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DISCRETE MODEL FOR DEPENDENT DEFAULT TIMES

Ivan K. Mitov

A simple discrete time model of dependence between the default times of assets (firms)
in a given portfolio is discussed. The model is based on the multivariate geometric
distributions.

1. Introduction. The problem for correlation between the times to default of assets
(firms) in a given portfolio is of great interest. There are two different approaches to this
problem, known as structural and reduced, respectively. There are different models of
both types concerning this topic (see e.g. [2], [3], [4]). In the present note we consider
a simple discrete time model based on the multivariate geometric distributions. It can
be classified as intensity based model. The calibration of the model is, as usual, difficult
problem. For this reason the calibration is done not in the general case but in two
particular cases, using the data available from the rating agencies like Standard&Poors
and Moody’s KMV. The model is related to the continuous time model introduced by
Giesecke [1].

2. Description of the model. Let us have a portfolio consisting of N ≥ 2 assets
(firms). We make the following assumptions:

1. The time is discrete t = 0, 1, 2, . . . The calendar year consists of T > 2 periods
(units of time).

2. The default event of an asset (firm) can be caused by different types of shocks.

In general, we assume that M =
N∑

l=1

(
N

l

)
= 2N − 1 types of shocks can occur:

(
N

1

)
= N shocks specific for each firm separately;

(
N

2

)
shocks specific for each pair of

firms . . .
(
N

N

)
= 1 shock which causes a default event to all the firms in the portfolio.

3. The instances of shocks ξ1, ξ2, . . . , ξM are independent random variables with
distributions Pr(ξj = k) = qk−1

j pj , where 0 < pj < 1, qj = 1 − pj , k = 0, 1, 2, . . . ,
j = 1, 2, . . ..

Define the matrix A = ||aij ||N×M such that each raw corresponds to a firm, and each
column corresponds to a shock. If the j–th shock causes the default event to i–th firm
then aij = 1, and aij = 0 otherwise. The time to default τi of the i–th firm is the time
when the first possible shock occurs, i.e.
(1) τi = min

aij=1,j=1,2,...,N
{ξ1, ξ2, . . . , ξM}, i = 1, . . . , N.
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We do not assume that the firm can recover after a default event.

3. Distributions of the times to default. It is clear that the times to default are
not independent. On the other hand, they have again geometric distributions.

Prorposition 1.The distribution of τi is

(2) Pr(τi = t) = Qt−1
i Pi, t = 1, 2, . . . , Qi =

M∏

j=1

q
aij
j , Pi = 1−Qi

for i = 1, 2, . . . , N. The joint survival function (j.s.f.) of (τ1, τ2, . . . , τN ) is
s(t1, t2, . . . , tN )(3)

= Pr(τ1 > t1, τ2 > t2, . . . , τN > tN ) =
M∏

j=1

q
max(a1jt1,...,aNjtN )
j .

Proof. Since Pr(ξj > k) = qkj , k = 1, 2, . . ., then by the independence of ξj , we
calculate, taking into account that aij = 1 or aij = 0,

si(ti) = Pr(τi > ti) =
∏

aij=1,j=1,...,M

Pr(ξj > ti)aij(4)

=


 ∏

aij=1,j=1,...,M

q
aij
j



ti

=




M∏

j=1

q
aij
j



ti

=: Qtii

for i = 1, . . . , N . Therefore,
Pr(τi = ti) = Pr(τi > ti − 1)− Pr(τi > ti) = Qti−1

i −Qtii = (1−Qi)Qti−1
i

for ti = 1, 2, . . .. Hence, the joint survival function, one obtains
Pr(τ1 > t1, τ2 > t2, . . . , τN > tN )

= Pr( min
a1j=1,j=1,...,M

{ξj} > t1, min
a2j=1,j=1,...,M

{ξj} > t2, . . . , min
aNj=1,j=1,...,M

{ξj} > tN )

= Pr(ξ1 > max
ai1=1,i=1,...,N

{ti}, ξ2 > max
ai2=1,i=1,...,N

{ti}, . . . , ξM > max
aiM=1,i=1,...,N

{ti})

= q
maxai1=1,i=1,...,N{ai}
1 q

maxai2=1,i=1,...,N{ai}
2 . . . q

maxaiM=1,i=1,...,N{ti}
M

= q
max{a11t1,a21t2,...,aN1tN}
1 q

max{a12t1,a22t2,...,aN2tN}
2 . . . q

max{a1M t1,a2M t2,...,aNM tN}
M

=
M∏

j=1

q
max(a1jt1,...,aNjtN )
j .

Let s 6= r. Setting in the last equation ti = 0, for all i 6= s, r, we obtain the bivariate
survival function of the vector (τs, τr)

Pr(τs > ts, τr > tr) =
M∏

j=1

q
max(asjts,arjtr)
j .(5)

Using the equations (4) and (5) we calculate the correlation coefficient between the
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indicators
ρ(I{τs≤T}, I{τr≤T})(6)

=
Pr(τs > T, τr > T )− Pr(τs > T ) Pr(τr > T )√

Pr(τs > T ) Pr(τr > T )(1− Pr(τs > T ))(1− Pr(τr > T ))

=

(∏M
j=1 q

max(asj ,arj)
j

)T
−QTs QTr√

QTs Q
T
r (1−QTs )(1−QTr )

.

