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CONDITIONAL INDEPENDENCE OF JOINT SAMPLE
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NORMALLY DISTRIBUTED RANDOM VARIABLES*

Evelina I. Veleva

The aim of this paper is to obtain a formula for the densities of a class of joint sample
correlation coefficients of independent normally distributed random variables. The
established relation between the joint densities of certain sets of sample correlation
coefficients shows their conditional independence.

Let ξ = (ξ1, . . . ξp)′ be a random vector with distribution Np(~0, I), where ~0 is a zero
p× 1 vector, and I is the identity matrix of size p. Let ξ(1), . . . , ξ(n) be a sample from ξ
of size n. Consider the sample correlation coefficient νij of the random variables ξi and
ξj , 1 ≤ i < j ≤ p. The joint density of νij , 1 ≤ i < j ≤ p is of the form (see [2] and [3])

(1) Cp

∣∣∣∣∣∣∣∣

1 x12 . . . x1p

x12 1 . . . x2p

. . . . . . . . . . . . . . . . . . .
x1p x2p . . . 1

∣∣∣∣∣∣∣∣

(n−p−1)
2

,

for all points {xij , 1 ≤ i < j ≤ p} in Rp(p−1)/2 for which the symmetric matrix in (1)
is positively definite, where

— Cp is a constant, given by
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— Γ(·) is the well known Gamma function
and | · | is a notation for the determinant of a matrix.

Denote by ∆+
k1,...,ks

the matrix, which can be obtained from the matrix in (1) after
deleting the rows and columns with numbers k1, . . . , ks.

Let us introduce the notation fM for the joint density of the random variables from
a set M ; if M = Φ, i.e. the set M is empty we define fM = 1.
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Lemma 1. Let K be a set of natural numbers K = {k1, . . . , ks}, each one belonging
to the interval [1, p] and M be the set M = {νij | i /∈ K, j /∈ K, 1 ≤ i < j ≤ p}. Then

(3) fM = Cp−s|∆+
k1,...,ks

|n−p+s−1
2 ,

for all points in R(p−s)(p−s−1)/2 for which the matrix ∆+
k1,...,ks

is positively definite.
Proof. We will use the following Theorem proved in [3]:
Theorem 1. Let k be a fixed integer, 1 ≤ k ≤ p. The joint density of the random

variables {νij |i 6= k, j 6= k, 1 ≤ i < j ≤ p} is equal to

Cp−1|∆+
k |

n−p
2 ,

for all points in R(p−1)(p−2)/2 for which the matrix ∆+
k is positively definite.

If we substitute in this statement k = k1 we get Lemma 1 for s = 1. Assume Lemma
1 is true for s = l and let the set K have l+ 1 elements, K = {k1, . . . , kl, kl+1}. Consider
the sets K ′ = {k1, . . . , kl} and M ′ = {νij | i /∈ K ′, j /∈ K ′, 1 ≤ i < j ≤ p}.
According to the assumption we have

(4) f ′M = Cp−l|∆+
k1,...,kl

|n−p+l−1
2 ,

for all points in R(p−l)(p−l−1)/2 for which the matrix ∆+
k1,...,kl

is positively definite.
The density (4) is again of the form (1). Consequently, applying Theorem 1 for k =

kl+1 to the density (4) we get that the joint density of the random variables from the set
{νij | νij ∈ M ′, i 6= kl+1, j 6= kl+1} = {νij | i /∈ K, j /∈ K, 1 ≤ i < j ≤ p}
is equal to

Cp−l−1|∆+
k1,...,kl,kl+1

|n−p+l
2 ,

for all points in R(p−l−1)(p−l−2)/2 for which the matrix ∆+
k1,...,kl,kl+1

is positively definite.
Hence Lemma 1 is true for s = l + 1. Therefore it is true by induction.

Lemma 2.The joint density of the random variables from the set {νij | 1 ≤ i < j ≤
p}\{ν1p, . . . , νkp}, where k is an integer, 1 ≤ k ≤ p− 2 is equal to

(5)
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,

for all points in Rp(p−1)/2−k for which the matrices ∆+
p and ∆+

1,...,k are both positively
definite.

Proof. The proof uses induction on k. Let k = 1. We will use the formula for the
joint density of the random variables from the set M = {νij | 1 ≤ i < j ≤ p}\{νls}
(l and s are integers, 1 ≤ l < s ≤ p):
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that is valid for all points in Rp(p−1)/2−1 for which the matrices ∆+
l and ∆+

s are both
positively definite. It is proved in [3]. Then the joint density of the random variables from
the set {νij | 1 ≤ i < j ≤ p}\{ν1p} is equal to
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for all points in Rp(p−1)/2−1 for which the matrices ∆+
1 and ∆+

p are both positively
definite. From equality (2) it can be easily seen that
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Consequently for k = 1 the Lemma is true.
Assume the Lemma is true for k, 1 ≤ k < p−2; we will prove it for k+1. We have that

the joint density of random variables from the set {νij | 1 ≤ i < j ≤ p}\{ν1p, . . . , νkp}
is equal to (5). In order to get the joint density of the variables from the set {νij | 1 ≤
i < j ≤ p}\{ν1p, . . . , νkp, νk+1p} we have to integrate the density (5) with respect to
xk+1p. This variable presents only in the matrix ∆+

