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The discovery of a connection between a given functional dependency in a dataset
and that of the dataset obtained after its transmission through a noisy channel is an
important database task. In case of data mining only the received data are known and
the aim is to make conclusions about the functional dependencies of the completely
unknown original dataset. The present paper represents an algorithm for finding the
error-correcting functional dependencies in this case. The proposed solution to this
problem uses the approximate dependencies whose definition is based on the fractal
dimension of the corresponding datasets.

1. Introduction. Functional dependencies are relationships between attributes of
a database relation. Some functional dependencies are defined during the process of the
database design and they are used to support the referential integrity. But the constraints
are few and often too general in sense that they are valid in all possible database states.
The discovery of the functional dependencies that reflect the present content of the
relation is an important database analysis technique.

Let the set of attributes Ω of the relation M has size |Ω| = n. We say that the
functional dependency (FD) holds or is valid in M if for any two tuples r, s ∈ M we
have: if r(a) = s(a) for all a ∈ A, A ⊂ Ω, then r(b) = s(b) for b ∈ Ω. We also say that b
depends functionally on A and write A → b. The FD A → b is called nontrivial if b /∈ A.
We say that the FD A → b is minimal if b is not functionally dependent on any subset
of A, i.e. if B → b does not hold in M for any B ⊂ A.

A dataset which forms the present content of the relation can be seen as an m × n
matrix or as a set of m points in an n-dimensional space. These data are transmitted
through a noisy channel. M∗ denotes the dataset of the data obtained after the transmis-
sion. In Model 1 examined in [4] it is assumed that the structure of M is known as well
as the received rows of M∗ and the aim is to make conclusions based on this information
about the connection between the structure of M and this of M ∗. It is supposed, e.g.,
that A → b (A ⊂ Ω, A = {a1, . . . , ai}, b ∈ Ω) holds in M . Then, the data in a row
in the columns of A determine the data of the same row in a column b. However, only
corresponding rows in M∗ are known. The data in columns of A in M∗ do not necessarily
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determine the data in b, since these data may be distorted. Consequently, it is possible
that A → b does not hold in M∗. The aim is to establish whether it is possible to enlarge
A into an A′, so that the data in A′ in M∗ already determine b, and if possible, to
determine to what extent should it be enlarged. Let A′ = {a1, . . . , ai, x1, . . . , xj} in M∗

denote the set so that A′ → b holds, i.e. the data in A′ uniquely determine the data in b
in spite of the errors. This FD is called error-correcting functional dependency.

In Model 2 examined in [4] nothing is known about the functional dependencies in
M . In this case of data mining only the received rows of M ∗ are known and the aim is
to make conclusions about the functional dependencies of the completely unknown M .

In [4] inequalities between the sizes of the sets occurring in the functional dependencies
in M and the error-correcting functional dependencies are found, considering both of the
models. An algorithm for finding the error-correcting functional dependency with known
original dependency by using the fractal dimension is proposed in [3].

The basic definitions and properties connected with the FDs in relational databases
are represented in detail in [6, 10]. In [7] an efficient algorithm for finding FDs from
large databases is presented. This algorithm is based on partitioning the set of rows with
respect to their attributes values. Minimizing database access during the discovery of FDs
and maintenance of the discovered FDs can be achieved by axiomatization of functional
dependencies and independencies presented in [1].

In the present paper an algorithm for finding the error-correcting functional dependen-
cies in case of unknown original dependencies is represented. The rest of the paper is
organized as follows. Section 2 presents the main fractal properties. In section 3 an
algorithm for finding the error-correcting functional dependencies in case of unknown
original dependencies is described by using the fractal dimension. Section 4 presents
an application of the algorithms for discovering the error-correcting dependencies for
collaborative filtering. The proposed algorithm is analyzed in section 5 and it is compared
with other algorithms in section 6. Section 7 is the conclusion of this paper.

2. Fractal dimension. A set of points is a fractal if it exhibits self-similarity over
all scales. The fractals have been used in numerous disciplines [5, 8]. In the database
area, e.g., the fractals have been successfully used to estimate the selectivity of spatial
queries [2], quickly select the most important attributes for a given dataset [12].

The fractal sets are characterized by their fractal dimension. In fact, there is an infinite
family of fractal dimensions. For a dataset with finite number of points, the generalized
fractal dimension Dq is defined with (1).
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where the dataset is embedded in an n-dimensional grid which cells have sides of size r;
Cr,i is the frequency with which data points fall into the i-th cell; q is a real number.

Among the dimensions described by (1), the following dimensions are widely used:
• the Hausdorff fractal dimension D0 obtained for q = 0;
• the correlation fractal dimension D2 obtained for q = 2;
• the information fractal dimension D1 obtained for q = 1.
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The correlation dimension measures the probability that two points chosen at random
will be within a certain distance of each other. Changes in the correlation dimension mean
changes in the distribution of points in the dataset. Changes in the information dimension
means changes in the entropy and, therefore, point to changes in trends.

