МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2006 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2006 Proceedings of the Thirty Fifth Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 5–8, 2006

COMPACTNESS OF THE PARETO SETS IN MULTI-OBJECTIVE OPTIMIZATION WITH QUASI-CONCAVE FUNCTIONS^{*}

Zdravko D. Slavov

In this paper we consider Pareto-optimal and Pareto-front sets in multi-objective optimization with several objective functions, and convex and compact feasible set. It is proved that there exists an upper semi-continuous mapping from the feasible set into the Pareto-optimal set, as well as the compactness of the Pareto sets, if the objective functions are continuous and quasi-concave is established.

1. Introduction. In a general form, the multi-objective optimization problem MOP(X, F) is to find $x \in X \subset \mathbb{R}^m$, $m \ge 1$, so as to maximize $F(x) = (f_1(x), f_2(x), \ldots, f_n(x))$, subject to $x \in X$, provided the feasible set X is nonempty and compact, $J = \{1, 2, \ldots, n\}$ is the index set, $n \ge 2$, $f_j : X \to R$ is a given continuous objective function for all $j \in J$.

Definitions of the Pareto-optimal solutions can be formally stated as follows:

- (a) A point $x \in X$ is called Pareto-optimal solution if and only if there does not exist a point $y \in X$ such that $f_i(y) \ge f_i(x)$ for all $i \in J$ and $f_k(y) > f_k(x)$ for some $k \in J$. The set of the Pareto-optimal solutions of X is denoted by Max(X, F) and it is called Pareto-optimal set. The set F(Max(X, F)) = Eff(F(X)) is called Pareto-front set or efficient set.
- (b) A point $x \in X$ is called weakly Pareto-optimal solution if and only if there does not exist a point $y \in X$ such that $f_i(y) > f_i(x)$ for all $i \in J$. The set of the weakly Pareto-optimal solutions of X is denoted by WMax(X, F) and it is called weakly Pareto-optimal set. The set F(WMax(X, F)) = WEff(F(X)) is called weakly Pareto-front set or weakly efficient set.

One of the most important MOP(X, F) is the investigation of the compactness of the Pareto-optimal and Pareto-front sets (Pareto sets).

As it is well known, the Pareto-optimal set Max(X, F) is nonempty, the weakly Pareto-optimal set WMax(X, F) is a nonempty compact set $Max(X, F) \subset WMax(X, F)$ and $Eff(F(X)) \subset WEff(F(X))$, see [2] and [5, Theorem 5]. It can be shown that both sets Eff(F(X)) and WEff(F(X)) lie on the boundary of the set F(X).

^{*}Key words: Pareto-optimal, Pareto-front, continuous, quasi-concave, compact 2000 Mathematics Subject Classification: 90C29

Let X be convex and $i \in J$. A function f_i is quasi-concave on X if and only if for any $x, y \in X$ and $t \in [0; 1]$, $f_i(tx + (1 - t)y) \ge \min(f_i(x), f_i(y))$. A function f_i is strictly quasi-concave on X if and only if for any $x, y \in X$, $x \ne y$ and $t \in (0; 1)$, $f_i(tx + (1 - t)y) > \min(f_i(x), f_i(y))$. A function f_i is concave on X if and only if for any $x, y \in X$ and $t \in [0; 1]$, $f_i(tx + (1 - t)y) \ge tf_i(x) + (1 - t)f_i(y)$.

It is also known that if X is convex and the functions $\{f_j\}_{j=1}^n$ are strictly quasiconcave on X, then Max(X,F) = WMax(X,F), see [2] and [5, Theorem 3]. Then, under these assumptions the Pareto-optimal set Max(X,F) is compact.

The aim of this paper is to prove that:

- There exists an upper semi-continuous point-to-set mapping $\varphi : X \Rightarrow Max(X, F)$ such that $\varphi(X) = Max(X, F)$;

- If the functions $\{f_j\}_{j=1}^n$ are quasi-concave on the convex set X, then the sets Max(X, F) and Eff(F(X)) are compact.

2. The main result. In this section, let the functions $\{f_j\}_{j=1}^n$ be quasi-concave on the convex set X.

Now, under these assumptions we discuss the compactness of the Pareto-optimal and Pareto-front sets.

For fixed $x \in X$ and $i \in J$, let $R_i(x) = \{y \in X | f_i(y) \ge f_i(x)\}$. It is easy to check that the sets $\{R_j(x)\}_{j=1}^n$ are nonempty, convex and compact subset of X. This allows us to define the point-to-set mapping $\rho : X \Rightarrow X$ by $\rho(x) = \{y \in X | y \in \bigcap_{j=1}^n R_j(x)\}$ for all $x \in X$. It can be shown that $\rho(x)$ is a nonempty, convex and compact set for all $x \in X$ and there is $x \in \rho(x)$. Hence, the point-to-set mapping ρ is convex-valued and compact-valued on X.

