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COMPACTNESS OF THE PARETO SETS IN
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QUASI-CONCAVE FUNCTIONS"

Zdravko D. Slavov

In this paper we consider Pareto-optimal and Pareto-front sets in multi-objective
optimization with several objective functions, and convex and compact feasible set.
It is proved that there exists an upper semi-continuous mapping from the feasible
set into the Pareto-optimal set, as well as the compactness of the Pareto sets, if the
objective functions are continuous and quasi-concave is established.

1. Introduction. In a general form, the multi-objective optimization problem
MOP (X, F)istofind x € X C R™, m > 1, so as to maximize F'(z) = (f1(z), fa(z), ...,
fn(x)), subject to € X, provided the feasible set X is nonempty and compact, J =
{1,2,...,n} is the index set, n > 2, f; : X — R is a given continuous objective function
for all j € J.

Definitions of the Pareto-optimal solutions can be formally stated as follows:

(a) A point z € X is called Pareto-optimal solution if and only if there does not exist
a point y € X such that f; (y) > f; (z) for all ¢ € J and fx (y) > fx (z) for some
k € J. The set of the Pareto-optimal solutions of X is denoted by Mazx (X, F') and
it is called Pareto-optimal set. The set F'(Maz (X, F)) = Eff (F (X)) is called
Pareto-front set or efficient set.

(b) A point z € X is called weakly Pareto-optimal solution if and only if there does
not exist a point y € X such that f; (y) > f; (z) for all i € J. The set of the weakly
Pareto-optimal solutions of X is denoted by WMaz (X, F) and it is called weakly
Pareto-optimal set. The set F(WMaz (X, F)) = WEff (F (X)) is called weakly
Pareto-front set or weakly efficient set.

One of the most important MOP (X, F) is the investigation of the compactness of
the Pareto-optimal and Pareto-front sets (Pareto sets).

As it is well known, the Pareto-optimal set Max (X, F') is nonempty, the weakly
Pareto-optimal set WMaz (X, F) is a nonempty compact set Max (X, F) C WMaxz (X, F)
and Eff (F (X)) C WEff(F (X)), see [2] and [5, Theorem 5|. It can be shown that
both sets Ef f (F (X)) and WEff (F (X)) lie on the boundary of the set F (X).
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Let X be convex and i € J. A function f; is quasi-concave on X if and only if
for any z,y € X and t € [0;1], f; ((xz + (1 —¢t)y) > min(f; (z), f; (y)). A function f;
is strictly quasi-concave on X if and only if for any z,y € X, x # y and ¢t € (0;1),
fitz+ (1 —t)y) > min (f; (x), fi (y)). A function f; is concave on X if and only if for
any z,y € X and ¢ € [0;1], fi (to + (1 = t)y) = tfi (x) + (1 = 1) fi ().

It is also known that if X is convex and the functions {f; };;1 are strictly quasi-
concave on X, then Maxz (X, F) = WMax (X, F), see [2] and [5, Theorem 3]. Then,
under these assumptions the Pareto-optimal set Max (X, F) is compact.

The aim of this paper is to prove that:

— There exists an upper semi-continuous point-to-set mapping ¢ : X = Max (X, F)
such that ¢ (X) = Maz (X, F);

— If the functions { fj}?:1 are quasi-concave on the convex set X, then the sets
Max (X,F) and Ef f (F (X)) are compact.

2. The main result. In this section, let the functions {f; }J_l be quasi-concave on
the convex set X.

Now, under these assumptions we discuss the compactness of the Pareto-optimal and
Pareto-front sets.

For fixed x € X and i € J, let R; (z) = {y € X|f; (y) > fi (x)}. It is easy to check
that the sets {R,; (x)}?:l are nonempty, convex and compact subset of X. This allows

us to define the point-to-set mapping p : X = X by p(z) = {y € Xlye ﬂ;;l R; (x)}
for all x € X. It can be shown that p (x) is a nonempty, convex and compact set for all
z € X and there is € p(z). Hence, the point-to-set mapping p is convex-valued and
compact-valued on X.

Define the function f : X — R by f(z) = Z;;l fj(x) for all z € X. It is easy to
show that the function f is continuous on X and Argmax (X, f) C Mazx (X, F).

Theorem. There exists an upper semi-continuous point-to-set mapping ¢ : X =
Max (X, F) such that ¢ (x) = Argmax (f, Nj=1 B (m)) for all x € X and ¢ (X) =
Maz (X, F).

At first, we prove some lemmas.

Lemma 1. If {z;} ;= {yr}rey C X is a pair of sequences such that lim xj, = xo €

k—o0

X and yi, € p () for all k € N, then there exists a convergent subsequence of {yi}pey
whose limit belongs to p (xg).

Proof. The assumption yi € p(xg) for all k& € N implies f; (yx) > fi (zx) for all
k € N and all ¢ € J. From the condition {yx},.; C X it follows that there exists a
convergent subsequence {y; }r-; C {yr},—; such that klim Y, = Yo € X. Therefore,

there exists a convergent subsequence {z}},-, C {xx},_, such that y;, € p(z}) and
lim z}, = xo. Thus, we have that f; (y;.) > f; (z}.) for all k € N and for all ¢ € J. Taking

k—oo

the limit as k — oo, we obtain f; (yo) > fi (zo) for all ¢ € J. This impliesy, € p (xg). The
lemma is proved.