Fast algorithms exist to compute these dimensions. Since the dataset is considered as
a set of m points in an n-dimensional space, the algorithms for calculation of the fractal
dimension use n-grid with grid-cells of side r. Let Cr,i denote the number of points in
each i-th cell. Then, the value of S2(r) =

∑

i C2

r,iis computed. The correlation fractal
dimension is the derivative of (log S2(r)) with respect to the logarithm of the size r.
Thus, the correlation fractal dimension D2 of the dataset can be obtained by calculating
the slope a of the line y = ax + b that is the best approximation of yi = log(S2(ri)),
xi = log(ri) for different values of the size r.

3. An Algorithm for discovering the error-correcting functional dependen-

cies in case of unknown original dependencies. The task we consider is the
following: given a dataset M∗ obtained after the transmission of the unknown original
dataset M , find all error-correcting functional dependencies. This problem can be solved
by using the approximate functional dependency. An approximate functional dependency
is a functional dependency that almost holds. There are different ways of defining the
approximate dependency A → b. The definition we use is based on the difference of the
fractal dimension of the dataset πa1,...,ai

(M∗) and the fractal dimension of the dataset
πa1,...,ai,b(M

∗), where π is the projection operator andA = {a1, . . . , ai}. The fractal
dimension we compute in our algorithms is correlation fractal dimension or information
fractal dimension and, therefore, let F (X) be the correlation or information fractal dimen-
sion of some dataset X . If e(A → b) = |F (πa1,...,ai

(M∗)) – F (πa1,...,ai,b(M
∗))|, then we

say that A → b is an approximate (functional) dependency if e(A → b) is at most ε,
where ε is a given threshold.

The algorithm represented as Algorithm 1 starts with C1 = {{a}|a ∈ Ω} and computes
C2, and so on, according to the information obtained during the algorithm. A set Ck

consists of attribute sets of size k such that they can potentially be used to construct
dependencies.

Algorithm 1

Input : dataset M∗ with the set of n attributes Ω; b ∈ Ω; threshold ε

Output : minimal nontrivial approximate dependencies A → b, A ⊂ Ω

1) C1 = {{a}|a ∈ Ω}

2) k = 1

3) while Ck 6= Ø and k ≥ 1 and k < n

4) Compute_dependencies(Ck)

5) k = k + 1

6) Ck = {A|A is k-element subset of Ω and for each (k − 1)-element subset B of A
approximate FD B → b is not valid}

The procedure Compute_dependencies(Ck) finds the minimal dependencies with the
left-hand side in Ck.

Procedure Compute_dependencies(Ck)

1) for each A ∈ Ck do

2) if A → b is valid then
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3) output A → b

The validity testing on line 2 is based on the computation of e(A → b) and if e(A →
b) ≤ ε then the dependence A → b holds. The pre-defined value ε depends on how precise
the resulting dataset M∗ has preserved the characteristics of the original dataset M .

4. Using the error-correcting dependencies for collaborative filtering. The
proposed algorithm can be used as a part of the process of collaborative filtering. The
field of collaborative filtering attempts to automate the process of organizing and recom-
mending information to the users by supporting the users in making decisions and finding
a set of people who are likely to provide good recommendations for a given person.

The general idea of collaborative filtering is to find some groups of people (users)
where each group ranked approximately the same items and gave approximately the
same ranking to those items and then make recommendations to the active user by
matching the active user’s profile to each group. The quality of the recommendations can
be influenced by many factors: sparsity – very few people rank exactly the same items;
noisiness – people may not give ranks or may not give true ranks.

Collaborative filtering uses a database of user preferences to predict additional items
that a new user, referred to as the active user, might like. The problem space of collabora-
tive filtering can be formulated as a matrix of users versus items, with each cell repre-
senting a user’s rating on specific item [11].

The represented realization of the proposed algorithm is applied to the data obtained
from a WEB based client/server system that contains an archival fund with folklore
materials of the Folklore Institute of BAS. The investigated archive keeps detailed infor-
mation of the documents and materials, which can be downloaded by the users and
contain audio, video and text information. The aim is to find the items, i.e. the materials
which can be used to define the groups of users. We consider that the unknown original
dataset M consists of the data that should be obtained if each user ranks the materials,
which downloads and gives true rank. The dataset M ∗ consists of the real data.

For example, let the users can rank the materials with the integer values between 1
and 7. The value 0 means that the user is downloaded in, with the material but he does
not give a rank. Some results are shown in Figure 1.

The described algorithm can be modified such that to discover only the dependencies
A → b with attributes set A of minimal size for a given threshold ε. The results in figure
1 are obtained from the execution of this version of the algorithm. The application we
realize gave possibility to determine the threshold value as well as the maximal number
of the attributes in the left-hand side of the dependencies.

It is necessary to perform an additional processing for forming the groups of users.
This process includes finding a substantial number of rows coinciding in the attributes
of A, if A → b is valid.

