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In this paper we consider statistics, which have joint uniform distribution on the set
of all positively definite matrices with preliminary fixed diagonal elements. We give an
algorithm for generation of random uniformly distributed positively definite matrices.

A sufficient condition for applying many numerical algorithms is the positive definite-
ness of a matrix. The diagonal elements of the matrix have often specified significance.
The correctness of such numerical algorithm can be proven if we are able to choose
a positively definite matrix uniformly at random. The space of all positively definite
matrices is, however, a cone (see [3]) and consequently a uniform distribution cannot be
defined over the whole cone because it has infinite volume. This enforces to introduce
additional restrictions on the matrices, which together with the positive definiteness
reduce our choice within a set with finite volume. This paper suggests an algorithm
for generation of uniform distributed positively definite matrices with fixed diagonal
elements. If the user does not want to fix concrete diagonal elements of the matrix in
advance, he has though to assign bounds for each diagonal element. For instance, he can
choose all diagonal elements to be in the interval (0,100). Then uniform random numbers
within the chosen bounds have to be generated one for each diagonal element. The
algorithm described in this paper allows the user a random choice among all positively
definite matrices with concrete diagonal elements that are either fixed in advance or
randomly generated within the chosen bounds.

From now on we will assume that ai1, ...,an, are the diagonal elements of the
matrix, chosen in accordance with users’ preferences. They have to be positive so that
there exists at least one positively definite matrix with such diagonal elements (see
Lemma 1 below).

Let us denote by ¥(k), k > —1 the Pearson probability distribution of the second
type with density function
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Random variables having distribution ¥(k) can be easily generated (see [1], p.481)
using the quotient of the difference and the sum of two gamma distributed random
variables.

Theorem 1. Let the random variables n;;, 1 < i < j < n be mutually independent.
Suppose that 1 i41, ..., N are identically distributed ¥(n — i), for i = 1,...,n — 1.
Consider the random variables vy;, 1 <1 < j < n, defined by

Vi2 = 1124/Q11022, - - ., Vin = Niny/ A110nn;
(1)

1/2
a1 - Vii—1 Vi /21 aix -+ Vii—1 Vij
aiyp - Vig !
_ : . : . + 1y
J :
Vij—1 " Qi—15—1 Vi—14 Vijg—1 " Qi—15—1 Vi—1j
Vig - Qi
(2 (23
Vig - Vi-1j 0 Vig - Vi-1j GQjj
Vijg = ’
aix 0 Vii—1
Vij—1 " Gj—1i—1

i=2,...m—1,j=i+1,...,n.
The joint density of the random variables v;;, 1 < i < j < n has the form
Guij 1<i<j<n(Tij, 1 <i < j <n)=Clg,

where C is a constant and Ig is the indicator of the set S, consisting of all points (z,;,
1 <i<j<n)in Rym_1)/2, for which the matriz

a1l Ti2 Tin

Ti2 G22 Tan
(2) A= '

T1in Ton Ann

is positively definite.

Proof. It is easy to get the joint density of the random variables n;;, 1 <4 < j < n:
Tnija<i<i<n Yig, 1<i<G<n) =frn1(y12)- - fro1(W1n) fn—2(y23)- - - fn—2(y2n)- - - f1(Yn—1n)Ls’

=K, I -4 Is,

1<i<j<n

where Ig is the indicator of the set of all points (y;;, 1 <i < j < n)in Ry (n—1)/2 such
that y;; € (-1,1), 1 <i<j<nand K, is the constant

r(3
K, =
n n—1 3 1
() () )
The inverse transformation formulas are of the form

Y12 = 3?12/\/@11(1227 ceey Yin = $1n/\/a11ann;

n(n—1) *
2
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ai " T1i-1 T a1 o T1i1
i
+ 4
T1i—1 " Aj—1i—1 Ti—14
T1i—1 " Gj—14—1
. T1j cTi—1j 0
(3) Yij = 172
1/2 a1 *T1i—-1  Tij
air - T14
LT1i—1 " Aj—1i—1 Ti—1j
T4 Qgq /
L1y *Ti-1j G5

1=2,....n—1,7=14+1,....,n.

It is easy to see that all elements above the main diagonal in the Jacobian J,

J= 0 (y127-"7y1n;y23;-"ay2na~"7yn—ln)
O (%125, T1ns T235 -+, L2ps - -+, Tp—1n)
are equal to zero. Consequently,
13| = Y12 Oyin Y23 0 yan OYn—1n _ 1 1
0x12 01, Oxa3 0xop OTpn—1n  +/A11G22  /A11Gnn
a1 T1i-1
% H T14i—1 Aj—1i—1
12 1/2
2<i<j<n a1 T1i-1 T4
SISIS a1 T14 J
T1i—-1 Aj—15—1 Ti-1j
T1g Qi !
L1j Li-1j jj
n—i—2
a1 T14 2
n—1
n—3 1=2
_ (a11)2 T14 Qi
= T
422.--- Gnn ar Tyi-1 x1y |°
2<i<j<n | T1i—1 Ai—1i—1 Ti-1j
L1 Ti-1j ajj