Define the function $f: X \to R$ by $f(x) = \sum_{j=1}^{n} f_j(x)$ for all $x \in X$. It is easy to show that the function f is continuous on X and $Arg \max(X, f) \subset Max(X, F)$.

Theorem. There exists an upper semi-continuous point-to-set mapping $\varphi : X \Rightarrow Max(X,F)$ such that $\varphi(x) = Arg \max\left(f, \bigcap_{j=1}^{n} R_j(x)\right)$ for all $x \in X$ and $\varphi(X) = Max(X,F)$.

At first, we prove some lemmas.

Lemma 1. If $\{x_k\}_{k=1}^{\infty}, \{y_k\}_{k=1}^{\infty} \subset X$ is a pair of sequences such that $\lim_{k \to \infty} x_k = x_0 \in X$ and $y_k \in \rho(x_k)$ for all $k \in N$, then there exists a convergent subsequence of $\{y_k\}_{k=1}^{\infty}$ whose limit belongs to $\rho(x_0)$.

Proof. The assumption $y_k \in \rho(x_k)$ for all $k \in N$ implies $f_i(y_k) \geq f_i(x_k)$ for all $k \in N$ and all $i \in J$. From the condition $\{y_k\}_{k=1}^{\infty} \subset X$ it follows that there exists a convergent subsequence $\{y'_k\}_{k=1}^{\infty} \subset \{y_k\}_{k=1}^{\infty}$ such that $\lim_{k \to \infty} y'_k = y_0 \in X$. Therefore, there exists a convergent subsequence $\{x'_k\}_{k=1}^{\infty} \subset \{x_k\}_{k=1}^{\infty}$ such that $y'_k \in \rho(x'_k)$ and $\lim_{k \to \infty} x'_k = x_0$. Thus, we have that $f_i(y'_k) \geq f_i(x'_k)$ for all $k \in N$ and for all $i \in J$. Taking the limit as $k \to \infty$, we obtain $f_i(y_0) \geq f_i(x_0)$ for all $i \in J$. This implies $y_o \in \rho(x_0)$. The lemma is proved.

Lemma 2. If the sequence $\{x_k\}_{k=1}^{\infty} \subset X$ converges to $x_0 \in X$ and $y_0 \in \rho(x_0)$, then there exists a sequence $\{y_k\}_{k=1}^{\infty} \subset X$ such that $y_k \in \rho(x_k)$ for all $k \in N$ and $\lim_{k \to \infty} y_k = y_0$. 299 **Proof.** Let denote the distance between y_0 and $x \in X$ by $dis(y_0, x)$ and the distance between y_0 and $\rho(x_k)$ by $d_k = \inf \{ dis(y_0, x) | x \in \rho(x_k) \}$. By the hypothesis that the set $\rho(x_k)$ is nonempty, convex and compact it follows that if $y_0 \notin \rho(x_k)$, then there exists unique $\bar{y} \in \rho(x_k)$ such that $d_k = d(\bar{y}, y_k)$.

It is obvious that there are two cases as follows:

Firstly, if $y_0 \in \rho(x_k)$, then $d_k = 0$ and let $y_k = y_0$.

Secondly, if $y_0 \notin \rho(x_k)$, then $d_k > 0$ and let $y_k = \bar{y}$.

Finally, we obtain a sequence $\{d_k\}_{k=1}^{\infty} \subset R_+$ and a sequence $\{y_k\}_{k=1}^{\infty} \subset X$ such that $y_k \in \rho(x_k)$ for all $k \in N$ and $d_k = dis(y_0, y_k)$. Further, $\lim_{k \to \infty} x_k = x_0$ implies that the sequence $\{d_k\}_{k=1}^{\infty}$ is convergent and $\lim_{k \to \infty} d_k = 0$. As a result we have $\lim_{k \to \infty} y_k = y_0$. The lemma is proved.

Lemma 3. The point-to-set mapping ρ is continuous on X.

Proof. From Lemma 1 it follows that the point-to-set mapping ρ is upper semicontinuous on X [3]. On the other hand, from Lemma 2 it follows that ρ is lower semicontinuous on X [3]. Hence, ρ is continuous on X. The lemma is proved.

Lemma 4 ([1] [6, Theorem 9.14]). Let $X \subset R^m$ be compact, $f : X \to R$ be a continuous function and $\rho : X \Rightarrow X$ be a continuous compact-valued point-to-set mapping. Then, the function $m : X \to R$, defined by $m(x) = \max\{f(y) | y \in \rho(x)\}$, is continuous on X, and the point-to-set mapping $\varphi : X \Rightarrow X$, defined by $\varphi(x) =$ $\{y \in \rho(x) | f(y) = m(y)\}$, is upper semi-continuous on X.

Lemma 5. If $x \in X$, then $\varphi(x) \subset Max(X, F)$.

