MATEMATUKA U MATEMATUHYECKO OBGPA30OBAHWE, 2006
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2006
Proceedings of the Thirty Fifth Spring Conference of

the Union of Bulgarian Mathematicians
Borovets, April 5-8, 2006

ON THE DEFINITION OF INTEGER DIVISION AND
MODULUS IN PROGRAMMING LANGUAGES

Boyko B. Bantchev

Problems with the definitions of integer division, modulus, and related operations
in programming languages are discussed. It is demonstrated that unifying, generic
definitions can be employed to provide more clarity, consistency, and coherence in
this area.

Introduction. In the world of computer programming, there is no kind of data
more fundamental than integer numbers. Indeed, in any computer integers are the basis
invariably used to represent floating-point, text, Boolean, and other data, even the
programs themselves. There is hardly a programming language ever invented that would
not have integers built in itself. Programmers make heavy use of integers whatever their
application domain is. In view of this, it is striking to observe how weakly the arithmetic
of integers is standardised across programming languages. Not only that, but too often
within a single language there are omissions, inconsistencies, and incoherence with respect
to how integer arithmetic is defined.

Of course, addition and subtraction present little confusion, if at all, but integer
division and modulus are notorious. The problem of consistent and convenient definition
of these and related operations is an old one, and keeps emerging in the computing
literature, although not frequently [1, 2, 3, 6, 8, 10, 11].

In the rest of this article, we are going to:

e review the operations in the scope of our interest as present in programming and

the shortcomings we observe with respect to their definitions

e introduce a general, systematic and coherent way of presenting such definitions.

Each of the proposed definitions is general enough to capture all acceptable meanings
of the corresponding operation and embodies the essential properties of that operation
without favouring particular instances of it.

Div, mod and their relatives. Most programming languages have some sort of
integer division (div) and modulus (mod) operations. These two operations are usually
defined on integers or subsets of integers, although the wider domain of “real” (i.e.,
floating-point) numbers is also suitable, and indeed used in some languages.

Defining div requires that, whenever « is not a multiple of b, some integer approxima-
tion of the actual quotient a/b is chosen for a div b. For example, the quotient can be
truncated to an integer or rounded to the nearest one, to mention but two possibilities.

Accordingly, a mod b is defined so that a certain relation to division be preserved.
One popular option is @ = (a div b) - b+ a mod b. Thus, the choice of a div operation

223

determines that of mod, or both determine each other. Other possible relations between
div and mod will be mentioned later on.

Integer division has to make use of integer approximation, but the latter is an useful
operation in itself and as such is also present in most languages.

In mathematics and in some programming languages there is an operation called
integer part, which is similar or the same as finding the integer approximation of a real
number. A closely related operation is the fractional part.

How the mentioned operations are defined in programming is important for several
reasons, such as:

e We need unambiguous, without flaws and omissions, and easily understandable
definitions in order to be able to write correct and reliable programs. This includes
consistency and coherence of the definitions within a language.

e We need practical definitions with sufficient generality and well studied properties
in order to make a good use of the corresponding operations in our programs.

e We need to communicate algorithms and to maintain reproductivity of the results of
our computations among different programming languages, therefore our definitions
must be consistent across languages.

We put a special stress on the importance of consistency, coherence and generality.
Consistency means that the definitions are non-contradicting as well as non-omissive. It
also means that the corresponding operations are uniformly expressed in the language.
Coherence is ensuring that the correlation between concepts is made explicit through their
definitions. Generality means avoiding arbitrary restrictions in each definition alone, as
well as ensuring that as many useful definitions/operations are provided as necessity and
practicality dictate.

There are, however, serious flaws with respect to all desired properties. Let us summa-
rize some of them.

e In some programming languages, integer division and modulus are introduced
without actually defining them, and thus are left open for arbitrary interpretation by
the implementer. It seems that the language authors’ idea of these operations is so
unquestionable to them that they “specify” nothing beyond “a div b produces an integer
quotient” and “a mod b gives the remainder of dividing a and b”.

e In most languages, there are restrictions on the domains of div and mod. Much
more often than not, these operators are defined only on integers, and in some cases —
only on positive divisors or both arguments positive. Such is the case e.g. with PASCAL
and MODULA-2. In fact, not only there is no need for arithmetic sign restrictions, but it
is very convenient to have div and mod on reals as well. This is long being advocated by
D. Knuth [7] and present in some languages, such as FORTRAN, PL-1, ApL, Lisp, and
JAVASCRIPT, but is not widely popular.