Remark 1. 1. The distribution of the vector (τ1, τ2, . . . , τN ) is known as N -variate
geometric distribution. 2. Here we represent the characteristics of the distribution which
is used in the next sections. 3. The general model contains M = 2N − 1 parameters
which have to be estimated. On the other hand, the information available from the Rating
Agencies (e.g. Standard & Poors, Moody’s KVM) is restricted to the default probability for
particular period T , i.e., Pr{τi ≤ T} for every firm, and to the so called Moody’s KMV
default correlation, which is in fact the correlation coeefficient between the indicators
I{τi≤T} and I{τj≤T}. That’s why the parameters are estimated only in two special cases
of the general model.

4. Common shock model. Consider the following case: each firm is exposed to two
types of shocks. The first shock is firm specific and it does not depend on the condition
of the other firms. The second one is an economy-wide shock event. Its occurrence leads
to default of all firms. In this case the matrix A = ||aij ||N×M reduces to

A =




1 0 . . . 0 1
0 1 . . . 0 1
0 0 . . . 0 1
. . . . . . .
0 0 . . . 1 1



,

and M = N + 1. Denoting by ξj , j = 1, 2, . . . , N , the instances when the specific shocks
occur and by ξ – the instance when the economy-wide shock occurs, we have the following
expression for τi:

τi = min(ξi, ξ), i = 1, . . . , N.
Suppose that ξj ∼ Ge(pj), 0 < pj < 1, qj = 1 − pj , j = 1, . . . , N , ξ ∼ Ge(p), 0 < p <
1, q = 1 − p. Now, using the results from Section 3 (with the corresponding changes in
notations), we obtain the joint survival function

s(t1, t2, . . . , tN ) =
N∏

i=1

qtii q
max(t1,t2,...,tN ).

This leads to the marginal survival function
s(ti) = Pr(τi > ti) = (qiq)ti , ti = 1, 2, . . . ; i = 1, 2, . . . , N,(7)

and bivariate survival function of the vector (τs, τr),
(8) s(ts, tr) = qtss q

tr
r q

max(ts,tr).

Using (6), (7) and (8), the correlation coefficient between the indicators I{τi≤T} and
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I{τj≤T} takes the form

(9) ρ(I{τi≤T}, I{τj≤T}) =
(qiqjq)T − (qiq)T (qjq)T√

(qiq)T (qjq)T (1− (qiq)T )(1− (qjq)T )
.

5. Model Calibration. It was mentioned above that the calibration of the model is
a difficult problem because of the information that is available. We calibrate the model
using the Moody’s KMV probabilities p̂i, i = 1, . . . , N , for one year default and the so
called Moody’s KMV default correlation ρ̂ij , i = 1, . . . , N − 1, j = i+ 1, . . . , N , which is
in fact the correlation coefficient between the indicators. It was assumed earlier that the
year is divided into T periods. Using the available data and equations (7), and (9), the
following system is obtained:

p̂i = P (τi ≤ T ) = 1− (qqi)T ,
i = 1, 2, . . . , N,

ρ̂i,j = ρ(I{τi≤T}, I{τj≤T}) =
(qiqjq)T − (qiq)T (qjq)T√

(qiq)T (qjq)T (1− (qiq)T )(1− (qjq)T )
,

i = 1, 2, . . . , N−1, j = i+1, . . . , N. The system contains N(N+1)/2 equations for N+1
unknown parameters. So, q should satisfy N(N − 1)/2 equations as follows:

q =

(
(1− p̂i)(1− p̂j)

ρ̂i,j
√
p̂i(1− p̂i)p̂j(1− p̂j) + (1− p̂i)(1− p̂j)

) 1
T

,

i = 1, 2, . . . , N − 1, j = i + 1, . . . , N . Evidently, it is not possible to obtain the exact
solution of the system. The least square method gives the following approximate solution

q =
2

N(N − 1)

N−1∑

i=1

N∑

j=i+1

(
(1− p̂i)(1− p̂j)

ρ̂i,j
√
p̂i(1− p̂i)p̂j(1− p̂j) + (1− p̂i)(1− p̂j)

) 1
T

.

Then
qi = (1− p̂i)

1
T q−1, i = 1, 2, . . . , N.

6. Pair default model. Another particular model, which better corresponds to the
data available from rating agencies, is obtained from the general model if we assume that
there are N shocks specific for each firm and N(N − 1)/2 shocks which cause default of
each pair of firms. For the sake of convenience we will denote the corresponding random
variables by ξij ∼ Ge(pij), 0 < pij < 1, qij = 1 − pij , i = 1, 2, . . . , N, j = i, i + 1, . . . , N .
In this way the r.v. ξii, i = 1, 2, . . . , N is the instance when the shock, specific for the
i–th firm, occurs, while the r.v. ξij , i < j is the instance when the shock leading to the
simultaneous default of the i–th and j–th firms occurs.