Let ¢ and j be integers, such that 2 < i < j < n. Consider the matrix

a11 T1i

(4) M =
T14 Q5
l‘lj xij

T1j
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Applying the Sylvester’s determinant identity (see 2], p.3) on the matrix M we get

ai1 Tii—1 T1j
ailr - Tlg—1 aiy -+ Tis
M| =
T1i—1 """ Gi—1i—1 Ti—1j
L1i—1""" Gi—1i—1 Lig - Qg ‘ o Y
L1j Ti-1j  Qjj
(5) 2
aix o Tii—-1 T
LT1i—1""" Aj—1i—1 Li—14
Tij - Ti—1j  Lij
The last determinant in (5) can be written in the form
ai1 Tii—-1 L1 a1 - Tii-1 T
ayp o Tli—1
(6) = + i
T1i—1""" Gj—1i—1 Ti—14 T1i—1""" Aji—1i—1 Ti—14
0 T1i—1""" Ai—1i—-1
L1j Ti-1j Lij Lij - Li-1j
From (3), (5) and (6) it follows that for 2 <i < j <mn
ajl - Tig Ty
a1 T14i—1
Lig *++ Qg LTig
T1i—1 * Qi—15—1
2 Lij -t Tyj Gy
7 1—92 =
(7) Yij . . .
11 1i—1 1
a1l - Ty
L1i—1 " Aj—15—1 Ti—1j
Lig o Qg

1’1]'

Ti—1j

ajj

Therefore the joint density of the random variables v;;, 1 <i < j < nis

< 11

2<i<j<n

n—2
n 2 2
oy G1<i<i< =K 1— 2
9v;;,1<i<j<n (xlja S1< g s TL) = Ky - s
j=2 1154
n—i—1
ai1- - T15T1 2
air 0 Ti1i—1
T1q: - Qi Ty
.. .. xli—l"'ai—li—l K
L1y Lij Ajj I Ter = n
a T T I s = ( )"7
11 " X1i-1 1j a11G92 . ..G 2
all...mli ? J 11422 nn
Ti1i—1""" Aj—1i—1Ti—15
T4 Qi
Tij - Ti-1j QG5 |

It remains to prove that Iy = Is. This follows immediately from the next Lemma.
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Lemma 1. The matriz A in (2) is positively definite if and only if

a;; > 0, 1=1,...,n;
air - Tii—-1 Tis
a1l - Tiq-1
+ i
LT1i—17""Ai—1i—1Ti—154
0 T1i—1""Aj—1i—1
Lij =0 Li-1j (=1, 1)
1/2 1/2 c(—1 )
air - Tii—-1 Tiy
air- - Ty !
Ti1i—1"" Q5—1i—1Ti—13
L1 Qg
Tij ot Ti-lj o A
t=2,...n—1,5j=i4+1,....,n
The proof of the Lemma in the case a1 = aga = -+ = apy, = 1 is given in [4]. In the
general case the proof is based on the fact that the matrix A may be written as
A =DBD,

where D is the diagonal matrix D = diag (\/a11, /@22, - - - , \/Gnn) and B is a matrix with
units on the main diagonal. Moreover matrix A is positively definite if and only if matrix
B is. The detailed proof of the Lemma will appear in a forthcoming publication.

Theorem 2. Relation (1) can be written in the form:

®) Vij = /Qi0jj l (Ukﬂ?kg H (1—n2%)(1- 775] ) + Mij H \/ L—nZ)( nfj)]

, J=i+1,.

1= TL—

Proof. We give here the main ideas of the proof. The whole proof will appear in a
forthcoming publication.

For any integers k and s, 1 < k < s < n it can be seen by (7) that

air - Vig Vis
k 1
2 2 _ :
9) H (1 —mn;;) H (I—=mi) | = P
1<i<j<k i=1 11 .- Qkklss | 11 -+ Qgk  Vks
Vis e Vs Asg

By induction on r it can be proved that for any integer r,k and s, 1 <r <k <s<mn

a1 - Vir Vig
Vip s Qpy Vrg
(10) Vig - Upg O
T i—1
—Q11 ... Qrp/AssQkk H (1 - 7722]) Z NikNis H \/(1 - 77]2]@)(1 - 77J25)
1<i<j<r i=1 j=1

Now, applying (9) and (10) to (1) it is easy to get representation (8), which completes
the proof.
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Theorems 1 and 2 give the following algorithm for generating random uniformly
distributed positively definite matrices:

1) Generate n(n — 1)/2 random numbers y;;, 1 < i < j < n so that y;; comes from
the distribution ¥(n — ).

2) In order to reduce calculations, compute the auxiliary quantity z;;, 1 <i<j <n
such that

Zij = yij\/(l —yi) . (L—y? ;) with y; = 1.
3) Calculate the desired matrix (2) with
Tij = /055 (210215 + 22225 + - + Zizig)-
The obtained formulas show that it is possible to create a program, which generates
without dialog with the user a matrix U with units on the main diagonal. This is done in

steps 1)-3) substituting @11 = - -+ = an, = 1. Then the user, according to his preferences,
form a diagonal matrix D = diag (\/a11, ..., 1/Gnn) and the desired matrix A is
A =DUD.
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TEHEPVMPAHE HA PABHOMEPHO PA3IIPEJEJIEHIN
ITOJIOZKUTEJIHO OITPEAEJIEHN MATPUIIN

EBesmnna 1. BesieBa

B Tasu crarus ca pa3riemaHu cTaTUCTHKY, KOUTO UMAT ChbBMECTHO PABHOMEDHO Pa3Il-
peliesieHre BbPXY MHOXKECTBO OT BCUYKH ITOJIOZKUTEJTHO OIPEIEJIEHN MaTPHUIH C IIPE/I-
BapuTeHO DUKCUPAHU JUATOHAJIHU eleMeHTH. ToBa HU JaBa aJrOPUTHM 3a TeHEepU-
paHe Ha CJIyYaliH! IIOJIO?KUTEJIHO ONIPeie/IeHN MaTPUIIA C PABHOMEPHO pa3IIpe/ieIeHue.
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