(M) :

L(X,Y, Z,W ) = −L(Y,X,Z,W ) = −L(X,Y,W,Z),

L(X,Y, Z,W ) + L(Y, Z,X,W ) + L(Z,X, Y,W ) = 0.
Then, the Ricci tensor ρ(L) and the scalar curvatures τ(L) and τ∗(L) of L are defined
by:
(1.8) ρ(L)(y, z) = gijL(ei, y, z, ej); τ(L) = gijρ(L)(ei, ej); τ∗(L) = gijρ(L)(ei, Jej).

A curvature-like tensor L is called a Kähler tensor if it satisfies the condition
(1.9) L(X,Y, JZ, JW ) = −L(X,Y, Z,W ), X, Y, Z,W ∈ X(M).

Further, let S be a symmetric and hybrid with respect to J tensor of type (0, 2), i.e.
S(JX, Y ) = S(JY,X). We consider the following curvature-like tensors of type (0, 4):

(1.10)

ψ1 (S) (X,Y, Z,W ) = g(Y,Z)S(X,W )− g(X,Z)S(Y,W )

+g(X,W )S(Y, Z)− g(Y,W )S(X,Z);

ψ2 (S) (X,Y, Z,W ) = g(Y, JZ)S(X, JW )− g(X, JZ)S(Y, JW )

+g(X, JW )S(Y, JZ)− g(Y, JW )S(X, JZ);

π1 =
1
2
ψ1(g); π2 =

1
2
ψ2(g); π3 = −ψ1 (g̃) = ψ2 (g̃) .

It is well known that the Weyl tensor W on a 2n-dimensional pseudo-Riemannian
manifold (n ≥ 2) is defined as follows

(1.11) W = R− 1
2n− 2

{
ψ1(ρ)− τ

2n− 1
π1

}
.

Let α = {x, y} be a non-degenerate 2-plane spanned by vectors x, y ∈ TpM , p ∈ M .
The sectional curvatures of α with respect to the curvature-like tensor L are given by

(1.12) ν(L; p) =
L(x, y, y, x)
π1(x, y, y, x)

, ν∗(L; p) =
L(x, y, y, Jx)
π1(x, y, y, x)

.

The square norm ‖∇J‖2 of ∇J is defined in [3] by

(1.13) ‖∇J‖2 = gijgklg
(
(∇eiJ)ek, (∇ejJ)el

)
.

Following [3], [4] we define a second square norm ‖∇J‖2∗ of ∇J with respect to the
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associated metric g̃ by
(1.14) ‖∇J‖2∗ = g̃ij g̃klg̃

(
(∇eiJ)ek, (∇ejJ)el

)
,

where g̃ij = −J isgjs are the components of the inverse matrix of g̃ with respect to the
basis {ei}. Then, having in mind the definition (1.2) and the properties (1.3) of the tensor
F , from (1.13) and (1.14) we obtain that

(1.15) ‖∇J‖2 = gijgklgpqFikpFjlq; ‖∇J‖2∗ = −g̃ijgklgpqFikpFjlq,
where Fikp = F (ei, ek, ep).

Definition 1.1.An almost complex manifold with Norden metric satisfying the condi-
tion ‖∇J‖2 = 0 is called an isotropic Kähler manifold with Norden metric.

Definition 1.2.An almost complex manifold with Norden metric satisfying the condi-
tion ‖∇J‖2 = ‖∇J‖2∗ = 0 is called a strong isotropic Kähler manifold with Norden metric.

2. Complex connections and curvature tensors on conformal Kähler mani-
folds with Norden metric. Let (M,J, g) be a W1-manifold with Norden metric. The
Lie forms θ and θ∗ = θ ◦ J are closed on M if and only if (∇Xθ)Y = (∇Y θ)X and
(∇Xθ)JY = (∇Y θ)JX. A W1-manifold with closed Lie forms is called a conformal
Kähler manifold with Norden metric. The subclass of these manifolds is denoted by W 0

1 .
In [2] is introduced a cannonical linear connection (so called B-connection) D on a

complex manifold with Norden metric as follows

(2.1) DXY = ∇XY − 1
2
J (∇XJ)Y.