The time of default of the ith firm is defined by
τi = min{ξ1i, ξ2i, . . . , ξii, ξi,i+1, . . . , ξiN},

for i = 1, 2, . . . , N.

The marginal survival functions are immediately calculated as follows (using the
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independence of ξs):
Pr(τi > ti) = Pr(min{ξ1i, ξ2i, . . . , ξii, ξi,i+1, . . . , ξiN} > ti)(10)

= Pr(ξ1i > ti, ξ2i > ti, . . . , ξii > ti, ξi,i+1 > ti, . . . , ξiN > ti)
= Pr(ξ1i > ti) Pr(ξ2i > ti) . . .Pr(ξii > ti) Pr(ξi,i+1 > ti) . . .Pr(ξiN > ti)

=

(
i∏

s=1

qsi

N∏

l=i+1

qil

)ti
.

Thus, Pr(τi = ti) =




i∏
s=1

qsi

N∏

j=i+1

qij



ti−1

1−
i∏

s=1

qsi

N∏

j=i+1

qij


 , i.e. the random

variable τi ∼ Ge(Pi), i = 1, 2, . . . , N , where Pi = 1−
i∏

s=1

qsi

N∏

j=i+1

qij , Qi =
i∏

s=1

qsi

N∏

j=i+1

qij .

Using the results from Section 3 (with corresponding change of notations), one obtains
for the joint survival function

s(t1, t2, . . . , tN ) = Pr(τ1 > t1, . . . , τs > ts, . . . , τr > tr, . . . , τN > tN )(11)

=

(
N∏

i=1

qtiii

)

N−1∏

i=1

N∏

j=i+1

q
max{ti,tj}
ij


 .

Setting in (11) ti = 0 for i 6= s, r, we obtain the bivariate survival function of the vector
(τs, τr), 1 ≤ s < r ≤ N ,

Pr(τs > ts, τr > tr)(12)

= qmax{ts,tr}
sr




s∏

i=1

qis

N∏

j=s+1,j 6=r
qsj



ts 


r∏

i=1,i6=s
qir

N∏

j=r+1

qrj



tr

= qmax{ts,tr}−ts−tr
sr




s∏

i=1

qis

N∏

j=s+1

qsj



ts 


r∏

i=1

qir

N∏

j=r+1

qrj



tr

= q−min{ts,tr}
sr Qtss Q

Tr
r .

The last equation, (10), and (6) give the correlation coefficient between indicators
ρ(I{τs≤T}, I{τr≤T})(13)

=
q−Tsr Q

T
s Q

T
r −QTs QTr√

QTs Q
T
r (1−QTs )(1−QTr )

=
1− qTsr
qTsr

√
QTs Q

T
r

(1−QTs )(1−QTr )

for s = 1, 2, . . . , N − 1, r = s+ 1, . . . , N .

7. Model Calibration. The calibration of the model is based again on the probabilities
for one year default p̂s = P (τs ≤ T ), s = 1, . . . , N and the Moody’s KMV correlation
between indicators ρ̂sr = ρ(I{τs≤T}, I{τr≤T}), s = 1, . . . , N − 1; r = s + 1, . . . , N . Using
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(10) and (13), we obtain the following system of equations

p̂s = P (τs ≤ T ) = 1−QTs = 1−



s∏

i=1

qis

N∏

j=s+1

qsj



T

for s = 1, 2, . . . , N, and

ρ̂sr =
q−Tsr Q

T
s Q

T
r −QTs QTr√

QTs Q
T
r (1−QTs )(1−QTr )

=
1− qTsr
qTsr

√
QTs Q

T
r

(1−QTs )(1−QTr )
.

for s = 1, 2, . . . , N − 1; r = s+ 1, . . . , N .
The system contains N(N + 1)/2 equations for N(N + 1)/2 unknown parameters. Its

unique solution is given by

qsr =

( √
(1− p̂s)(1− p̂r)

ρ̂sr
√
p̂sp̂r +

√
(1− p̂s)(1− p̂r)

)1/T

for s = 1, 2, . . . , N − 1, r = s+ 1, . . . , N and

qss = (1− p̂s)1/T /



s−1∏

i=1

qis

N∏

j=s+1

qsj




for s = 1, 2, . . . , N .
8. Conclusion remarks. An application of the model to the estimation of expected

losses in CDO tranches will be published later. This work is partially supported by NFSI
grant No.VU-MI-105/2005.
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ДИСКРЕТЕН МОДЕЛ НА ЗАВИСИМИ ВРЕМЕНА ЗА ФАЛИТ

Иван К. Митов
Разглежда се дискретен модел на зависими времена за фалит на фирми, състав-
ляващи даден портфейл. Моделът е основан на многомерно геометрично разп-
ределение.
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