Proof. Using Lemma 4, it is sufficient to show that $|\varphi(x)| \geq 1$. Let $y \in \varphi(x)$ and assume that $y \notin Max(X, F)$. From $y \notin Max(X, F)$ it follows that there exists $z \in X$ such that $f_i(z) \geq f_i(y)$ for all $i \in J$ and $f_k(z) > f_k(y)$ for some $k \in J$. As a result we have that $z \in \rho(x)$ and f(z) > f(y). This leads to a contradiction, hence, $y \in Max(X, F)$. The lemma is proved.

Lemma 6. If $x \in Max(X, F)$, then $x \in \varphi(x)$.

Proof. Let $x \in Max(X, F)$ and assume that $x \notin \varphi(x)$. From $|\varphi(x)| \ge 1$ it follows that there exists $y \in \varphi(x)$. Hence, there are x and $y \in \rho(x) \setminus \{x\}$ such that f(y) > f(x). From $y \in \rho(x) \setminus \{x\}$ it follows that $f_i(y) \ge f_i(x)$ for all $i \in J$. As a result we obtain $f(y) \ge f(x)$. But f(y) > f(x), hence, we have that $f_k(y) > f_k(x)$ for some $k \in J$. This result contradicts the assumption $x \in Max(X, F)$, hence $x \in \varphi(x)$. The lemma is proved.

Lemma 7. $\varphi(X) = Max(X, F)$.

Proof. From Lemmas 5 and 6 it follows that $\varphi(X) \subset Max(X, F)$ and $\varphi(Max(X, F)) = Max(X, F)$. Obviously, $Max(X, F) \subset X$ and, hence, $\varphi(X) = Max(X, F)$. The lemma is proved.

Proof of the Theorem. From Lemmas 4 and 5 it follows that there exists an upper semi-continuous point-to-set mapping $\varphi : X \Rightarrow Max(X, F)$ such that

 $\varphi(x) = Arg \max\left(f, \bigcap_{j=1}^{n} R_j(x)\right)$ for all $x \in X$. From Lemma 7 it follows that $\varphi(X) = Max(X, F)$. This completes the proof of our theorem.

Corollary. The sets Max(X, F) and Eff(F(X)) are compact.

300

Proof. As it is well known, the set X is compact and the point-to-set mapping φ is upper semi-continuous on X, and, therefore, the set $\varphi(X) = Max(X, F)$ is compact (see Theorem 1). The function F is continuous and, hence, the set F(Max(X, F)) = Eff(F(X)) is compact too. The corollary is proved.

Remark 1. Let the functions $\{f_j\}_{j=1}^n$ be only continuous on arbitrary set X. If the ideal set $IMax(X, F) = \bigcap_{j=1}^n Arg \max(f_j, X)$ is nonempty set, then $\bigcap_{j=1}^n Arg \max(f_j, X) = Max(X, F)$ [2]. Clearly, in this case the set Max(X, F) is nonempty and compact and |Eff(F(X))| = 1.

Remark 2. In [5] is considered the optimization problem MOP(X, F), provided the objective functions $\{f_j\}_{j=1}^n$ are continuous, concave and strictly quasi-concave on X. In this case, it is proved that the Pareto-optimal set Max(X, F) is compact and arcwise-connected. Hence, the set Eff(F(X)) is compact and arcwise-connected.

Remark 3. In [6] it is considered the full continuity of the point-to-set mapping φ (see Lemmas 4 and 7). It is proved that this mapping is only upper semi-continuous and not necessary lower semi-continuous on X.

[1] C. BERGE. Topological Space, Including a Treatment of Multi-Valued Functions, Vector Spaces and Convexity, Oliver and Boyd, 1963.

[2] D. LUC. Theory of Vector Optimization, LNEMS, 319, Springer-Verlag, 1989.

[3] A. MUKHERJEA, K. POTHOVEN. Real and Functional Analysis, Plenum Press, 1978.
[4] Z. SLAVOV, C. EVANS. On the structure of the efficient set, *Mathematics and Education in Mathematics*, 33 (2004), 247–250.

[5] Z. SLAVOV. On the Maximal and Efficient Sets in Decision-Making Systems, Academic Open Internet Journal, **12** (2004), 1–11.

[6] R. SUNDARAN. A First Course in Optimization Theory, Cambridge University Press, 1996.

Zdravko Dimitrov Slavov Department of Mathematics Varna Free University 9007 Varna, Bulgaria e-mail: slavovibz@yahoo.com

КОМПАКТНОСТ НА МНОЖЕСТВАТА НА ПАРЕТО В МНОГОЦЕЛЕВАТА ОПТИМИЗАЦИЯ С КВАЗИ-ВДЛЪБНАТИ ФУНКЦИИ

Здравко Д. Славов

В статията разглеждаме Парето-оптимално и Парето-фронт множество при многоцелева оптимизация с няколко целеви функции и изпъкнало компактно допустимо множество. Доказва се съществуването на полунепрекъснато отгоре изображение от допустимото множество в Парето-оптимално множество и компактността на множествата на Парето, ако целевите функции са непрекъснати и квази-вдлъбнати.