Perhaps real arguments to div and mod tend to be avoided by language creators on
the ground that “integer division is a division of integers”, while it is really a division
with integral result.

e Finding an integer approximation of a real number is an operation provided in most
languages, but sometimes it is disguised as implicit type conversion, explicit type “cast”
or other forms. It might be difficult to tell whether the different forms correspond to
the same operation, and what exactly it is: truncation, rounding to nearest or something
else.

224

The complementary operation “fractional part” is not so commonly provided.

Furthermore, in the presence of integer division on reals, z div 1 is a form of integer
approximation of x, which in turn depends on how div is defined. Also, x mod 1 is a
fractional part of x. In this case, the problem arises of x div 1 and x mod 1 being in
conformance or not with other operations of the kind integer/fractional part existing in
the language.

e In some languages, there are more than one operations of a kind, say mod, with
different results. Not always, however, every such operation is matched by a corresponding
div operation, so that the two be related as mentioned above. ADA is an example of such
inconsistence: it has mod and rem operations and its div matches rem, but there is
no division operation to match mod. LisP, on the contrary, is an example of consistent
design in this respect by having several kinds of paired divs and mods.

e A constant source of amazement to us is what a great diversity of definitions one
can find for apparently similar concepts, even for the same concept. What is taken as a
defining property in one language is a consequence of the definition of the same thing in
another, and contrariwise. One is often compelled to prove theorems of equivalence just
to find out whether two definitions have the same meaning.

For example, mod in PL/1 is defined by a = (a div |b]) - |b| + @ mod b, whereas
the value of mod in ALGOL 68 features a definition involving integer division (called
over) and a conditional expression: (int r = a - a over b * b; r < 0 | r + abs
b | r). The two mods are nevertheless the same operation, elsewhere defined in yet
another way, namely by a phrase such as “mod is always positive”.

e Sometimes a language is inconsistent in the forms it uses to provide certain opera-
tions. C (and almost any of its derivatives), for example, has some of the discussed
operations built-in, while others (div, fmod, modf) are library functions. This might
seem a minor issue, but in fact such a separation implies different levels of importance,
which is hardly well-grounded.

e Some programming languages simply lack useful arithmetic operations of the discus-
sed kind. In many more, actually in a highly prevailing majority, unfortunate choices were
made in respect to what particular variants of operations to introduce. (See the “Related
work” section about the use of “floor”.)

e Historically, a series of languages — e.g. C, FORTH, ADA, APL — changed their integer
arithmetic support in important ways. Even when the change is an improvement (and
sometimes it is not, as is the case with the FORTH’s current standard), it is an evidence
of problems with the established definitions.

e The apparent confusion with the meanings of integer division, modulus, etc. is
partly due to the fact that there is no well-standardised terminology in the field. For
example, each of the words “modulo”, “modulus”, “residue”, and “remainder”, as well as
the abbreviations “mod”, ‘“res”, and “rem” are often used to denote the same thing, and if
two of them are used with different meanings, these meanings always need clarification:
one cannot guess the definition by the name of the operation.

It is worth noting that the lack of a steadily used, consistent notation in the discussed
area is a problem not only to programming and programming languages, but to mathe-
matics in general [7, 9.

Some authors, e.g. [6, 11| draw attention to the fact that the modulus operation in
programming is especially confusing not only to programmers but often to mathemati-

225

cians and computer scientists. In [11] some statistics were gathered showing that a
significant percentage of professionals, asked of the properties of integer division and
modulus, would tend to think that sign(a mod b) = sign(a) - sign(b) — a false assumption
regardless of precisely how mod is defined. Seemingly, the delusion is due to inappropria-
tely extrapolating to mod the fact that arithmetical sign distributes over multiplication
and division. (As another evidence of the same, let us mention the following: a very
respected scientist once wrote in a book on ADA that “[...] the remainder A mod B is
in general a negative number when A/B is negative”.)

In [6] the confusion is attributed to not paying attention to the difference between
“modulo” as a relation (congruence) and as an operation: in the latter case the range of
values can be defined in several different ways, and is a matter of choice in general.

Redoing the definitions. Let us now see how the set of operations we discuss can
be redefined in a more general, consistent and coherent way, so that it be both more
useful and less confusing.

It seems appropriate to start with the definition of integer approximation. We postulate
the integer approximation of a real number x to be an integer ((«)) satisfying

(1) |(z) — 2| < 1.

