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In the present paper we consider the Bienayme–Galton–Watson process with a
random number of ancestors. The asymptotic normality of the estimators of the
individual distribution is combined with the general idea of the trimmed and weighted
maximum likelihood. As a result, a robust modification of the estimators of the
individual probabilities is proposed. It is based on several realizations of the entire
family tree and is studied via their simulation and numerical results.

1. Introduction. We assume that on some probability space there exists a set of
i.i.d. r.v. {ξi(t, n)} with values in the set of the nonnegative integers N = {0, 1, 2, . . . }
and that {ξi(t, n), i ∈ N} are independent of the positive integer-valued r.v. Z0(n) and
can be considered as independent copies of some r.v. ξ. Then, for each n = 1, 2, . . .
Z(n) = {Zt(n), t = 0, 1, . . . } is a Bienayme-Galton-Watson process having a random
number of ancestors Z0(n) ≥ 1, where

Zt(n) =





Zt−1(n)∑
i=1

ξi(t, n) if Zt−1(n) > 0, t = 1, 2, . . .

0, otherwise.

Such a process is denoted by BGWR.
Our main purpose in this paper is the robust nonparametric estimation of the indivi-

dual distribution of a BGWR process, based on several realizations of the entire family
tree.

Let {pk} be the common offspring distribution, i.e. pk = P (ξ = k) ≥ 0,
∑
pk = 1,

p0 + p1 < 1 and put m = Eξ, σ2 = V ar(ξ). We assume throughout the paper that
0 < σ2 < ∞, Z0(n)/n

P
−→ ν, where ν is a positive r.v.; n, t → ∞ and n/t → ∞ in the

critical case m = 1.
Yakovlev and Yanev (1989) (see e.g. [6]) noticed that branching processes with large

and often random number of ancestors occur naturally in the study of cell proliferation.
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Similar case appears in applications to nuclear chain reactions. Results on the nonpara-
metric estimation of the offspring mean m and variance σ2 in the BGWR process are
announced in [3], [4], [5] and [6].

In the present paper we use a robust extension of the maximum likelihood estimators
(MLE) that possesses a high breakdown point, which is introduced in [11] and [12]. It
is the so called Weighted Least Trimmed estimator of order k (WLT (k) estimator). The
notation and the definition of this estimator is presented in the next Section 2. The robust
modification of the classical nonparametric estimators of the individual distribution is
introduced in Section 3. Section 4 contains simulations of BGWR processes and numerical
results about the proposed estimators.

2. The robust estimation. According to Vandev and Neykov [12], the WLT (k)
estimator θ̂ for the unknown parameter θ ∈ Θp is defined as

(1) θ̂ = argmin
θ∈Θp

k∑

i=1

wifν(i) (θ) .

Here fν(1) (θ) ≤ fν(2) (θ) ≤ · · · ≤ fν(n) (θ) are the ordered values of fi = − logϕ (xi, θ) at
θ, ϕ (xi, θ) is a probability density, θ is an unknown parameter and ν = (ν(1), . . . , ν(n))
is the corresponding permutation of the indices, which may depend on θ. The weights wi
are nonnegative and at least k of them are strictly positive.

As a measure of robustness of a given estimator Hampel et al. [7] propose a finite
sample breakdown point. According to Vandev [10] this breakdown point for a given

estimator T is defined as ε(T ) =
1
n

max{m : sup ‖T (Xm)‖ <∞}, where Xm is a sample,
obtained from the sample X by replacing any m of the observations by arbitrary values.

According to the definitions, given by Vandev [9], a function g(θ) is subcompact if its
Lesbegue sets Lg (C) = {θ : g (θ) ≤ C} are compact for any real constant C. A finite set
F = {fi(θ)}ni=1 of n functions is called d-full, if for each subset J ⊂ {i = 1, . . . , n} of
cardinality d (|J | = d) , the supremum g (θ) = sup{fi(θ)} is a subcompact function.

Applying the theory of d-fullness [9], Vandev and Neykov [12] proved that the finite
sample breakdown point of the WLT (k) estimators is not less than (n− k)/n if n ≥ 3d,
(n+ d)/2 ≤ k ≤ n−d, when Θp is a topological space and the set F = {fi(θ), i = 1, . . . , n}
is d-full.

