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The present work develops a model of the intertemporal consumption/saving decisions
of a consumer attempting to find an optimal location in economic space subject to
relocation costs. The paper discusses possible modifications of the model and presents
a computational approach to its solution. We use the model to illustrate the type of
behaviour obtained for different spatial locations and relocation costs.

1. Introduction. The development of general equilibrium models for investigating
spatial economic phenomena remains at the forefront of the research agenda in spatial
economics (see [3], Ch.19). One of the standard building blocks of dynamic general
equilibrium models in the classical, non-spatial context is the description of household
behaviour. The importance of understanding intertemporal household behaviour for gene-
ral equilibrium modelling is evident from the discussion in the surveys [1] and [2].

The spatial economics literature to date is rather reserved in its discussion of house-
holds. Models found in standard references such as [3] and [4] analyze labour location
issues or consumption/saving decisions but to our knowledge no model combines the
choices of where to work and how much to consume and save in a consistent intertemporal
framework that can be used as a building block for larger dynamic general equilibrium
models. The present work makes a step in this direction by developing a model of
consumer behaviour in which consumers optimally choose their asset holdings and spatial
location over time.

2. The model. We study the optimal behaviour of a consumer operating in a discrete
time, infinite horizon setting. The consumer maximizes with respect to (ct, zt) the utility
functional

(1)
∞∑

t=0

βt(ln(ct) − η(at+1 − at)
2).

subject to the intertemporal constraints

(2) at+1 = (1 + r)at + w(xt) − pct − ξ(xt+1 − xt)
2, for a given initial a0;

(3) xt+1 = xt + zt, for a given initial x0.

The intertemporal discount factor β is assumed to lie strictly between 0 and 1. We
use ct to denote consumption in real terms in period t, with p being the price of a unit
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of the consumption good. As p is constant in our setup, it is simply a scaling factor
in the model. We do not normalize with respect to it in order to highlight the possible
generalization to a time-varying or space-varying price. The variable at ≥ 0 stands for
the stock of nominal assets held by the consumer at time t. Unlike traditional models,
we impose a nonnegativity constraint to rule out the possibility of borrowing.

Our consumer derives per-period utility from consumption through a standard loga-
rithmic utility term. The model also allows for a certain degree of habit formation in
saving decisions by punishing nominal deviations from the current level of the asset stock
through the parameter η ≥ 0. The specific quadratic form as used in (1) for changes in
assets and also in equation (2) was employed in the paper [6], among others. We note
in advance that the solution approach described below does not exploit any specificity
of the utility specification and, consequently, the implications of alternative preference
specifications can be investigated with a minimal modification in the computational
routine.

In our notation r stands for the interest rate on assets. Throughout the paper we
take β(1 + r) < 1, following [5], Ch.17. This assumption rules out the case of infinitely
patient consumers who save forever to finance higher consumption in the indefinite future.
The variable xt denotes the spatial position of the consumer at time t. Our reference to
economic space here should be interpreted as the set of different locations where the
consumer can work and live. We take xt ∈ [0, xmax].

Each period the consumer supplies a fixed amount of labour on the market and in
return receives a wage w(xt) depending on the spatial location. In the computations
reported below we use the form w(xt) = awx2

t + bwxt + cw for suitably chosen coefficients
aw, bw and cw but this functional form assumption is in no way binding.

The term ξ(xt+1−xt)
2, ξ > 0, is used to capture the nominal transaction costs borne

by the consumer in the process of changing location. These include transportation costs
but also a number of other expenses incurred in the process of relocation. Examples of
the latter may be asset liquidation costs or costs associated with overcoming cultural or
linguistic differences. For this reason relocation costs are not linear in distance.

Finally, the change in location is controlled by the variable zt as specified in (3). We
do not impose any constraints on zt apart from the obvious one that xt+1 should remain
in the interval specified. The lack of other constraints on zt may be interpreted as an
absence of physical barriers to relocation from one period to the next. Thus, location
dynamics are governed only by expenditure considerations.

The model presented is sufficiently rich to accommodate a number of simulations but
in this work we restrict our attention to two questions. First, we study the different
relocation decisions of the consumer for different initial points in space x0. Second, we
investigate the effect of the relocation cost parameter ξ on the dynamics of assets and
spatial location.

3. Model parameterization and solution. We approach the model as a dynamic
programming problem and apply the methods described in [5] and [7]. The control
variables ct and zt are eliminated by substitution and the optimal trajectories for at and
xt are derived by numerically approximating an invariant optimal policy rule that maps
a pair (at, xt) to next period’s pair (at+1, xt+1). More precisely, since the state variables
at and xt in our problem are constrained, we refrain from employing the traditional Euler
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equation approach, which requires the optimal state trajectories to lie in the interior of
the feasible set. Instead, we compute the value function V (at, xt) for the problem by
numerically iterating to convergence on the Bellman equation

Vj+1(at, xt) = max
at+1,xt+1

{ln(ct) − η(at+1 − at)
2 + βVj(at+1, xt+1)}

and recording the optimal policy map for each point in the state space.
We work with a discrete state space and force at and xt to live on a finite grid. A

programming algorithm to iterate on the value function in this setting is presented in
[5], Ch.4 for the univariate case. We modified their algorithm to the bivariate case and
coded the routine in C++ to reduce the computational burden arising from the increased
dimensionality.