Our deliberate choice was to give as general definition for (z)) as possible, and we
believe that the above one is what we need: it is simple enough and yet it ensures the
basic properties of what might be called an integer approximation without favouring any
particular kind of approximation. More precisely, from (1) it follows:

e (z) =z < x is an integer;

e If z is not an integer, ((«)) is one of the two integers that are closest to x from below

and above; i.e., (z)) is either n or n + 1 where n <z < n+ 1;

e Any one of the widely known specific kinds of integer approximation, and also many

other useful definitions can be derived from (1) by specializing it.

Two popular kinds of integer approximation are floor and ceiling, which round their
argument toward —oo and 400, respectively. As proposed by K. Iverson and popularized
by D. Knuth, we denote them by |z] and [z]. Also we use [z] to mean “rounding to
nearest integer”.

Another known kind of (z)) is the truncation function, which rounds z towards 0.
There is also, although less frequently used, a function that we will call completion — it
rounds x > 0 towards oo and x < 0 towards —oo. Inspired by the notation for floor and
ceiling, we denote truncation and completion of x by [x| and |z].

Because we can call () the “integer part of 2, we can also define x’s “fractional part”
frac x coherently with ((z)) by: = = ((z)) + frac z, and then introduce frac , frac, etc.
for the specific kinds of frac.

It obviously follows from the definition that |frac x| < 1 always holds, and that
frac x = 0 whenever z is integer.

The following table shows the values of all these functions for some example values of
2 in the leftmost column. For each kind of rounding, the corresponding pair consists of
the integer and the fractional parts of z. The contents of the rightmost column will be
explained in the “Related work” section below.

226

L | [L | [L] E
171 1 72 -3[2 -3[2 -3]|1

7
121 2|1 2|2 -8|2 -8|1 .2
-12)1-2 8(-1 -2}-2 8|-1 -2|-1 -2]-2
1702 3|-1 -7|-2 3|-1 -7|-2 3|-2

| oo| ho| ~

Other possible kinds of (()) and frac are e.g. probabilistic and otherwise non-determi-
nistic. A probabilistic definition would imply making a uniform choice between the two
closest integers n and n + 1, or a choice with probabilities for n and n + 1 depending on
how close z is to them etc.

Note that all of the above variants of (()) exhibit monotonicity (z < y = () < (v))
but in general (()) is not monotonic. A probabilistic variant, for example, is necessarily
non-monotonic.

Using (()), it is natural to also define div for any two reals a and b # 0 by: a div b =
(a/b)), thus obtaining a generic definition of division. Some essential properties, such as
adivl=(a) and |adivd—a/b] <1 follow immediately from the definition of div.
(Others can also be proven, but we skip them for lack of space.)

Finally, we have to define mod. To this end, we can choose any of the following two
equations as a defining condition for mod:

(2) a = (adivd)-b+amodd or
(3) a = (adiv |b])-|b|+ a mod b

or, equivalently:

amodb = (fraca/b)-b or
amodb = (fraca/|b|)-|b]

In both cases the following basic properties of mod are fulfilled:

(4) la mod b| < |b],

amodb=0 < a/b is an integer.

The two definitions (2) and (3) seem to be the only ones really used in programming
languages, so their generalizing, through the generic use of div, is seemingly all we need
in respect of mod. Unfortunately, choosing between (2) and (3) means that we can no
longer keep a single generic definition. Instead, we now have two branches of the generic
mod.

The reason for having to consider both equations (2) and (3) is that some of the
options that (3) caters for cannot be covered by (2). For example, specializing (3) by
use of div | leads to the range [0, [b|) for mod , (i.e. mod , > 0 holds). Specializing (3)
through div , leads to the range (—|b,0] for mod , (mod < 0 holds). A specialization
of (2), however, always gives the range (—|b|, |b|) (as does the specialization of (3) through
either of div , div ; or div ;; in fact, (2) and (3) are identical in these cases).

The following table shows the values for the different variants of a div b and a¢ mod b,
the latter having been defined through (2), with some example values of a and b in the

227

leftmost column. For each kind of rounding, the value pair for div and mod is displayed
in the corresponding cell. The contents of the rightmost column will be explained in the
“Related work” section below.

L [L1 [L] E
34 56 46 4|7 1|7 1|7 1|6 4
34 5|7 16 4|7 1|6 4|7 1|6 4
B34 5|7 1|6 4|7 1]6 4|7 1[7 1
34 5|6 4|6 47 1|7 1[7 1[7 1

Is it possible to replace (2) and (3) by a single, more general definition? Yes, but in
such a definition @ mod b will become unrelated to a div b, instead referring directly to
a/b:

amodb=a—Fk-b,

where k is an integer such that
la/b— k| < 1.

