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COMPACTNESS OF THE PARETO SETS IN
MULTI-OBJECTIVE OPTIMIZATION WITH

QUASI-CONCAVE FUNCTIONS*

Zdravko D. Slavov

In this paper we consider Pareto-optimal and Pareto-front sets in multi-objective
optimization with several objective functions, and convex and compact feasible set.
It is proved that there exists an upper semi-continuous mapping from the feasible
set into the Pareto-optimal set, as well as the compactness of the Pareto sets, if the
objective functions are continuous and quasi-concave is established.

1. Introduction. In a general form, the multi-objective optimization problem
MOP (X,F ) is to find x ∈ X ⊂ Rm, m ≥ 1, so as to maximize F (x) = (f1(x), f2(x), . . . ,
fn(x)), subject to x ∈ X, provided the feasible set X is nonempty and compact, J =
{1, 2, . . . , n} is the index set, n ≥ 2, fj : X → R is a given continuous objective function
for all j ∈ J .

Definitions of the Pareto-optimal solutions can be formally stated as follows:

(a) A point x ∈ X is called Pareto-optimal solution if and only if there does not exist
a point y ∈ X such that fi (y) ≥ fi (x) for all i ∈ J and fk (y) > fk (x) for some
k ∈ J . The set of the Pareto-optimal solutions of X is denoted by Max (X,F ) and
it is called Pareto-optimal set. The set F (Max (X,F )) = Eff (F (X)) is called
Pareto-front set or efficient set.

(b) A point x ∈ X is called weakly Pareto-optimal solution if and only if there does
not exist a point y ∈ X such that fi (y) > fi (x) for all i ∈ J . The set of the weakly
Pareto-optimal solutions of X is denoted by WMax (X,F ) and it is called weakly
Pareto-optimal set. The set F (WMax (X,F )) = WEff (F (X)) is called weakly
Pareto-front set or weakly efficient set.

One of the most important MOP (X,F ) is the investigation of the compactness of
the Pareto-optimal and Pareto-front sets (Pareto sets).

As it is well known, the Pareto-optimal set Max (X,F ) is nonempty, the weakly
Pareto-optimal setWMax (X,F ) is a nonempty compact setMax (X,F ) ⊂WMax (X,F )
and Eff (F (X)) ⊂ WEff (F (X)), see [2] and [5, Theorem 5]. It can be shown that
both sets Eff (F (X)) and WEff (F (X)) lie on the boundary of the set F (X).
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Let X be convex and i ∈ J . A function fi is quasi-concave on X if and only if
for any x, y ∈ X and t ∈ [0; 1], fi (tx+ (1− t) y) ≥ min (fi (x) , fi (y)). A function fi
is strictly quasi-concave on X if and only if for any x, y ∈ X, x 6= y and t ∈ (0; 1),
fi (tx+ (1− t) y) > min (fi (x) , fi (y)). A function fi is concave on X if and only if for
any x, y ∈ X and t ∈ [0; 1], fi (tx+ (1− t) y) ≥ tfi (x) + (1− t) fi (y).

It is also known that if X is convex and the functions {fj}nj=1 are strictly quasi-
concave on X, then Max (X,F ) = WMax (X,F ), see [2] and [5, Theorem 3]. Then,
under these assumptions the Pareto-optimal set Max (X,F ) is compact.

The aim of this paper is to prove that:
– There exists an upper semi-continuous point-to-set mapping ϕ : X ⇒ Max (X,F )

such that ϕ (X) = Max (X,F );
– If the functions {fj}nj=1 are quasi-concave on the convex set X, then the sets

Max (X,F ) and Eff (F (X)) are compact.

2. The main result. In this section, let the functions {fj}nj=1 be quasi-concave on
the convex set X.

Now, under these assumptions we discuss the compactness of the Pareto-optimal and
Pareto-front sets.

For fixed x ∈ X and i ∈ J , let Ri (x) = {y ∈ X|fi (y) ≥ fi (x)}. It is easy to check
that the sets {Rj (x)}nj=1 are nonempty, convex and compact subset of X. This allows

us to define the point-to-set mapping ρ : X ⇒ X by ρ (x) =
{
y ∈ X|y ∈ ⋂nj=1Rj (x)

}

for all x ∈ X. It can be shown that ρ (x) is a nonempty, convex and compact set for all
x ∈ X and there is x ∈ ρ (x). Hence, the point-to-set mapping ρ is convex-valued and
compact-valued on X.

