MATEMATUKA W MATEMATUWYHECKO OBPA30OBAHWE, 2006
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2006
Proceedings of the Thirty Fifth Spring Conference of
the Union of Bulgarian Mathematicians
Borovets, April 5-8, 2006

MONTE CARLO SIMULATION OF THE BENARD
INSTABILITY IN A RAREFIED GAS MIXTURE®

Dobri Y. Dankov, Vladimir M. Roussinov

The existence of the Benard instability in a rectangular 2D domain of a rarefied gas,
heated from below and under the action of a constant external force (gravity), is
numerically investigated by using the Direct Simulation Monte Carlo method.

1. Introduction. The Benard instability is a well-known phenomenon in the fluid
dynamics. The earliest experiments with a horizontal fluid layer heated from below were
made by Benard himself [1]. Rayleigh [4] analyzed the stability of the pure conduction
solution of the Navier-Stokes equations in the Boussinesq approximation and introduced
a nondimensional parameter (the Rayleigh number).

It seems that the corresponding problem for rarefied gas governed by the Boltzmann
equation has not been studied. Here we attack the problem by using the Direct Simulation
Monte Carlo (DSMC) method. Since the method is based on a system of a finite number
of particles with stochastic dynamics, it is shown that it exhibits the Benard instability
corresponding to the ability of a stochastic system to organize itself into a pattern of
vortices.

The numerical results clearly show a formation of vortices in the studied area when
the gas is composed of one component. When the gas is composed of two components
and the particles of the second component are with larger volume and mass than the
first component the vortex intensity vanishes.

2. Formulation of the problem. Let us consider a binary gas mixture between
two parallel planes with different temperatures T}, at = 0 and T, at « = L (T}, > T.).
An external constant force F' = myg, directed along the axis y (gravity), acts on each
molecule of the gas at each point (see Figure 1). We study the macrocharacteristics
of the flow, where we fix the number density of the first component (basic one), and
the concentration of the second component (additional one) varies from 0% to 4%. The
masses and the diameters of the additional component are respectively M and D times
greater than the ones of the basic component.

*The research described in this paper was supported by the Bulgarian Ministry of Education and
Sciences with grant MM 1404 /2004
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Fig. 1

Now, we are ready to construct a mathematical model describing the gas mixture
motion. In accordance with the kinetic approach, the gas mixture flow is described by
a system of non-linear Boltzman equations for the single-particle velocity distribution
function f; (t,:c,él) around velocity vector §, € R3 and coordinate point + € G C R3,
t € [0,T] for each of the components

d 2
(2.1) =3 [ G 8~ hbwdgmiotons, a0, 1=1.2.
m=1

The collision integrals on the right-hand of equation (2.1) are written in the generally

accepted forms: f* = fi(t, :c,él*), g — post collision molecular velocity; gm,; = ‘gl - §ml

— relative velocity; o(gm,i, 2)dS2 — differential cross-section of the particle scatter within
the solid angle df2. We assume hard sphere molecules for both components, where
2
dl + dm

0(gm,1, Q) = 5 gm,sinfcosf, d; and dy are the molecular diameters.

From this statement of the problem for one component gas we can obtain three
nondimensional parameters: the Knudsen number based on the mean free path \g =
(vV2mo?ng) ! (g — the mean number density ), the Froude number based on the thermal
speed vy, = /2RT}, and the temperature ratio:

Moop_t T

L’ BT A

We should make a note that for the binary gas mixture the mean free path is calculated
by the formula:

(2.2) Kn =

—1
2

2 2 1
2.3 Ao = RN (M) (1 ﬂ) ’ ,
( ) 0 ; n ; J 2 + m;
where d;, m;,n; are respectively the diameters, the masses and the number densities of
the molecules from the i-th component. We include three nondimensional parameters —
the ratios of the masses, the diameters and the number densities when we study a binary
gas mixture:
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(2.4) =1 _4 =
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We complete our formulation assuming the following boundary conditions:
(a) a diffuse reflection of the molecules at the planes;

(b) the solution possesses a periodic structure along axis x [5].

3. Method of solution. When we solve the problem by DSMC method we don’t
have to solve the Boltzmann equation. To minimize the time of solution and the computer
memory, as the solution is kept real, we can use a period 2L along axis x, where L is the
distance between the planes. The simulation has been devised to be consistent with the
formulation in Section 2. The basic steps of the simulation are as follows:

(a) the time interval [0, 7] on which the solution has been found, is subdivided into
subintervals with stepAt;

(b) the space domain is subdivided into cells with sides Az, Ay;

(c) the gas molecules are simulated in the gap G using a stochastic system of N points
(particles) having positions z;(t), y;(t) and velocities £ (t) = (&1(t), &2(¢), £3(1));

(d) at any given time there are N,,(7) particles from the i-th component in the m-th
cell; this number is varied by computing its evolution in the following two stages:

Stage 1. The binary collisions in each cell are calculated without moving the particles.

