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Watermarking techniques, also referred to as digital signature, sign images by
introducing changes that are imperceptible to the human eye but easily recoverable
by a computer program. Usage of error correcting codes is one of the good choices in
order to correct possible errors when extracting the signature.

In this paper, we present a scheme of error correction based on a combination of
Reed-Solomon codes and another optimal linear code as inner code. We describe
a watermarking technique that use amplitude modulation and improve it by using
proposed error-correcting scheme [10]. Finally, we present a computer realization of
this new watermarking method and compare our results with other error correcting
techniques that are used in watermarking process.

1. Introduction. The proliferation of digitized media is creating a pressing need
for copyright enforcement schemes that protect copyright ownership [3,4,5]. A digital
watermark is intended to complement cryptographic processes for this purpose. It is a
visible, or preferably invisible, identification code that is permanently embedded in the
data, that is, it remains preent within the data after any decryption process [1]. In order
to be effective, a watermark should be:

— Unobtrusive: the watermark should be perceptually invisible.

— Robust: The watermark must be difficult to remove. In particular it should be robust
to Common signal processing, common geometric distorsions, Subterfuge Attacks.

— Unambiguous: Retrieval of the watermark should be unambiguous identifier.

In this work we adopt a binary symmetric channel representing the watermarking
process [7,8]. Such a channel is completely defined by the probability of error. We consider
the signature to be received in error if one or more of its bits are in error. Also we are
bounded with the capacity of the image[12]. Section 2 begins with introduction to error
correcting codes and continues with two special classes of codes repetition codes and
BCH codes. At the end bases of Reed-Solomon codes are presented and it is shown
how they are used for creation of a new technique for error protection in watermarking
process. Section 3 describes watermarking with amplitude modulation and presents the
software system that we developed for image signing. Section 4 contains the results of
computations of error probabilities for different coding strategies. There we compare the
results of the proposed error correcting scheme with other existing techniques.
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2. Error-correcting codes.

2.1. Basics. The object of an error-correcting code is to encode the data, by adding
a certain amount of redundancy to the message, so that the original message can be
recovered if not too many errors have occurred.

Definition 1. A g-ary code is a given set of sequences of symbols where each symbol
is chosen from a set Fqg = {1, Aa,..., A} of q distinct elements. The set Fy is called the
alphabet and is often taken to be the set Z, ={0,1,2,...,q — 1}. If q is a prime power
we often take the alphabet Fy to be the finite field of order q.

Definition 2. The (Hamming) distance between two vectors x and y of (Fy)™ is the
number of places in which they differ. It is denoted by d(z,vy).

Definition 3. Let Fy, is the Galois field GF(q), where q is a prime power, and let
(Ey)™ is the vector space V(n,q). A linear code C over GF(q) is a subspace of V(n,q),
for some positive integer n.

If C is a k-dimensional subspace of V(n,q), then it is called (n, k,d)-code, where n is
the length, k is the dimension and d is the minimum distance of the code. Sometimes we
denote it just (n,k) code.

Definition 4. We call an (n,k,d)-code optimal if for fized n, k it has the largest
posible d.

Theorem 1. A code C can detect up to s errors in any codeword if d(C) > s+ 1 and
can correct up to t errors in any codeword if d(C) > 2t + 1 [6].

2.2. Repetition Coding. The simplest way to prevent errors is to repeat the water-
mark signature which is tantamount to spatial diversity reception. The signature of length
w is repeated r times such that r x w < c¢ is satisfied, where c is the embedding capacity
of the image. Every bit is decided for separately using majority rule. Repetition code is

. . T
[r, 1, 7“]—code7 so according to Theorem 1 it can correct up to 5 €rTorS.

2.3. BCH codes. Standard BCH codes. Binary BCH codes can be constructed
with parameters (n,k,t), where n is the length of the codeword, k is the length of the
signature and ¢ is the number of bit errors this BCH code can correct. Obviously, one
has d =2t + 1, where n =2™ — 1, n — k < mt, m and t being arbitrary integers.

BCH codes by parts. To obtain more flexibility in embedding code words in order to
use all the available capacity the signature can be split into smaller parts and a separate
BCH code can be used for each part.