Define the function f : X → R by f (x) =
∑n
j=1 fj (x) for all x ∈ X. It is easy to

show that the function f is continuous on X and Argmax (X, f) ⊂Max (X,F ).

Theorem. There exists an upper semi-continuous point-to-set mapping ϕ : X ⇒
Max (X,F ) such that ϕ (x) = Argmax

(
f,
⋂n
j=1Rj (x)

)
for all x ∈ X and ϕ (X) =

Max (X,F ).

At first, we prove some lemmas.

Lemma 1. If {xk}∞k=1,{yk}∞k=1 ⊂ X is a pair of sequences such that lim
k→∞

xk = x0 ∈
X and yk ∈ ρ (xk) for all k ∈ N , then there exists a convergent subsequence of {yk}∞k=1

whose limit belongs to ρ (x0).

Proof. The assumption yk ∈ ρ (xk) for all k ∈ N implies fi (yk) ≥ fi (xk) for all
k ∈ N and all i ∈ J . From the condition {yk}∞k=1 ⊂ X it follows that there exists a
convergent subsequence {y′k}∞k=1 ⊂ {yk}∞k=1 such that lim

k→∞
y′k = y0 ∈ X. Therefore,

there exists a convergent subsequence {x′k}∞k=1 ⊂ {xk}∞k=1 such that y′k ∈ ρ (x′k) and
lim
k→∞

x′k = x0. Thus, we have that fi (y′k) ≥ fi (x′k) for all k ∈ N and for all i ∈ J . Taking
the limit as k →∞, we obtain fi (y0) ≥ fi (x0) for all i ∈ J . This impliesyo ∈ ρ (x0). The
lemma is proved.

Lemma 2. If the sequence {xk}∞k=1 ⊂ X converges to x0 ∈ X and y0 ∈ ρ (x0), then
there exists a sequence {yk}∞k=1 ⊂ X such that yk ∈ ρ (xk) for all k ∈ N and lim

k→∞
yk = y0.
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Proof. Let denote the distance between y0 and x ∈ X by dis (y0, x) and the distance
between y0 and ρ (xk) by dk = inf {dis (y0, x) |x ∈ ρ (xk)}. By the hypothesis that the set
ρ (xk) is nonempty, convex and compact it follows that if y0 /∈ ρ (xk), then there exists
unique ȳ ∈ ρ (xk) such that dk = d (ȳ, yk).

It is obvious that there are two cases as follows:
Firstly, if y0 ∈ ρ (xk), then dk = 0 and let yk = y0.
Secondly, if y0 /∈ ρ (xk), then dk > 0 and let yk = ȳ.
Finally, we obtain a sequence {dk}∞k=1 ⊂ R+ and a sequence {yk}∞k=1 ⊂ X such that

yk ∈ ρ (xk) for all k ∈ N and dk = dis (y0, yk). Further, lim
k→∞

xk = x0 implies that the

sequence {dk}∞k=1 is convergent and lim
k→∞

dk = 0. As a result we have lim
k→∞

yk = y0. The
lemma is proved.

Lemma 3. The point-to-set mapping ρ is continuous on X.
Proof. From Lemma 1 it follows that the point-to-set mapping ρ is upper semi-

continuous on X [3]. On the other hand, from Lemma 2 it follows that ρ is lower semi-
continuous on X [3]. Hence, ρ is continuous on X. The lemma is proved.

Lemma 4 ([1] [6, Theorem 9.14]). Let X ⊂ Rm be compact, f : X → R be
a continuous function and ρ : X ⇒ X be a continuous compact-valued point-to-set
mapping. Then, the function m : X → R, defined by m (x) = max {f (y) |y ∈ ρ (x)},
is continuous on X, and the point-to-set mapping ϕ : X ⇒ X, defined by ϕ (x) =
{y ∈ ρ (x) |f (y) = m (y)}, is upper semi-continuous on X.

