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CONDITIONAL INDEPENDENCE OF JOINT SAMPLE
CORRELATION COEFFICIENTS OF INDEPENDENT
NORMALLY DISTRIBUTED RANDOM VARIABLES’

Evelina I. Veleva

The aim of this paper is to obtain a formula for the densities of a class of joint sample
correlation coefficients of independent normally distributed random variables. The
established relation between the joint densities of certain sets of sample correlation
coefficients shows their conditional independence.

Let &€ = (&1,...&,)" be a random vector with distribution N,(0,T), where 0 is a zero
p x 1 vector, and I is the identity matrix of size p. Let 5(1), e ,E(") be a sample from &
of size n. Consider the sample correlation coefficient v;; of the random variables &; and
&, 1 <i < j <p. The joint density of v;;, 1 <i < j <pisof the form (see [2] and [3])
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for all points {z;;, 1 <1i<j <p}in Ryp_1)/2 for which the symmetric matrix in (1)
is positively definite, where
— (), is a constant, given by
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— I'(+) is the well known Gamma function
and | - | is a notation for the determinant of a matrix.

Denote by Agl,...,ks the matrix, which can be obtained from the matrix in (1) after
deleting the rows and columns with numbers k1, ..., ks.

Let us introduce the notation fy; for the joint density of the random variables from
aset M;if M = ®, i.e. the set M is empty we define fy; = 1.
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Lemma 1. Let K be a set of natural numbers K = {ky,...,ks}, each one belonging
to the interval [1,p] and M be the set M ={v;; | i ¢ K, j¢ K, 1<i<j<p}. Then

n—p+s—1
2

(3) fr = CpslAY i,
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for all points in R,_s)(p—s—1)/2 for which the matriz Azl,...,ks is positively definite.
Proof. We will use the following Theorem proved in [3]:

Theorem 1. Let k be a fized integer, 1 < k < p. The joint density of the random
variables {v;jli #k, j#k, 1<i<j<p} isequalto

n—p
CP—1|AZ_| 2,

for all points in R,_1)(p—2)/2 for which the matriz A;r is positively definite.

If we substitute in this statement k = k; we get Lemma 1 for s = 1. Assume Lemma
1 is true for s = [ and let the set K have I+ 1 elements, K = {kq, ..., ki, k;4+1}. Consider
the sets K' = {k1,...., kit and M’ ={v;; | i ¢ K', j¢ K, 1<i<j<p}
According to the assumption we have

n—pti—1
9

(4) f]/\/[ = Cp7l|A;€‘r1 ..... ki

for all points in R,_;y(p—i—1)/2 for which the matrix A} is positively definite.
(r=D(p )/ Eyye.oka
The density (4) is again of the form (1). Consequently, applying Theorem 1 for k =
ki1 to the density (4) we get that the joint density of the random variables from the set
vij | vigeM', i#Fkip, jFRhat={v; | i¢K j¢K 1<i<j<p}
is equal to
n—p+l
Cp_l_1|AZ1w~,kl,kz+1| 2
for all points in R(,_;_1)(p—i—2)/2 for which the matrix A;rl kK is positively definite.
Hence Lemma 1 is true for s = [ + 1. Therefore it is true by induction.
Lemma 2. The joint density of the random variables from the set {v;; | 1 <i < j <
pIN{V1ps - -, Vip}, where k is an integer, 1 <k <p—2 is equal to

n—p n—pt+k—1

Cpflcp7k|A;| 2 ‘Aik| 2

+ n—ptk ’
CP*k*1|A1,...,k,p 2

(5)

Jor all points in Ryq,_1y/2—x for which the matrices A; and A:..,k are both positively
definite.

Proof. The proof uses induction on k. Let £ = 1. We will use the formula for the
joint density of the random variables from the set M = {v;; | 1 < i < j < pP\{ws}
(I and s are integers, 1 <1 < s < p):
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(6) fM = Cp
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that is valid for all points in Rp,_1)/2—1 for which the matrices Afr and AT are both
positively definite. It is proved in [3]. Then the joint density of the random variables from
the set {v;; | 1<i<j<pP\{v1p}isequal to

(n—p—i—l)) (1)
'f——=)1'( = (n—p)
. ("= 3) (A7 187D
p n_p+2 A+ (n—p+1)
F() | 1,p 2

2

for all points in Rj,_1)/2—1 for which the matrices AT and A;r are both positively
definite. From equality (2) it can be easily seen that

o o ()

Cp—2 Cp_1 F(np+2)
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Consequently for £ = 1 the Lemma is true.
Assume the Lemma is true for k, 1 < k < p—2; we will prove it for k+1. We have that

the joint density of random variables from the set {v;; | 1<1i<j<p}\{vip,...,Vip}
is equal to (5). In order to get the joint density of the variables from the set {r;; | 1<
i < j < p\{vip,---,Vkp,Vk+1p} We have to integrate the density (5) with respect to

Zi+1p- This variable presents only in the matrix Afk and does not present in the
matrices A;‘ and A:“,hp. According to Lemma 1 the expression

n—ptk—1
2

Cp—k|At..i,k| )

gives the joint density of the variables from the set {v;; | k+1 < i < j < p} for
all points in R(,_x)(p—k—1)/2, for which the matrix AI...,k- is positively definite. This
density is of the form (1). Consequently, if we integrate it with respect to xjy1, and
apply formula (6) with p=p—k,l=k+ 1 and s = p we get the density