BCH codes with subtraction. Let GF(2™) be the finite field with 2™ elements,
0,1,...,n=2"—1. A t-bit error-correcting BCH code (n, k, t) is defined by a generating
polynomial of power g. The generating polynomial of any BCH code is only constrained
by ¢t and m. So for a BCH code (n,k,t), it is equivalent to (n — b,k — b, t) defined by
the same generating polynomial, where b < k is any positive integer. In this way we can
create a cross — section of the original code in order to shorten the code.

Hybrid coding. This refers to using a combination of repetition and BCH coding.
In practise repetition after BCH can be useful because the bit error rate of the received
code is decreased by repetition and then the BCH decoding can be applied [11,14].

2.4. Reed-Solomon codes. Reed-Solomon (RS) codes are non-binary cyclic codes
with symbols made up of m-bit sequences, where m is any positive integer having a value
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greater than 2. For any positive integer ¢ < 2™~ there exists a t-symbol error-correcting
RS code with symbols from GF (2™) and the following parameters:
n=2"—-1, n—-k=2t, k=2"—-1-2t, d=2t+1=n—-k+1

One of the most important features of RS codes is that the minimum distance of an
RS(n,k) is n — k+ 1. Also Reed-Solomon codes have an erasure-correcting capability, d,
which is: § = d — 1 = n — k. Simultaneous error-correction capability can be expressed as
follows: 2a+ A < d < n— k, where « in the number of symbol-error patterns that can be
corrected and A is the number of symbol erasure patterns that can be corrected. There
are many proposed algorithms for effective encoding and decoding of RS codes [13].

2.5. Error-correcting scheme for watermarking. RS codes are often used as
“outer codes” in a system that uses a simpler “inner code”. The inner code gets the error
rate down and the RS code is then applied to correct the rest of the errors.
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In this paper we apply similar error-correcting scheme by using RS code with proper
parameters for outer code and other optimal linear code as an inner code. Let RS(n, k)
is a code over GF'(2™). Every element in this field can be represented uniquely by a
binary m-tuple, called m-bit byte. To encode binary data which such a code a message
of km bits is first divided into km-bit bytes. Each m-bit byte is regarded as a symbol
in GF(2™). The k-byte message is then encoded into n-byte codeword based on the RS
encoding rule. Such a codes are very effective in correcting bursts of bit errors, which
the inner code can produce, as long as no more than t bytes are affected. According to
the value of m we have selected for the RS code, the same value should be selected for
the dimension of the inner code. This code will correct errors on bit level in each of the
m-bit bytes. Also the length of the inner code depends on the parameters of the RS code
because the final length of the encoded sequence should be less than the overall available
capacity [12]. So, with fixed dimension and bounded length of the inner code we could
search for the largest possible minimum distance. This could be done either in Brouwer’s
table, or in other sources.
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Fig. 2. Channel error rate 5% Fig. 3. Channel error rate 15%

3. Watermarking with amplitude modulation. Next we describe single bit
embedding and retrieving. This could be easily generalized for multiple bits [10].

Let s be a single bit to be embedded in an image I = (R; G; B), and p = (i; j) a pseudo-
random position within I. This position depends on a secret key K, which is used as a seed
to the pseudo-random number generator. The bit s is embedded by modifying the blue
channel B at position p by a fraction of the luminance L = 0,299R+ 0.587G + 0.114B
as: zy = oy + (25 — 1)L}, q, where ¢ is a constant determining the signature strength. The
value q is selected such as to offer best trade-off between robustness and invisibility.

In order to recover the embedded bit, a prediction of the original value of the pixel
containing the information is needed. This prediction is based on a linear combination of
pixel values in a neighborhood around p. Empirical results have shown that the taking a
cross-shaped neighborhood gives best performance. The prediction is thus computed as:

. 1 c C
Bij = - (Z Bitkj+ > Bijix— 2313‘) ;
k=—c k=—c

where c is the size of the cross-shaped neighborhood.

To retrieve the embedded bit the difference between the prediction and the actual
value of the pixel is taken: § = B;; — Bw

The sign of the difference determines the value of the embedded bit. The embedding
and the retrieval functions are not symmetric, that is the retrieval function is not the
inverse of the embedding function. Although correct retrieval is very likely, it is not
guaranteed. To further reduce the probability of incorrect retrieval, the bit is embedded
several times.

We create software realization of this watermarking algorithm by improving it with
our error-correcting scheme [9]. For development we use VC++ 6.0 and OpenSource
library CxImage.