Lemma 2. If the sequence {zy},o; C X converges to zg € X and yo € p(zo), then
there exists a sequence {yx }ro, C X such that y, € p (zx) for allk € N and klim Yk = Yo-
—00
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Proof. Let denote the distance between yo and z € X by dis (yo,x) and the distance
between yg and p (zx) by d, = inf {dis (yo, x) |x € p (zx)}. By the hypothesis that the set
p (z1) is nonempty, convex and compact it follows that if yo ¢ p (x1), then there exists
unique g € p (zg) such that di, = d (g, yx)-

It is obvious that there are two cases as follows:

Firstly, if yo € p(xk), then d = 0 and let yx = yo.

Secondly, if yo ¢ p (zk), then di, > 0 and let yp = 7.

Finally, we obtain a sequence {dj},-, C Ry and a sequence {yj},-; C X such that
yr € p(ag) for all k € N and dy, = dis (yo, yr). Further, klirn x = xo implies that the

—00
sequence {dk}iozl is convergent and klim di = 0. As a result we have klim Y = Yo. The
—00 —00
lemma is proved.

Lemma 3. The point-to-set mapping p is continuous on X.

Proof. From Lemma 1 it follows that the point-to-set mapping p is upper semi-
continuous on X [3]. On the other hand, from Lemma 2 it follows that p is lower semi-
continuous on X [3]. Hence, p is continuous on X. The lemma is proved.

Lemma 4 ([1] [6, Theorem 9.14]). Let X C R™ be compact, f : X — R be
a continuous function and p : X = X be a continuous compact-valued point-to-set
mapping. Then, the function m : X — R, defined by m(xz) = max{f (y)|y € p(x)},
is continuous on X, and the point-to-set mapping ¢ : X = X, defined by ¢ (z) =
{yep)|fy) =my)}, is upper semi-continuous on X.

Lemma 5. Ifz € X, then ¢ (x) C Max (X, F).

Proof. Using Lemma 4, it is sufficient to show that |p(z)] > 1. Let y € ¢(x)
and assume that y ¢ Maz (X, F). From y ¢ Maxz (X, F) it follows that there exists
z € X such that f;(2) > fi(y) for all i € J and fi (2) > fi (y) for some k € J. As
a result we have that z € p(z) and f(z) > f(y). This leads to a contradiction, hence,
y € Maz (X, F). The lemma is proved.

Lemma 6. Ifx € Maz (X, F), then z € v (x).

Proof. Let x € Max (X, F) and assume that © ¢ ¢ (x). From |¢ ()| > 1 it follows
that there exists y € ¢ (). Hence, there are 2 and y € p (x) \ {z} such that f (y) > f (z).
From y € p(x)\ {z} it follows that f; (y) > f; (z) for all i € J. As a result we obtain
fly) > f(z). But f(y) > f(z), hence, we have that fi (y) > fx (z) for some k € J.
This result contradicts the assumption z € Max (X, F'), hence = € ¢ (). The lemma is
proved.

Lemma 7. ¢ (X) = Maz (X, F).

Proof. From Lemmas 5 and 6 it follows that ¢ (X) C Maz (X, F) and ¢ (Max (X, F))
= Max (X, F). Obviously, Maz (X,F) C X and, hence, ¢ (X) = Maxz (X, F). The
lemma is proved.

Proof of the Theorem. From Lemmas 4 and 5 it follows that there exists an upper
semi-continuous point-to-set mapping ¢ : X = Max (X, F') such that
¢ (x) = Argmax (f, ﬂ;;l R; (x)) for all x € X. From Lemma 7 it follows that ¢ (X) =
Max (X, F). This completes the proof of our theorem.

Corollary. The sets Max (X, F) and Eff (F (X)) are compact.
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Proof. As it is well known, the set X is compact and the point-to-set mapping ¢
is upper semi-continuous on X, and, therefore, the set ¢ (X) = Maz (X, F) is compact
(see Theorem 1). The function F is continuous and, hence, the set F (Maz (X, F)) =
Eff(F (X)) is compact too. The corollary is proved.

Remark 1. Let the functions {f; }?:1 be only continuous on arbitrary set X. If the

n
ideal set IMax (X, F) = ﬂ;;l Argmax (f;, X) is nonempty set, then (| Argmax (f;, X)
j=1
= Maz (X, F) [2]. Clearly, in this case the set Max (X, F') is nonempty and compact and
[Eff(F (X)) =1
Remark 2. In [5] is considered the optimization problem MOP (X, F), provided
the objective functions { fj}?zl are continuous, concave and strictly quasi-concave on
X. In this case, it is proved that the Pareto-optimal set Max (X, F') is compact and
arcwise-connected. Hence, the set Ef f (F (X)) is compact and arcwise-connected.
Remark 3. In [6] it is considered the full continuity of the point-to-set mapping ¢
(see Lemmas 4 and 7). It is proved that this mapping is only upper semi-continuous and
not necessary lower semi-continuous on X.
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KOMITAKTHOCT HA MHO2>KECTBATA HA ITAPETO B
MHOTOIEJIEBATA OIITUMU3AIINA C KBA3N-BAJIbBBHATI
OYHKIINN

3apasko /1. CiiaBos

B crarusra pasriexpame [Tapero-ontumanno u [lapero-dppoHT MHOXKECTBO ITPU MHO-
roleJsieBa ONTUMUBAINS C HIKOJIKO IeJIeBU (DYHKIMY ¥ U3IIbKHAJIO KOMIIAKTHO JOIyC-
TUMO MHO>KeCTBO. JI0Ka3Ba ce CbIIeCTBYBaHETO HA MOJYHEIPEK'BCHATO OTTOpe M300-
paxKeHue OT JOIyCTUMOTO MHOXKeCTBO B Ilapero-onruMaaHo MHOXKECTBO U KOMIAK-
THOCTTa Ha MHOXecTBaTa Ha [lapero, ako meseBnTe (PYHKIUU Ca HENPEKbCHATH U
KBa3u-BIIbOHATH.
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