As with 2 and 3, the above definition can be shown to satisfy (4).

We only demonstrated in this article how the definitions of several important opera-
tions related to integer division can be generalized and thus made more useful. Although
we leave this out here, other operations can also benefit from the same approach. Two
obvious examples are gcd and lem which, through the Euclid algorithm, can be genera-
lized and extended to the domain of reals.

Related work. Studies on the discussed topic are carried out in several directions.
Some authors [2] present comparative data about the definitions of div and mod used
in the programming languages of past and today, and describe the related arithmetic
properties. Others [3, 6, 11| bring attention to the fact that div and mod are often not
properly understood, and seek to explain the reasons for that.

The studies on the arithmetic properties of div and mod in [1, 8, 10] have lead
their authors to the conclusion that the definitions which stem from the floor (| |))
rounding have more useful properties than e.g. those based on truncation, the latter
being more popular only because most computer architectures implement them directly.
Of particular interest is the so called “Euclidean division”, defined in [1] and also discussed
in [8]. Instead of first defining div and then using (2) or (3) to define mod it mandates

a=(adivbd) b+ amodb
0 < amod b < [b]

as defining conditions for both div and mod simultaneously. It is argued that the
Euclidean div/mod are as feature-rich as div / mod , and that they are superior to all
other variants. In view of the approach followed in this article, the Euclidean definition
is interesting in the following way: as a div b and a mod b are uniquely defined for each
pair a,b, we could have also used the above equations to define integer and fractional
parts of a number z as (z)g = x div 1 and fracgz = z mod 1 , i.e. reverse the
direction of dependence of the definitions. The rightmost columns of the two tables in
the previous section show how the Euclidean definitions work on the sample numbers.
One may notice that (z))g = |z] and fracgz = frac =

]
228

Finally, serious attempts at systematizing the computer arithmetic have been done in
two different (although related) standards: [4] and [5]. There is a lot of practical wisdom
and mathematical rigour in the highly elaborated definitions of these documents, but
from the point of view of the research presented in this article those definitions are
somewhat unsuitable.

REFERENCES

[1] R. T. BouTE. The Euclidean definition of the functions div and mod. In ACM Trans. on
Prog. Lang. and Systems (TOPLAS), 14 (1992), No. 2, 127-144.

[2] A. P. CHANG. A note on the modulo operation. SIGPLAN Notices, 20 (1985), No. 4, 19-23.
[3] G. A. HiLL. A note on the modulo operation in Edison. SIGPLAN Notices, 22 (1987), No.
4, 28-29.

[4] IEEE Standard 754-1985: Binary floating-point arithmetic, 1985.

[5] International Standard ISO/IEC 10967. Information Technology—Language Independent
Arithmetic, 1994-2004.

[6] M. J. JAMIESON. Integer division. Letter to the Editor. Software—Practice and Ezperience,
10 (1980), No. 4, 333.

[7] D. E. KNuTH. The Art of computer programming, Vol. 1: Fundamental algorithms, 3™ ed.
Addison-Wesley, 1998.

[8] D. LELEN. Division and Modulus for Computer Scientists.
citeseer.ist.psu.edu/463879.html, 2001.

[9] MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com

[10] R. L. SMITH. Signed Integer Division. Dr. Dobb’s Journal, 8 (1983), No. 9.

[11] B. A. WICHMANN. Integer division. Software—Practice and Experience, 9 (1979), No. 6,
507-508.

Boyko B. Bantchev

Institute of Mathematics and Informatics
Acad. G. Bontchev Str., bl. 8

1113 Sofia, Bulgaria

e-mail: bantchev@math.bas.bg

BBbPXY OIIPEJEJIEHUETO HA ITEJIOYNCJIEHO AEJIEHE "
OCTATBK I10 MOAVYJI B ESUITUTE 3A ITPOTPAMUWUPAHE

Boiiko Bi. Banues

O6cbKIAT Ce HEIOCTATHIM Ha OMPEIETEHUsITa 33 IEJTOYUCIEHO JIeJIeHe, HaMUPaHe
Ha OCTATBK 10 MOAYJI U OJIM3KH J0 TAX AEHCTBUS B €3UIUTE 33 mporpamupane. Ilo-
Ka3Ba ce, Y€ M3IMOJI3BAHETO Ha OGOOIIEHU OINpeIe/IeHUs] BOAM JIO MO-TOJISIMa SICHOTA,
II0CJIE/IOBATEIHOCT M CbIVIaCyBaHOCT.

229