A simpler and easier criterion for subcompactness is given in [2], where it is proved
that the real valued continuous function g (θ), defined on an open subset of D ⊂ Rn, is
subcompact if and only if for any sequence θi → θ0, where θ0 belongs to the boundary of
D, g (θi)→∞ when i→∞. Thus, if D is a compact set, then any continuous function,
defined on D, is subcompact.

3. Robust modified nonparametric estimators. We apply the concept of the
WLT(k) estimators in order to estimate the offspring distribution in the BGWR proces-
ses. Suppose that we have a set of sample paths of the entire family tree of a branching
process. Using this set and the above mentioned estimators we obtain a number of values
for the offspring distribution. Under the conditions of Theorem 2.2 [6] these values are
asymptotically normal. If these conditions are not satisfied, then the estimated value is
far from the value of the particular probability. The aim is to apply the weighted and
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trimmed likelihood in order to eliminate the cases which do not satisfy these conditions,
and to obtain estimators of the individual probabilities, closer to the faithful values.

Let us consider the set Z = {Z(1)(n),. . . ,Z(r)(n)}, where {Z(i)(n)} is a single realiza-
tion of a BGWR process, such that the number of offspring of each particle is available,
i = 1, 2, . . . , r

Let

p̂
(i)
k (n, t) =

t−1∑

j=0

ϑ
(i)
k (j, t)/

∞∑

k=0

t−1∑

j=0

ϑ
(i)
k (j, t) = ϑ

(i)
k (t)/Yt(n),(2)

i = 1, 2, . . . , r, be the estimator of pk for the sample path Z(i)(n), introduced in [6];
ϑ

(i)
k (t) and ϑ(i)

k (j, t) be the number of particles in the i-th sample path with k offspring
in the first t + 1 generations and in the j-th generation, respectively, and Yt(n) be the
total number of particles in the first t generations.

Let

Est(Z(i)(n), pk) =
√
Y

(i)
t (n)(p̂(i)

k (n, t)− pk)/
√
pk(1− pk)), 0 ≤ pk ≤ 1,

be the transformation of the estimator of pk, which is asymptotically normal [6]:

Est(Z(i)(n), pk)
d
−→N(0, 1) as t→∞.

Following [8], for a given set of family trees Z = {Z(1)(n),. . . ,Z(r)(n)} let us introduce
a trimmed estimator based on a sample of Harris estimates of the unknown individual
distribution in a BGWR process {pk, k ≥ 0}. Then, the estimator is presented as follows:

(3) p̂Tk (n, t) = argmin
pk∈(0,1)

T∑

i=1

−wif(Est(Z(ν(i))(n), pk)),

where T is the trimming factor, f(x) is the log-density of the standard normal distribu-
tion; ν is a permutation of the indices, such that

f(Est(Z(ν(1))(n), θ)) ≥ f(Est(Z(ν(2))(n), θ)) ≥ · · · ≥ f(Est(Z(ν(T))(n), θ)).

Let us denote by Nk
0 = ]{i = 1, 2, . . . , r : p̂

(i)
k (n, t) = 0}, i.e. the number of the

estimators of the individual probability pk equal to zero, and by Nk
1 = ]{i = 1, 2, . . . , r :

p̂
(i)
k (n, t) = 1} – the number of estimators of pk that are equal to 1.
Proposition 1. Assume that in a BGWR stochastic process 0 < σ2 < ∞,

Z0(n)/n
P
−→ ν, where ν is a positive r.v., n, t→∞ and n/t→∞ in the critical case m = 1.

Let the random variable ξ (interpreted as the number of offspring of one particle) be not
degenerate and take the values k1, k2, . . . , kN , where N is a positive integer or infinity,
with positive probabilities. Then, the estimator p̂Tks(n, t), s = 1, 2, . . . , N of the individual
probability pks , defined by (3), exists and its breakdown point is not less than (r − T )/r,
if r ≥ 3(max{Nks

0 , Nks
1 }+1), (r + max{Nks

0 , Nks
1 }+ 1)/2 ≤ T ≤ r−max{Nks

0 , Nks
1 }−1.