4. Results. Next we present the results for two specific channel error rates 5% and

15%. On the following graphics one can see the performance for the known watermarking
error-correcting schemes that we present here [2]. The results on the graphics are with
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averaged results for every capacity between 200 and 500 bits.

In the next table we give the results for the signature error-probabilities for the same
channel error rates but using the newly proposed technique. Up to now the results are
only for the fixed capacity of 400 bits.

Chanel error rate

Payload 5% 15%
8 bits 2.1072%7 2.1078
16 bits 3.1071° 5.107°
32 bits 4107 3.1072
40 bits 6.10714 4.1072
64 bits 6.107 11 14.1072
128 bits 41074 -
256 bits 32.1073 -

Fig. 4. Performance of RS/Inn.code scheme

It is clear that the RS code is a good choice when the payload is not too small or

too near to the capacity. The new scheme performs better than others in these cases but
doesn’t have a low enough error-probability. When the channel error rate increases, the
performance of the new technique drops down but it still performs better from others for
higher payloads.

Finally, we made a comparison of the different techniques to see which stands to much
noise for different capacity, fixed 400 bits capacity and Psig < 0.01.

Length to noise performance

=Tt Payload
wh, . Pty 8 bits 28%
st ! 16 bits 21%
32 bits | 14%
' 40 bits 14%
64 bits 12%
§ \. 128 bits 6%
, % 256 bits 4%

Lorgds of maks

Fig. 5. Other

Again the same tendency can be noticed, that the RS/Inn.code technique performs
234

Fig. 6. RS/Inn.code scheme




better for midrange payload values. Also important fact is that this scheme gives relatively
good results for big payloads like 128, 256 bits where other techniques are useless.

5. Conclusion. We have presented a new error-correcting scheme that can be used
in conditions of watermarking systems — short payloads in small available capacity. The
technique combines Reed-Solomon codes as outer code and optimal linear code as inner
code.

We can conclude that the RS/Inn.code scheme performs better than others when the
payload is not too small and the channel error-rate is not too high.
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IMPMNJIOZKEHUNE HA BJIOKOBU KOJOBE KOPUTUPAIIIY I'PEIITKN
TP SAIIIUTA C IN®POB BOJEH SHAK BABVPAH HA
AMIIJINTYAHW MOAYJIALIN

Tuepu Bepxxe, Tonop 1. Tomopos

TexuukuTe 3a 3a1UTa ¢ BOJAEH 3HAK, MO3HATU CHINO U KATO HU(POB MOIINC, TOIITIC-
BaT M300parKEeHHUsITA KATO T'M MPOMEHST IO He3abeeXKUM 33 YOBEIIKOTO OKO HAYWH
KaTo obade Te JIECHO MOraT Jia O'bJaT Bb3CTAHOBEHU C ITOMOIITA Ha KOMITIOTbPEH COp-
Tyep M3nonssaneTro Ha KOZOBE KOPUTHPAIIU IPEIIKA € 100D MOAXO0 38 KOPUTHPAHEe
Ha, TPENIKUTE HACTBIUIN MPU IPOIECa Ha JEKOIUPAHETO HA BOJHUS 3HAK.

B macrosimara crarms e mpeicTaBeHa CXeMa 3a KOPUTMpPaHe Ha TI'PEIIKu Oa3umpaHa
Ha KOMOMHAIUs OT KomoBe Ha Puiin-CoJIoMOH M Apyr ONTHUMAJEH JIMHEEH KO KaTo
“pbrperter kKox'. OmucaHa e cxema 3a 3aIuTa ¢ MUQPOB BOJEH 3HAK W3IOJI3BAIIA
AMILIATYIHA MOYJIAINN, 9USATO paboTa € momobpeHa upe3 IpeIIoKeHaTa CXeMa 3a
KOpUTMPaHe Ha rpemku. [Ipescrasena e KOMIIOTHPHA PeAJIN3alis Ha HOBOIIOJIY YEHU ST
MEeTOJI 3a 3allUTa ¢ UMPOB BOJIEH 3HAK U € HAIIPABEHO CPABHEHUE C JPYTU CXEMU 34
KOPUTMPaHe Ha I'PEIIKU M3MOJA3BaHu Ipu pabora ¢ nndpoB BOAEH 3HAK.
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