(n—p+k+1)> (1)
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Therefore the required joint density of the variables from the set {v;; | 1 <i < j <
PIN{V1ps - -, Vip, Vet+1pt €quals to

(n—p+k+1) 1
Cp1Cp I | ——————= T = (n—ptk) (n=p)
pripk ( 2 2 |AI...,k+1‘ 2 |A;ﬂ 2
- (n—ptk+1)
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for all points in R,(,,—1)/2—k—1 for which the matrices A; and A1+.,.,k+1 are both positively
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definite. To prove the Lemma for k 4+ 1 it remains to show that

n—p+k+1 1
W ——— T | =
Cp*kfl _ Cp i ( 2 ) (2)

k-2 - 2
Cp k—2 Cpfk—lr (np—;—k‘—l—)

This can be easily seen if in (7) one changes p by p — k. This completes the proof.

Theorem 2. Let s and k be arbitrary integers, such that 2 < s<p—1and1 <k <
p—2. Let us denote by A and B the sets A={v;; | 1 <i<j<s}and B={v;; | k+1<
i <j<p}. Then

fafB

(8) faus = Farn

Proof. The proof is by inductionon s. If s=p—1then AUB={y;; | 1<i<j<
p\{vip, ..., vip}. According to Lemmas 1 and 2

n—p n—ptk—1
f Cp—1|A§L\ 2 Cp—kmf,..,k‘ 2 fafB
AUB = e = :
Cpona|AT 5 fans

Hence, for s = p—1 Theorem 2 is true. Assume the Theorem is true for 5,2 < s < p—1;
we will prove it for s — 1. Let us denote by A’ the set A’ = {v;; | 1 <i<j<s—1}.

Let K < s —2. ThenA’UB = AU B\{v1s,...,Vks} In order to get faup we have
to integrate faup with respect to xis,...,xks. For faup, according to the induction
assumptions, representation (8) holds. The variables s, ...,zrs are presented in the
density f4 only and are not presented in fg and fanp. From Lemma 1 we have that

n—s—1

(9) fa=Colal, I,
for all points in R,(s_1)/2 for which the matrix ALl,...,p is positively definite. The density
(9) is of the form (1). Integrating (9) with respect to z1s,...,zks we get the expression

n—s + n—s+k—1
(10) O‘g_lc‘g_k|AI---,p| A1,<-~77€75+17-~7P| :

n—s+tk )
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which follows from Lemma 2 with p = s. Using Lemma 1 it is easy to see that (10) equals
to

fafans

fanp

Consequently,

_ fadans 5 _ Fafs

fans fan  fans’

farus

which is the desired representation.
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We now turn to the case k > s —2. It is easy to see that here ANB = A’'NB = ® and,
by definition, fang = farns = 1. In this case we have A’UB = AU B\{v1s,...,Vs—1,s}
and to get farup we have to integrate faup with respect to the variables z1s,...,Zs_1 5.
By the induction assumption, representation (8) holds. The variables z1s,...,%s_1 s are
present only in the density f4 and are not present in fp and fanp. Integrating f4 with
respect to Z1g,...,Zs—1,s wWe get exactly density f/. Therefore

fafe  fafs

fans  fans’

faup =

which is our claim. This completes the proof.
The next Corollary follows immediately from Lemma 1 and Theorem 2:

Corollary. Let s and k be integers, such that2 < s<p—1and1 <k <p—2. Let us
denote by A and B the sets A={v;; | 1<i<j<s}and B={v;; | k+1<i<j<p}.
Then

+ n—s—1 + n—ptk—1
CSCP*k|As+1,‘..7p‘ 2 |A1,...,k| 2
fAUB = )
fans
where .
n—s — .
Cs—k|A:..,k,s+1,...,p , if k<s—2
fanp = . .
1, if k>s—2

Let us denote by faup/ans, fa/anp and fp/anp the densities of AU B, A and B,
conditioned on the random variables from the set A N B. If we divide the two sides of
equality (8) by fanp we will get the relation

(11) fauB/ane = fajanBfB/ANB-

According to the definition of conditional independence, given in [1], equality (11) shows
that the random variables from the sets A and B are conditionally independent relative
to the random variables from the set AN B.
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YCJIOBHA HE3ABNCUMOCT HA MHO2KECTBA OT EMIIMPNYHN
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KOPEJIAIITMOHHUN KOE®PUIIMEHTN HA HE3ABUCUMU
HOPMAJIHO PA3IIPEJAEJIEHN CJIVUANHUN BEJINYNHU

EBenuna M. Beaesa

Tlosmyuena e dhopmyra 3a mpecMsiTaHe Ha €IUH KJIaC OT MaprHHAJHY ILIBTHOCTH HA
CbBMECTHATA ILIBTHOCT Ha, eMIMPUYHUTE KOPEJAIMOHHU KOeMPUIMEHTH TpU HaOIIO-
JleHre HaJ[ He3aBUCHUMU HOPMAJIHO Da3Ipe/iesieHn CiaydailHu BejmduHu. V3BeaeHoTO
CBHOTHOIIIEHUE MEXKJIy ChbBMECTHHUTE ILTBTHOCTU HA PA3IJIEKJIAHUTE CHBKYITHOCTU OT
EeMIUPUYHNA KOPEJIAIMOHHN KOeUIIMEHTH TOKA3Ba TIXHATA YCIOBHA HE3aBUCUMOCT.