Proof. Note that under the conditions 0 < σ2 < ∞, Z0(n)/n
P
−→ ν, n, t → ∞

and n/t → ∞ in the critical case m = 1, the transformations Est(Z(i)(n), pks) are
asymptotically normal [6].
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We have to find out the index of fullness of the set

F = {−f(Est(Z(i)(n), pks)), i = 1, . . . , n}.
The conditions of the proposition ensure that 0 < pks < 1. Let us consider the function

g(i)(pks) = f(Est(Z(i)(n), pks)) for the sample path Z(i)(n), i = 1, 2 . . . , r. It holds that

g(i)(pks) = log
1√
2π
− Est2(Z(i)(n), pks)

2
=

= log
1√
2π
−
C2
(

(p̂(i)
ks

(n, t)− pks)/
√
pks(1− pks)

)2

2
,

where the constant C =
√
Y

(i)
t (n) does not depend on pks .

When p̂
(i)
ks

(n, t) 6= 0 or 1, the function −g(i)(pks) satisfies the conditions for the
subcompactness, because lim

pks→0+
Est2(Z(i)(n),pks) = lim

pk→1−
Est2(Z(i)(n),pks) = ∞.

From this follows the subcompactness of −g(i)(pks) for 0 < pks < 1.

Let p̂(i)
ks

(n, t) = 0. Then g
(i)
0 (pks) = log

1√
2π
− C2

2
pks

1− pks
and lim

pks→0+
g

(i)
0 (pks) =

log
1√
2π
, lim
pks→1−

g
(i)
0 (pks) = −∞.

If p̂(i)
ks

(n, t) = 1, then g(i)
1 (pks) = log

1√
2π
− C2

2
1− pks
pks

and lim
pks→0+

g
(i)
1 (pks) = −∞,

lim
pks→1−

g
(i)
1 (pks) = log

1√
2π
. But

lim
pks→0+

1/2[g(i)
0 (pks) + g

(i)
1 (pks)] = lim

pks→0+
1/2[g(i)

0 (pks) + g(i)(pks)] =

lim
pks→0+

1/2[g(i)(pks) + g
(i)
1 (pks)] = lim

pks→1−
1/2[g(i)

0 (pks) + g
(i)
1 (pks)] =

lim
pks→1−

1/2[g(i)
0 (pks) + g(i)(pks)] = lim

pks→1−
1/2[g(i)

1 (pks) + g(i)(pks)] = −∞.

Note that the average of n functions is always smaller than their supremum. Therefore,
the supremum of any two functions from the set {−g(i)

0 (pks), −g(i)
1 (pks), −g(i)(pks)} is a

subcompact function. Consequently, the supremum of any max{Nks
0 , Nks

1 }+ 1 functions
from the set F is a subcompact function while the supremum of max{Nks

0 , Nks
1 } functions

from the set F may be not subcompact according to the choice of the functions in
it. Hence, the index of fullnes of the set F is max{Nks

0 , Nks
1 } + 1 . The existence of

the estimator follows from the statements in Vandev [9]. Now, applying the theorem of
Vandev and Neykov [12], the proposition is proved. �

4. Computational results. In order to study the applicability of the proposed
estimators of the individual probabilities we realized a number of simulations. We simu-
lated 10 family trees, each of them with 30 generations and Poisson individual distribution
Po(1.5), and 3 family trees, each of them with 10 generations and individual distribution
Po(5). These 3 BGWR processes are the outliers.
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The calculated individual nonparametric (not robust) estimates for the individual
distribution of each tree (obtained by formula (2)) are given in the next table (trees 11,
12 and 13 are the outlier trees, the first column denotes the number of the simulated
tree):