The found dependencies are valid only in the present state of the database and,
therefore, describe the content of the database precisely. They may become invalid, if the
database changes. Therefore, we have to maintain the discovered knowledge, if we use
it more than once. Since in the situation we consider the rows can be added in result
of the appearance of new users, the dependencies may become invalid. Therefore, each
dependence is checked if it is still valid. If not, then the dependence has to be replaced by
a minimal dependence which is valid, if such dependence exists. In this case we can use
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Fig. 1. Some results for exemplary data about 64 users

the algorithm similar of one represented in [3] but in the present version we are interested
in the dependence which is determined completely in obtained dataset. It is described in
Algorithm 2. We assume that the dataset M ∗ consists of the data after the addition the
new rows in the dataset M .

Algorithm 2

Input : datasets M , M∗ with the set of n attributes Ω; A → b is valid in M ; A ⊂ Ω,
A = {a1, . . . , ai}; b ∈ Ω; threshold ε

Output : the enlargement A′ of the set of attributes A such that A′ → b holds in M∗

1) A′ = A

2) X = Ω\{A∪{b}} = {x1, . . . , xp}

3) p = |X | = n − i − 1

4) while p > 0 and e(A′ → b) > ε
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5) for each xk ∈ X do

6) δk = | F(πa1,...,ai
(M∗)) − F(πa1,...,ai,b(M

∗))|

7) δd = mink(δk) for k = 1, . . . , p

8) X = X\{xd}

9) A′ = A′∪{xd}

10) p = p − 1

11) if e(A′ → b) ≤ ε then

12) output A′ → b

The Algorithm 2 iterates until there are no more attributes to be added in the
enlargement of the set A or until the searched dependence is found.

5. Analysis. We use the algorithm developed in [12] to compute the correlation
fractal dimension D2 of a given dataset which is an O(m) algorithm, where m is the
number of rows in the dataset. The computation of the information fractal dimension is
based on a similar algorithm. Consequently, the algorithms described in this paper are
linear on the number of rows m in the dataset, i.e. the number of points in the dataset
in n-dimensional space.

The worst case time complexity of the execution of the Algorithm 1 for each b ∈ Ω
with respect to the number of the attributes is exponential, but this is inevitable since
the number of the minimal dependencies can be exponential in the number of attributes
[9].

6. Comparison with other algorithms. The improved inference of FDs in [1]
by using functional independencies leads to minimizing the number of accesses to the
database during the discovery of FDs and their maintenance. However, this approach
can not be directly applied to approximate dependencies.

The algorithm for discovering approximate dependencies proposed in [7] is linear on
the number of tuples in the relation. It is based on partitioning the set of rows with
respect to their attribute values and the definition of the approximate dependency is
based on the minimum number of tuples that need to be removed from the relation for
a given FD to hold in the relation. The time complexity for computing the partitions is
O(s.m), where s is the number of partitions and the time complexity for approximate
validity testing is O(m). The Algorithm 1 which is described in the present paper is not
based on the partitions and tests the validity of the dependencies according to the fractal
dimension of the corresponding datasets. These characteristics make the discovery of the
dependencies fast for a large number of rows and suitable for situations in which the
identification of the erroneous or exceptional rows is not necessary or possible.

The Algorithm 1 and the algorithm in [7] search for dependences in a breadth-first
manner, i.e. they start the search from 1-element sets of attributes and continue with
larger attribute sets. The small-to-large direction of the algorithms can be used to prune
the search space efficiently. Additional pruning criteria requiring additional computation
are applied in [7]. The computing of the partitions is avoided in Algorithm 1 and,
therefore, a pruning procedure can be omitted.

7. Conclusion. We have presented an algorithm for finding the error-correcting
functional dependencies in case of unknown original dependencies. The approach is based
on considering approximate dependencies in the dataset obtained after the transmission.
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The described way for defining the approximate dependency is to use the fractal dimen-
sion as an indicator of the existence of a correlation between the attributes in the dataset.

Currently, we are investigating the usage of data dependencies in collaborative filte-
ring.
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ОТКРИВАНЕ НА ФУНКЦИОНАЛНИТЕ ЗАВИСИМОСТИ,

ПОПРАВЯЩИ ГРЕШКИ ПРИ НЕИЗВЕСТНИ ПЪРВОНАЧАЛНИ

ЗАВИСИМОСТИ

Галина Т. Богданова, Цветанка Л. Георгиева

Откриването на връзки между дадена функционална зависимост в набор от дан-
ни и съответната функционална зависимост в набора от данни, който е получен
след предаването му по канал с шум, е важна задача за анализирането на една
база данни. В случая на разработване на данни (data mining) само получените
данни са известни и целта е да се направят изводи за функционалните зависимос-
ти на напълно неизвестния първоначален набор от данни. В настоящата статия е
представен алгоритъм за намиране на функционалните зависимости, поправящи
грешки в този случай. За решението на проблема се използват приблизителни
зависимости, чиято дефиниция е основана на фракталната размерност на съот-
ветните набори от данни.
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