Stage 2. The particles are moved with the new initial velocities acquired after collision
as if they were acted upon only by gravity. We allow no collisions in this stage.

(e) Stages 1 and 2 are repeated until ¢t = T,

(f) The important moments of the distribution function are calculated by time averaging
after a suitable regime has been reached.

Let us now describe the two stages of the calculation in some details:

Stage 1. We use Bird’s “no time counter” scheme [2], which involves the following two
steps:

1.1. To compute the maximum number of binary collisions, we use the formula:

(31) Ncmax - 2%6” <7T0' |§1 €J|max> At
o Nm(p)Nm(Q) 20¢. ¢
(32) Ncmax = 2%6” <7TU |§1 €J|max> At,

where 1 < p < ¢ < 2 and Vgey = AzAy is the volume of the cell. We use formula (3.1)
when we calculate collisions between molecules from one component and (3.2) between
molecules of different components.

1.2. The pairs (i, j) of particles are chosen randomly with probability
& =&/ & —¢&; . If the collision event occurs, the velocities after collision are
. — - — 1/ max

calculated in the following way:

(3.3) &=z (a+g+k

&-gl).

).

1
2
1

(G+&-ta-g
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where k is vector randomly distributed on the unit sphere. Otherwise the velocities are
left unchanged.

Stage 2. We compute the new positions and velocities of the particles using the
equations:

T = x; + &L At,

At?
(35) ui =i+ Gaildt — T,

§ =& —gAt,

as the particles with yj' < 0 or yj' > L are diffusely reflected and the particles with
:c:r <0or x:r > 2L are mirror reflected.

4. Numerical results. The simulations are made with 2 000 000 modeling particles.
The case of one-component gas is studied with two generators of random numbers. The
first generator is based on the remainder from the division of the two high numbers —
residual method [9]. The second generator based on the data encryption standard [8].
The velocity and density difference between the two cases is less than 0.2%. This means
that the flow macrocharacteristics do not depended on the random number generator.

All magnitudes which we use are nondimensional so that the mean free path in the gas
mixture in equilibrium state is equal to 1. In this problem the nondimensional parameters
are six — Kn, Fr, r, M, D and K. For convenience we use g instead of F'r, which are
mutually replaceable. When we study one component gas, the effect of the instability
appears for certain values of the parameters Kn, g, r, [5, 7]. Here the instability means
destruction of the stationary distribution macrocharacteristics typical for a simple heat
flux between two parallel planes and creation of a new stability convectional flow which
possesses a form of two vortices. Figure 3 shows the vector field of the velocity when
the gas is of one component and Kn = 0.02, g = 0.08, r = 0.1. When the gas is binary
mixture, the above three parameters are the same and M=0.2, D=0.2, K=0.03, the
vortex is distracted and the gas is in a state of stability — Figure 2

Fig. 2 Fig. 3

The purpose of this study is to establish the influence of the concentration of the
additional component over the stability of the flow. The natural way to establish the

248



stability or the instability of the flow is the using of the circulation of the vortex. The
magnitude of the circulation is a measure for the intensity of the vortex. When the rates
of the circulation vanish, the flow is stable. Otherwise, the flow is not stable. At the
concrete results the rates of the circulation are of the same degree as the level of the
fluctuations obtained from the finite number of particles model of the gas. That is why
we use the projection of the velocity along axis x and the density. Figures 4 and 5 show
the variation of the maximal, minimal and average rates of the velocity projection along
axis x and respectively the density of the basic component when y = 1.25 and K varies
from 0 to 0.04 with step 0.005. The numerical results show that K = 0.015 is a critical
rate for the existence of the vortex flow. This means that the vortex flow in this case is
in instability and when we make a small change of the concentration of the additional
component the flow is transported into a no vortex stable state.
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In conclusion we denote that the question: how the macrocharacteristics (mostly the
density) vary when the concentration of the additional component increase leaves open.
This is a purpose of the further studies.
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MOHTE-KAPJIO CUMVYJIALINA HA HEYCTOMYNBOCT HA BEHAP
B CMEC OT PABPEJEHN I'A3OBE

dobpu . HdaukoB, Bnagumup M. Pycutos

YucneHo m3ciensaHe Ha CbIECTBYBaHe Ha HEYCTOWYHBOCT Ha BeHap B IpaBObIbJIHA
2D obsacT oT pa3peseH ra3, HarpsAT OTAOJY U Ha KOWTO [efiCTBa BbHIMHA KOHCTAHTHA
cuita (rpaBUTAIMs), Ype3 U3I0JI3BaHe Ha HPSIKO CTATHCTHYECKO MOJIeIHPAHe.
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