It is shown that g and J are parallel with respect to the connection D. The curvature
tensor K of D is proved to be Kählerian.

In [6] is studied the Yano connection ∇′ given by

∇′XY = ∇XY +
1
4
{(∇XJ)JY + 2 (∇Y J)JX − (∇JXJ)Y } .

It is proved that the Yano connection is torsion-free and that ∇′J = 0 on a complex
manifold with Norden metric. In the same paper is obtained the Kähler curvature tensor
R′ of type (0, 4) of ∇′ on a W 0

1 -manifold as follows

(2.2) R′ = R− 1
4n
{ψ1 + ψ2} (S)− 1

8n2
ψ1(M)− θ(Ω)

16n2
{3π1 + π2}+

θ(JΩ)
16n2

π3,

where

(2.3)
S(X,Y ) = (∇Xθ)JY +

1
4n

[θ(X)θ(Y )− θ(JX)θ(JY )] ,

M(X,Y ) = θ(X)θ(Y ) + θ(JX)θ(JY ).
Then, having in mind (1.7), (2.1), (2.2) and (2.3) we obtain:

Theorem 2.1.The Kähler curvature tensors of the connections D and ∇′ coincide
on a conformal Kähler manifold with Norden metric, i.e. K = R′.

Theorem 2.2. Let (M,J, g) be a four-dimensional almost complex manifold with
Norden metric and L be a Kähler tensor on M . Then, the tensor L has the following
form
(2.4) L = ν(L) {π1 − π2}+ ν∗(L)π3.
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Proof. It is known [5] that in the tangent space TpM , p ∈M , there exists a J-basis
{e1, e2, Je1, Je2} such that g(ei, ej) = −g(Jei, Jej) = δij , g(ei, Jej) = 0, i, j = 1, 2.
Then, by the use of (1.9), (1.10), (1.12) and after straightforward calculations we prove
the truthfulness of (2.4). �

From the last theorem and (1.8) it follows that

(2.5) ν(L) =
τ(L)

8
, ν∗(L) =

τ∗(L)
8

.

Then, having in mind (2.2) and (2.3) for n = 2, (2.4), (2.5) and (1.8) we obtain the
following

Theorem 2.3. Let (M,J, g) be a four-dimensional W 0
1 -manifold. Then, for the curva-

ture tensor R of the Levi-Civita connection ∇ we have

(2.6)

R =
τ − div(JΩ)

8
{π1 − π2}+

trS∗

16
π3 − 1

8
{ψ1 − ψ2} (S) +

1
2

{
ψ1(ρ)− τ

3
π1

}

+
1
4

[
div(JΩ)

2
− τ

3
− θ(Ω)

8

]
π1,

where trS∗ = gijS(ei, Jej) = − div Ω +
θ(JΩ)

4
for n = 2, div Ω = ∇iΩi and div(JΩ) =

∇i(J ikΩk).

The last theorem and (1.11) imply the following
Corollary 2.1. Let (M,J, g) be four-dimensional W 0

1 -manifold. Then, for the Weyl
tensor we have

W =
τ − div(JΩ)

8
{π1 − π2}+

trS∗

16
π3− 1

8
{ψ1 − ψ2} (S)+

1
4

[
div(JΩ)

2
− τ

3
− θ(Ω)

8

]
π1.

Next, taking into account (1.5) and (1.15) we obtain that on a W1-manifold

(2.7) ‖∇J‖2 =
θ(Ω)
n2

, ‖∇J‖2∗ = −θ(JΩ)
n2

,

and by the use of (1.3), (1.5), (1.6) and (2.7) we obtain the following
Lemma 2.1. Let (M,J, g) be an isotropic Kähler W1-manifold with Norden metric.

