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CURVATURE PROPERTIES OF CONFORMAL KAHLER
MANIFOLDS WITH NORDEN METRIC"
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The class of the manifolds which are conformally equivalent to the Kahler manifolds
with Norden metric is considered. The curvature tensor on such four-dimensional
manifolds is obtained. The case of isotropic Kahler manifolds with Norden metric is
studied. A transformation of the Levi-Civita connections of two Norden metrics is
considered. Some invariant tensors of this transformation are obtained.

1. Preliminaries. Let (M, J, g) be a 2n-dimensional almost complex manifold with
Norden metric, i.e. J is an almost complex structure and g is a metric on M such that:
(1.1) J’X = —X, g(JX,JY) = —g(X,Y), X,Y € X(M).

The associated metric g of g on M given by g(X,Y) = g(X, JY) is a Norden metric too.
Both metrics are necessarily of signature (n,n).

Further, X,Y, Z, W (z,y,z,w, respectively) will stand for arbitrary differentiable
vector fields on M (vectors in T, M, p € M, respectively).

Let V be the Levi-Civita connection of the metric g. Then, the tensor field F' of type
(0,3) on M is defined by

(1.2) F(X.Y,Z) = g(VxJ)Y. Z).
It has the following symmetries
(1.3) FX,Y,Z2)=F(X,2,Y)=F(X,JY,JZ).

Let {e;} (¢ = 1,2,...,2n) be an arbitrary basis of T,,M at a point p of M. The
components of the inverse matrix of g are denoted by g with respect to the basis {e;}.
The Lie form 0 associated with F' is defined by

(1.4) 0(z) = g“ F(ei,e;, 2)
and the corresponding Lie vector is denoted by ©, i.e. 0(2) = g(z, Q).

A classification of the considered manifolds with respect to the tensor F' is given
in [1]. Eight classes of almost complex manifolds with Norden metric are characterized

there according to the properties of F'. The three basic classes W7, Wy, W3 and the class
W1 & W5 of the complex manifolds with Norden metric are given as follows:

W, : F(X,Y,Z) = % [9(X,Y)0(Z) + g(X, Z)8(Y)

+9(X,IYV)0(JZ) + g(X,JZ2)8(JY)];

(1.5)
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Wy : F(X,Y,JZ)+ F(Y,Z,JX)+ F(Z,X,JY) =0, 6=0;
Ws: F(X,Y,2)+ F(Y,Z,X)+ F(Z,X,Y) = 0;
(1.6) WieW,: F(X,Y,JZ)+ F(Y,Z,JX)+ F(Z,X,JY) = 0.

The special class Wy of the Kéhler manifolds with Norden metric belonging to any other
class is determined by the condition F' = 0.

Let R be the curvature tensor of V, i.e.
(1.7) R(X,Y)Z =VxVyZ -VyVxZ -V xy|Z.

The corresponding tensor of type (0,4) is denoted by the same letter and is given by
RX,Y,Z,W)=g(R(X,Y)Z,W).

A tensor L of type (0,4) is called a curvature-like tensor if it satisfies the following
conditions for any X, Y, Z W € X(M) :

L(Xa}/aZ7W) = 7L(Y7X7Z7W) = 7L(X7Y7mz)a
LX,Y, Z,W) + L(Y, Z, X,W) + L(Z, X, Y,W) = 0.

Then, the Ricci tensor p(L) and the scalar curvatures 7(L) and 7*(L) of L are defined
by:

(1.8)  p(L)(y,2) = g L(ei,y, z,¢5); T(L) = g“p(L)(eire5); (L) = g” p(L)(es, Jej).
A curvature-like tensor L is called a Kahler tensor if it satisfies the condition
(1.9) L(X,Y,JZ,JW)=—-L(X,Y,Z,W), XY, Z, W € X(M).
Further, let S be a symmetric and hybrid with respect to J tensor of type (0,2), i.e.
S(JX,Y) = S(JY, X). We consider the following curvature-like tensors of type (0,4):
Y1 () (X,Y, Z,W) = g(Y, 2)S(X, W) — g(X, Z)S(Y, W)
(1.10) V2 (8) (X, Y, Z,W) = g(Y,JZ)S(X, W) — g(X, JZ)S(Y, JW)
+9(X, JW)S(Y,JZ) — g(Y, JW)S(X, J Z);

M=y M= gta(el M=~ @) =12,

It is well known that the Weyl tensor W on a 2n-dimensional pseudo-Riemannian
manifold (n > 2) is defined as follows

(1.11) [y p— {wl(p) - 1}.