No p0 p1 p2 p3 p4 p5 p6 p7

1 0.22728 0.32721 0.25839 0.1254 0.044085 0.012001 0.003673 0.001469
2 0.21952 0.33166 0.25336 0.1264 0.050615 0.013423 0.00392 0.001118
3 0.221 0.34122 0.23817 0.13966 0.041154 0.016202 0.002592 0
4 0.23143 0.32078 0.26431 0.12149 0.048444 0.010291 0.00301 0.00025
5 0.5 0.5 0 0 0 0 0 0
6 0.2286 0.34057 0.23662 0.12464 0.047065 0.016033 0.005430 0.000776
7 0.22826 0.32652 0.25328 0.12115 0.051572 0.014037 0.003357 0.001526
8 1 0 0 0 0 0 0 0
9 0.22429 0.32933 0.25 0.1288 0.048482 0.014936 0.003673 0.000245
10 1 0 0 0 0 0 0 0
11 0.0075291 0.030116 0.080082 0.14066 0.17625 0.17659 0.1448 0.1105
12 0.0048622 0.038088 0.08752 0.14182 0.17261 0.16613 0.14506 0.10778
13 0.0067164 0.028358 0.077612 0.13955 0.18209 0.1806 0.15746 0.09627

In the next table the following results are presented:
Column 2 – Theoretical probabilities: gives the values of the probabilities from the

Poisson distribution with mean 1.5;
Column 3 – Trimmed esimates: includes the robust esimates of the probabilities in

Column 2, obtained by formula (3) from all 13 trees (including the outliers); The values
are calculated using the algorithm given by Atanasov [1].

Column 4 – p̂k(13, 30): gives the classical nonparametric estimates of the probabilities
in Column 2, obtained by formula (2) from the data from all 13 trees (i.e. obtained over
1 BGWR tree, starting with 13 ancestors);

Column 5 – p̂k(10, 30): gives the classical nonparametric estimates of the probabilities
in Column 2, obtained by formula (2) from the data from all 10 trees, which are not
outliers (i.e. obtained over 1 BGWR tree, starting with 10 ancestors);

Column 6 – p̂k(3, 10): gives the classical nonparametric estimates of the probabilities
in Column 2, obtained by formula (2) from the data from the 3 trees, which are outliers
(i.e. obtained over 1 BGWR tree, starting with 3 ancestors);

Column 7 – Standard error: describes the standard errors (the inverse of the second
derivative of the likelihood function at the point of minimum) of the robust estimates in
Column 3.

Theoretical Robust Standard
probabilities estimates bpk(13, 30) bpk(10, 30) bpk(3, 10) error

p0 0.2231 0.2843 0.1877 0.2260 0.0067 0.018
p1 0.3347 0.2743 0.2784 0.3307 0.0315 0.0022
p2 0.2510 0.2539 0.2213 0.2510 0.0811 0.0036
p3 0.1255 0.1341 0.1290 0.1265 0.1406 0.0029
p4 0.0470 0.0498 0.0700 0.0474 0.1769 0.0018
p5 0.0141 0.0145 0.0420 0.0138 0.1752 0.0010
p6 0.0035 0.0036 0.0289 0.0037 0.1479 0.00049
p7 0.00075 0.0009 0.0192 0.0008 0.1064 0.00029
p8 0.00014 0.00018 0.0108 0.0002 0.0608 0.00023
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Comments.One should notice that in the presented example the classical nonpara-
metric estimates of the individual distribution over all realizations of the process behave
very well in the absence of outliers. However, in the presence of outliers the estimates
may be seriously affected if the corresponding probabilities of the outliers are ‘far’ from
the true value. In these situations the proposed trimmed estimates are more ’adequate’ to
the true stochastic model. The difference between the robust and the classical estimates
is not so clear in the cases when the true probability is close to that of the outliers.
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НЕПАРАМЕТРИЧНО РОБАСТНО ОЦЕНЯВАНЕ НА
ИНДИВИДУАЛНОТО РАЗПРЕДЕЛЕНИЕ В РАЗКЛОНЯВАЩ СЕ

ПРОЦЕС СЪС СЛУЧАЕН БРОЙ НАЧАЛНИ ЧАСТИЦИ

Весела K. Стоименова, Димитър В. Атанасов

В настоящата статия асимптотичната нормалност на класическите оценки на ин-
дивидуалното разпределение в разклоняващ се стохастичен процес на Биенеме–
Галтон–Уотсън със случаен брой начални частици е съчетана с идеята на пре-
тегленото и орязано правдоподобие. Като резултат е предложена робастна моди-
фикация на оценките на индивидуалните вероятности. Тя е основана на няколко
реализации на фамилни дървета и е изследвана посредством техни симулации и
числени резултати.
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