Then, M is a strongly isotropic Kähler W1-manifold with Norden metric.
Now, (2.6) and the last lemma imply the following
Corollary 2.2. Let (M,J, g) be a four-dimensional isotropic Kähler W 0

1 -manifold.
Then, for the curvature tensor R of ∇ we have

R =
τ − div(JΩ)

8
{π1 − π2} − div Ω

16
π3 − 1

8
{ψ1 − ψ2} (S) +

1
2

{
ψ1(ρ)− τ

3
π1

}

+
1
4

[
div(JΩ)

2
− τ

3

]
π1.

3. Invariant tensors of the transformation of the Levi-Civita connections
of g and g̃ on a W1-manifold. Let (M,J, g) be an almost complex manifold with
Norden metric and ∇̃ be the Levi-Civita connection of the associated metric g̃. In [2] is
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considered the tensor
Φ(X,Y, Z) = g

(
∇̃XY −∇XY, Z

)

and it is obtained that

(3.1) Φ(X,Y, Z) =
1
2
{F (JZ,X, Y )− F (X,Y, JZ)− F (Y,X, JZ)} .

By the use of (1.5) and (3.1) we receive the following
Lemma 3.1. Let (M,J, g) be a W1-manifold with Norden metric. Then, for the

connections ∇ and ∇̃ we have

(3.2) ∇̃XY = ∇XY +
1

2n
[g(X, JY )Ω− g(X,Y )JΩ] .

Let R̃ be the curvature tensor of ∇̃. Then, having in mind (1.7) and (3.2) we obtain
Theorem 3.1. Let (M,J, g) be aW1-manifold with Norden metric. Then, the curvature

tensors R and R̃ of type (1, 3) are related as follows
(3.3)

R̃(X,Y )Z = R(X,Y )Z +
1

2n

{
g(X,Z)

[
∇Y JΩ− 1

2n
θ(JY )JΩ

]

−g(Y, Z)
[
∇XJΩ− 1

2n
θ(JX)JΩ

]
− g(X, JZ)

[
∇Y Ω− 1

2n
θ(Y )JΩ

]

+g(Y, JZ)
[
∇XΩ− 1

2n
θ(X)JΩ

]}
.

Further, we consider the following tensors:

T1(X,Y )Z = R(X,Y )Z +
1

4n

{
g(X,Z)

[
∇Y JΩ− 1

2n
θ(JY )JΩ

]

−g(Y, Z)
[
∇XJΩ− 1

2n
θ(JX)JΩ

]
− g(X, JZ)

[
∇Y Ω− 1

2n
θ(Y )JΩ

]

+g(Y, JZ)
[
∇XΩ− 1

2n
θ(X)JΩ

]}
;

T2(X,Y ) = ρ(X,Y )− 1
2n

[g(X,Y )τ − g(X,JY )τ∗] ;

T3(X,Y ) = (∇Xθ)Y +
1

4n
[g(X,Y )θ(JΩ)− g(X, JY )θ(Ω)] .

Then, by the use of (1.2), (1.4), (3.2), (3.3) and (∇Xθ)Y = Xθ(Y )− θ(∇XY ) we get the
following

Theorem 3.2. Let (M,J, g) be a W1-manifold with Norden metric. Then, the Lie
form θ and the tensors T1, T2, T3 are invariant by the transformation of the connections
∇ and ∇̃.
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КРИВИННИ СВОЙСТВА НА КОНФОРМНО КЕЛЕРОВИ
МНОГООБРАЗИЯ С НОРДЕНОВА МЕТРИКА

Марта К. Теофилова

Разгледан е класът на многообразията, конформно еквивалентни с келерови мно-
гообразия с норденова метрика. Намерен е видът на тензора на кривината върху
такива четиримерни многообразия. Изследван е случаят на изотропно келерови
многообразия с норденова метрика. Разгледано е преобразуването на свързанос-
тите на Леви-Чивита на норденовите метрики. Намерени са някои инвариантни
тензори на тази трансформация
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