T
2n — 2 2n —1

Let a = {z,y} be a non-degenerate 2-plane spanned by vectors z,y € T,M, p € M.
The sectional curvatures of o with respect to the curvature-like tensor L are given by

(1.12) y(Lip) = L&D gy L@y Jo)
ﬂl(x,y,y,x) Wl(zvyaya‘r)
The square norm ||V.J||* of V.J is defined in [3] by
(1.13) IV = 976" g (Ve Der, (Ve, Der) -

Following [3], [4] we define a second square norm ||[V.J||> of V.J with respect to the
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associated metric g by
(1.14) IV =575 (Ve Tew: (Ve, e)
where g = —Jig’® are the components of the inverse matrix of § with respect to the

basis {e;}. Then, having in mind the definition (1.2) and the properties (1.3) of the tensor
F, from (1.13) and (1.14) we obtain that

(1.15) VI = g7 g™ g™ FpFjugs IV = =3 9 g7 Firp Fug,
where Fip, = F(e;, ek, ep).

Definition 1.1. An almost complex manifold with Norden metric satisfying the condi-
tion ||V.J||* = 0 is called an isotropic Kihler manifold with Norden metric.

Definition 1.2. An almost complex manifold with Norden metric satisfying the condi-
tion ||V.J||* = ||VJH3 = 0 is called a strong isotropic Kdhler manifold with Norden metric.

2. Complex connections and curvature tensors on conformal Kéhler mani-
folds with Norden metric. Let (M, J, g) be a Wi-manifold with Norden metric. The
Lie forms 6 and 6* = 6 o J are closed on M if and only if (Vx0)Y = (Vy6) X and
(Vx0)JY = (Vy0)JX. A Wi-manifold with closed Lie forms is called a conformal
Kdihler manifold with Norden metric. The subclass of these manifolds is denoted by W7{.

In [2] is introduced a cannonical linear connection (so called B-connection) D on a
complex manifold with Norden metric as follows

1
(2.1) DxY =VxY = 5J (VxJ)Y.

It is shown that g and J are parallel with respect to the connection D. The curvature
tensor K of D is proved to be Kéhlerian.
In [6] is studied the Yano connection V' given by

1
ViY = VxY + L {(VxJ) JY +2(VyJ) JX = (Vox )Y}

It is proved that the Yano connection is torsion-free and that V'J = 0 on a complex
manifold with Norden metric. In the same paper is obtained the Kéahler curvature tensor
R’ of type (0,4) of V/ on a W{-manifold as follows

(2.2) R =R- ﬁ {1 + 2} (S) — #%(M) - féii {3m +m} + el(é]n%)ﬁs,
where

1
03 S(X,Y) = (Vx0) JY + 2 [0(X)0() — 0 X)0(IY )],

M(X,Y)=0(X)0(Y)+0(JX)O(JY).
Then, having in mind (1.7), (2.1), (2.2) and (2.3) we obtain:

Theorem 2.1. The Kaihler curvature tensors of the connections D and V' coincide
on a conformal Kdahler manifold with Norden metric, i.e. K = R'.

Theorem 2.2. Let (M, J, g) be a four-dimensional almost complex manifold with
Norden metric and L be a Kdhler tensor on M. Then, the tensor L has the following
form

(2.4) L=v(L){m —me}+v*(L)ms.
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Proof. It is known [5] that in the tangent space T,M, p € M, there exists a J-basis
{e1,e9,Je1, Jea} such that g(e;,ej) = —g(Je;, Jej) = 0ij, glei, Je;) = 0, 4,7 = 1,2.
Then, by the use of (1.9), (1.10), (1.12) and after straightforward calculations we prove
the truthfulness of (2.4). O

From the last theorem and (1.8) it follows that

L (L
(2.5) V(L) = %) V(L) =~ é ).
Then, having in mind (2.2) and (2.3) for n = 2, (2.4), (2.5) and (1.8) we obtain the
following

Theorem 2.3. Let (M, J, g) be a four-dimensional W{-manifold. Then, for the curva-
ture tensor R of the Levi-Civita connection V we have

T —div(JQ) tr % 1 1 T
R= T b S L w9 4 4 {n0) T
(2.6)
1 [div(J2) 7 6(Q)
72 3 s ™
0(JQ)

where tr S* = g S(e;, Jej) = —divQ +
Vi (JiQF).
The last theorem and (1.11) imply the following