1,...,k and does not present in the
matrices ∆+

p and ∆+
1,...,k,p. According to Lemma 1 the expression

Cp−k|∆+
1,...,k|

n−p+k−1
2 ,

gives the joint density of the variables from the set {νij | k + 1 ≤ i < j ≤ p} for
all points in R(p−k)(p−k−1)/2, for which the matrix ∆+

1,...,k is positively definite. This
density is of the form (1). Consequently, if we integrate it with respect to xk+1p and
apply formula (6) with p = p− k, l = k + 1 and s = p we get the density
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Therefore the required joint density of the variables from the set {νij | 1 ≤ i < j ≤
p}\{ν1p, . . . , νkp, νk+1p} equals to
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for all points inRp(p−1)/2−k−1 for which the matrices ∆+
p and ∆+

1,...,k+1 are both positively
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definite. To prove the Lemma for k + 1 it remains to show that
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This can be easily seen if in (7) one changes p by p− k. This completes the proof.
Theorem 2. Let s and k be arbitrary integers, such that 2 ≤ s ≤ p− 1 and 1 ≤ k ≤

p−2. Let us denote by A and B the sets A = {νij | 1 ≤ i < j ≤ s} and B = {νij | k+1 ≤
i < j ≤ p}. Then

(8) fA∪B =
fA fB
fA∩B

.

Proof. The proof is by induction on s. If s = p− 1 then A ∪B = {νij | 1 ≤ i < j ≤
p}\{ν1p, . . . , νkp}. According to Lemmas 1 and 2

fA∪B =
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.

Hence, for s = p−1 Theorem 2 is true. Assume the Theorem is true for s, 2 ≤ s ≤ p−1;
we will prove it for s− 1. Let us denote by A′ the set A′ = {νij | 1 ≤ i < j ≤ s− 1}.

Let k ≤ s − 2. ThenA′ ∪ B = A ∪ B\{ν1s, . . . , νks}. In order to get fA′∪B we have
to integrate fA∪B with respect to x1s, . . . , xks. For fA∪B , according to the induction
assumptions, representation (8) holds. The variables x1s, . . . , xks are presented in the
density fA only and are not presented in fB and fA∩B . From Lemma 1 we have that

(9) fA = Cs|∆+
s+1,...,p|

n−s−1
2 ,

for all points in Rs(s−1)/2 for which the matrix ∆+
s+1,...,p is positively definite. The density

(9) is of the form (1). Integrating (9) with respect to x1s, . . . , xks we get the expression
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2
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,

which follows from Lemma 2 with p = s. Using Lemma 1 it is easy to see that (10) equals
to

f ′AfA∩B
fA′∩B

.

Consequently,

fA′∪B =
f ′AfA∩B
fA′∩B

fB
fA∩B

=
f ′AfB
fA′∩B

,

which is the desired representation.
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We now turn to the case k > s−2. It is easy to see that here A∩B = A′∩B = Φ and,
by definition, fA∩B = fA′∩B = 1. In this case we have A′ ∪B = A ∪B\{ν1s, . . . , νs−1,s}
and to get fA′∪B we have to integrate fA∪B with respect to the variables x1s, . . . , xs−1,s.
By the induction assumption, representation (8) holds. The variables x1s, . . . , xs−1,s are
present only in the density fA and are not present in fB and fA∩B . Integrating fA with
respect to x1s, . . . , xs−1,s we get exactly density f ′A. Therefore

fA′∪B =
f ′AfB
fA∩B

=
f ′A fB
fA′∩B

,

which is our claim. This completes the proof.
The next Corollary follows immediately from Lemma 1 and Theorem 2:
Corollary. Let s and k be integers, such that 2 ≤ s ≤ p− 1 and 1 ≤ k ≤ p− 2. Let us

denote by A and B the sets A = {νij | 1 ≤ i < j ≤ s} and B = {νij | k+ 1 ≤ i < j ≤ p}.
Then

fA∪B =
CsCp−k|∆+

s+1,...,p|
n−s−1

2 |∆+
1,...,k|

n−p+k−1
2

fA∩B
,

where

fA∩B =

{
Cs−k|∆+

1,...,k,s+1,...,p|
n−s+k−1

2 , if k ≤ s− 2

1, if k > s− 2
.

Let us denote by fA∪B/A∩B , fA/A∩B and fB/A∩B the densities of A ∪ B, A and B,
conditioned on the random variables from the set A ∩ B. If we divide the two sides of
equality (8) by fA∩B we will get the relation

(11) fA∪B/A∩B = fA/A∩BfB/A∩B .

According to the definition of conditional independence, given in [1], equality (11) shows
that the random variables from the sets A and B are conditionally independent relative
to the random variables from the set A ∩B.
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УСЛОВНА НЕЗАВИСИМОСТ НА МНОЖЕСТВА ОТ ЕМПИРИЧНИ
КОРЕЛАЦИОННИ КОЕФИЦИЕНТИ НА НЕЗАВИСИМИ
НОРМАЛНО РАЗПРЕДЕЛЕНИ СЛУЧАЙНИ ВЕЛИЧИНИ

Евелина И. Велева

Получена е формула за пресмятане на един клас от маргинални плътности на
съвместната плътност на емпиричните корелационни коефициенти при наблю-
дение над независими нормално разпределени случайни величини. Изведеното
съотношение между съвместните плътности на разглежданите съвкупности от
емпирични корелационни коефициенти показва тяхната условна независимост.
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