Lemma 5. If x ∈ X, then ϕ (x) ⊂Max (X,F ).
Proof. Using Lemma 4, it is sufficient to show that |ϕ (x)| ≥ 1. Let y ∈ ϕ (x)

and assume that y /∈ Max (X,F ). From y /∈ Max (X,F ) it follows that there exists
z ∈ X such that fi (z) ≥ fi (y) for all i ∈ J and fk (z) > fk (y) for some k ∈ J . As
a result we have that z ∈ ρ (x) and f (z) > f (y). This leads to a contradiction, hence,
y ∈Max (X,F ). The lemma is proved.

Lemma 6. If x ∈Max (X,F ), then x ∈ ϕ (x).
Proof. Let x ∈ Max (X,F ) and assume that x /∈ ϕ (x). From |ϕ (x)| ≥ 1 it follows

that there exists y ∈ ϕ (x). Hence, there are x and y ∈ ρ (x) \ {x} such that f (y) > f (x).
From y ∈ ρ (x) \ {x} it follows that fi (y) ≥ fi (x) for all i ∈ J . As a result we obtain
f (y) ≥ f (x). But f (y) > f (x), hence, we have that fk (y) > fk (x) for some k ∈ J .
This result contradicts the assumption x ∈ Max (X,F ), hence x ∈ ϕ (x). The lemma is
proved.

Lemma 7. ϕ (X) = Max (X,F ).
Proof. From Lemmas 5 and 6 it follows that ϕ (X) ⊂Max (X,F ) and ϕ (Max (X,F ))

= Max (X,F ). Obviously, Max (X,F ) ⊂ X and, hence, ϕ (X) = Max (X,F ). The
lemma is proved.

Proof of the Theorem. From Lemmas 4 and 5 it follows that there exists an upper
semi-continuous point-to-set mapping ϕ : X ⇒Max (X,F ) such that
ϕ (x) = Argmax

(
f,
⋂n
j=1Rj (x)

)
for all x ∈ X. From Lemma 7 it follows that ϕ (X) =

Max (X,F ). This completes the proof of our theorem.
Corollary. The sets Max (X,F ) and Eff (F (X)) are compact.
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Proof. As it is well known, the set X is compact and the point-to-set mapping ϕ
is upper semi-continuous on X, and, therefore, the set ϕ (X) = Max (X,F ) is compact
(see Theorem 1). The function F is continuous and, hence, the set F (Max (X,F )) =
Eff (F (X)) is compact too. The corollary is proved.

Remark 1. Let the functions {fj}nj=1 be only continuous on arbitrary set X. If the

ideal set IMax (X,F ) =
⋂n
j=1Argmax (fj , X) is nonempty set, then

n⋂
j=1

Argmax (fj , X)

= Max (X,F ) [2]. Clearly, in this case the setMax (X,F ) is nonempty and compact and
|Eff (F (X))| = 1.

Remark 2. In [5] is considered the optimization problem MOP (X,F ), provided
the objective functions {fj}nj=1 are continuous, concave and strictly quasi-concave on
X. In this case, it is proved that the Pareto-optimal set Max (X,F ) is compact and
arcwise-connected. Hence, the set Eff (F (X)) is compact and arcwise-connected.

Remark 3. In [6] it is considered the full continuity of the point-to-set mapping ϕ
(see Lemmas 4 and 7). It is proved that this mapping is only upper semi-continuous and
not necessary lower semi-continuous on X.
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КОМПАКТНОСТ НА МНОЖЕСТВАТА НА ПАРЕТО В
МНОГОЦЕЛЕВАТА ОПТИМИЗАЦИЯ С КВАЗИ-ВДЛЪБНАТИ

ФУНКЦИИ

Здравко Д. Славов

В статията разглеждаме Парето-оптимално и Парето-фронт множество при мно-
гоцелева оптимизация с няколко целеви функции и изпъкнало компактно допус-
тимо множество. Доказва се съществуването на полунепрекъснато отгоре изоб-
ражение от допустимото множество в Парето-оптимално множество и компак-
тността на множествата на Парето, ако целевите функции са непрекъснати и
квази-вдлъбнати.
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