Corollary 2.1. Let (M, J, g) be four-dimensional W{-manifold. Then, for the Weyl
tensor we have
T —div(JQ tr S* 1
w= T s g L — v (9)+

1 forn =2, divQ = V,Q and div(JQ) =

1[div(JR) 7 6(Q)

4 2 3 8

Next, taking into account (1.5) and (1.15) we obtain that on a Wj-manifold

0(Q 0(JQ
(2.7 s =22 e = A2

and by the use of (1.3), (1.5), (1.6) and (2.7) we obtain the following

Lemma 2.1. Let (M, J,g) be an isotropic Kdihler Wiy -manifold with Norden metric.
Then, M is a strongly isotropic Kdihler W1-manifold with Norden metric.

Now, (2.6) and the last lemma imply the following

Corollary 2.2. Let (M, J,g) be a four-dimensional isotropic Kihler W?-manifold.
Then, for the curvature tensor R of V we have

—di Q div Q)
RZ%V(J){H—M}— 11‘76 Wz—%{lﬁl—1/)2}(5)+%{¢1(P)—g7ﬁ}
1 [div(JQY) 7
+4{ 2 3} S

3. Invariant tensors of the transformation of the Levi-Civita connections
of g and § on a Wj;-manifold. Let (M, J, g) be an almost complex manifold with
Norden metric and V be the Levi-Civita connection of the associated metric g. In [2] is
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considered the tensor
(X,Y,Z) =g (€XY —VyY, Z)
and it is obtained that
(3.1) (XY, Z) = %{F(JZ, XY)-FX,Y,JZ)-F(Y,X,JZ)}.
By the use of (1.5) and (3.1) we receive the following

Lemma 3.1. Let (M,J,g) be a Wi-manifold with Norden metric. Then, for the
connections V and V we have

(3.2) VxY = VxY + % [9(X, JY)Q — g(X,Y)JS).

Let R be the curvature tensor of V. Then, having in mind (1.7) and (3.2) we obtain

Theorem 3.1. Let (M, J, g) be a W1-manifold with Norden metric. Then, the curvature

tensors R and R of type (1,3) are related as follows
(3.3)

R(X,Y)Z = R(X,Y)Z + % {g(X, 2) [VyJQ - ;no(JY)JQ]

—g(Y, Z) [VXJQ - 21719(JX)JQ} —9(X,JZ) [VYQ - ;ne(y)m}
+9(Y,JZ) {VXQ — ;G(X)JQ} } .

Further, we consider the following tensors:

TWX,Y)Z = R(X,Y)Z+ ﬁ {g(x, ) {VYJQ - ;ne(JY)m]
(Y. 2) [VXJQ - 21719(JX)JQ} —y(X,JZ) [VYQ - %G(Y)JQ

+9(Y,JZ) [VXQ - Zlne(X)JQ} } :
TX,Y) = p(X.Y) = 50 [g(X V)7 = g(X,J¥)7]
TiX,Y) = (Vx0)Y + - [o0X, V)OI — (X, TV )0

Then, by the use of (1.2), (1.4), (3.2), (3.3) and (Vx0)Y = X0(Y) —0(VxY) we get the
following
Theorem 3.2. Let (M, J,g) be a Wi-manifold with Norden metric. Then, the Lie

form 0 and the tensors Ty, Ty, Tz are invariant by the transformation of the connections
V and V.
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KPVUBUHHI CBOMICTBA HA KOH®OPMHO KEJIEPOBU
MHOTOOBPA3M4A C HOPAEHOBA METPUKA

Mapra K. TeodusoBa

Pasruienan e xkirachbT Ha MHOrOO6pa3UATa, KOHPOPMHO €KBUBAJIEHTHH C KEJIEPOBU MHO-
roobpasusi ¢ HOpJeHoBa MeTpuka. HamepeH e BuIbT Ha TeH30pa Ha KPUBHHATA BbPXY
TaKWBa YEeTUPUMEPHU MHOroobpasus. V3ciienBan e ciaydasaT Ha M30TPOIHO KEJIEPOBU
MHOTr000pa3us ¢ HOPZEHOBa MeTpUKa. Pa3riienano e npeodpa3yBaHeTO Ha CBbP3aHOC-
tuTe Ha JleBu-UuBura Ha HOpaeHoBUTEe MeTpuku. HaMepeHnu ca HAKOM MHBapUaHTHU
TEH30pU Ha Ta3u TPaHcHOpMAaIus
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