After the policy mapping has been obtained, one can produce a simulation run of
suitable length for given parameters and initial conditions (a0, x0). Consumption ct can
be computed from (2) when at and xt are known. The optimality of the value function
and the associated policy mapping is guaranteed for our model since the state space
is a finite set and hence the (continuous) utility function is bounded ([7], Ch.4, p.82-
83). This result ensures the existence and uniqueness of the solution. It also guarantees
that the sequence of approximations will converge to the optimal value function. The
finite state space implicitly imposes an upper bound on assets, an effect that is normally
undesirable on economic grounds. In our case, however, the condition β(1+r) < 1 induces
a disinclination to save and the upper limit on assets is not binding.

Throughout the next section we use the following baseline set of parameters for the
model:

β = 0.98, r = 0.02, ξ = 2.0, η = 0.003, xmax = 21, aw = −0.09, bw = 1.88, cw = 5.0,

p = 1.5, a0 = 20.0, x0 = 2.

In the simulations reported we give explicitly only those parameters whose values have
been changed from the set specified above. The (a, x) space was discretized on an integer
grid starting at (0, 0) and ending at 101 for at and xmax = 21 for xt. The choice of the grid
induces a degree of inaccuracy in the results but this is compensated for by substantial
economies in computing resources. A typical simulation run we present consists of 30
iterations of the policy mapping, except for cases where more iterations were needed to
reach a steady state.

The values for aw, bw and cw were chosen to preserve the wage function positive over
its domain [0, xmax] and produce a maximum in the middle of this interval. In this case
the maximum is obtained for x = 10. We note, however, that the value for x = 11 is
very close to this maximum. As pointed out, the model can easily accommodate other
assumptions on the wage distribution over space.

4. Simulation results. In this section the results are presented in terms of dynamics
of assets and spatial position. We start the presentation of our findings with the outcome
for the baseline case (Fig. 1, left). As can be expected, the consumer moves in the direction
of the highest wage location and simultaneously draws down on the asset stock to smooth
consumption. Once the location of highest wage has been reached, the consumer settles
there and holds the asset stock at the optimal (in this case, lower than the initial) level.

Although the focus of the analysis is the change in behaviour with respect to changes in
x0 and ξ, we remind the reader that the background assumptions that are held unchanged
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can also play an important role. This is illustrated by taking the case of a higher preference
parameter η, interpreted as more conservative attitude toward changes in the savings
stock (Fig. 1, right).
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Fig. 1. Asset-location dynamics for the baseline case (left) and for the case η = 0.05
(right)

Changing the initial point in space also produces reasonable results and the consumer
always moves toward the point of highest wage, irrespective of whether the initial location
is to the left or to the right of the optimal location (Fig. 2). The left-hand panel in the
figure illustrates an interesting situation where the wage at x = 11 is so close to the
highest wage (x = 10) that it makes the cost associated with one more relocation
unwarranted. The situation depicted in the right-hand panel shows that consumers
starting at more distant (and worse paid) locations may be required to make greater
financial efforts to reach the point of highest wage, in this case by reducing their stock of
assets to zero. Naturally, a simulation starting at the optimal location does not produce
any changes and we do not present the results graphically.
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Fig. 2. Asset-location dynamics for the case x0 = 17 (left) and the case x0 = 0 (right)

Finally, a reduction in the relocation cost parameter ξ produces a quicker shift toward
the highest wage point with a moderate depletion of assets (Fig. 3, left). The case of higher
relocation costs is more interesting. For very high values of the parameter ξ (say, ξ =
300.0) the consumer is locked in the initial point in space and does not adjust the initial

312



asset level. If the relocation cost parameter takes an intermediate value (ξ = 15.0 in our
case), then the adjustment toward the location of highest wage takes place intermittently,
with the consumer saving up in the meantime to accumulate enough resources to pay for
moving to the next location (Fig. 3, right). As the figure shows, the adjustment process
is incomplete in the sense that after several shifts toward the wage peak, wage in the
current location becomes sufficiently high to make the outlay on the next relocation plus
the psychological discomfort of readjusting the asset level unjustified.
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Fig. 3. Asset-location dynamics for the case ξ = 0.02 (left) and the case ξ = 15.0 (right)

5. Conclusion. The model and the results presented constitute only an initial
attempt to study consumption and spatial location decisions in a coherent dynamic
optimization framework. A number of extensions to the present setup are possible and,
indeed, desirable. First, it would be logical to make prices location dependent. This
extension is straightforward in our model but requires a much longer exposition. Second,
an analysis of the effects of changes in the specification of the utility function (e.g.
preferences over spatial locations, heterogeneity in the parameter η for different consumers,
different preferences on the adjustment of asset holdings etc.) would be beneficial. Finally,
adding stochastic shocks to the model would bring it closer to the requirements of
traditional dynamic general equilibrium modelling.
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РЕШЕНИЯ ЗА РАЗПОЛОЖЕНИЕ В ПРОСТРАНСТВОТО В

ДИНАМИЧНИ ЗАДАЧИ НА ПОТРЕБИТЕЛЯ

Андрей А. Василев

Настоящата работа предлага динамичен модел на решенията за потребление и
спестяване, вземани от потребител, който се стреми да намери оптимално поло-
жение в икономическото пространство при наличие на разходи по преместването.
Разработката разглежда варианти за модифициране на модела и предлага изчис-
лителна реализация на решението ме. Моделът се използва, за да бъде илюстри-
ран типа поведение, който се получава при различни позиции в пространството
и разходи по преместване.
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