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We derive explicit formulae for calculating the exponential eA of a given 2×2 and 3×3
matrix A. They are exclusively in terms of characteristic roots of A and do not involve
neither the eigenvectors of A, nor the transition matrix associated with a particular
canonical basis. In addition, some specific matrices, closely related to A are identified,
which allows an easy calculation of some invariant subspaces and canonical bases of
A, if needed. We believe that our approach has advantage (especially if applied by
non-mathematicians) over the more conventional methods based on the construction
of canonical bases. We support this point with several examples.

1. Introduction. The exponential eA of a square matrix A and the related one-
parametric family etA are important concept in mathematics, e.g. the description of one-
parameter subgroups of GLn allows an useful geometrical visualization and interpretation
in the Lie structures associated. Here, one example on an undergraduate college level:

Let
d

dt
~x (t) = A~x (t) be a system of first-order constant-coefficient ordinary differential

equations with initial condition ~x (0) = ~x0 ∈ Rn, where A is a n × n matrix (with real
entries). Then the solution of the system is given by ~x (t) = etA~x0.

The exponential eA of a given n × n real or complex matrix A is defined by the

Taylor expansion eA =
∞∑
n=0

An

n!
, which converges absolutely for all complex matrices A.

So defined matrix exponential satisfies the following properties:
– If the matrices A and B commute, i.e. AB = BA, then eA+B = eAeB .
– If the matrices A and B are similar, i.e. B = T−1AT , then eB = T−1eAT .
– The exponential of a cell-diagonal matrix is the diagonal matrix of the exponents

of the cells, i.e. if A = diag, (A1, A2, . . . ), then etA = diag
(
etA1 , etA2 , . . .

)
.

For some specific kind of matrices (scalar, nilpotent, idempotent) the exponential can
be easily evaluated. Here we list some explicit formulae we shall use later:

Lemma 1.1.For the exponential of a given (real) matrix we have:
(i) If A = I is the identity matrix, then etA = etI.

(ii) If N is nilpotent with Nm+1 = 0, then etN = I +
tN

1!
+ · · ·+ tmNm

m!
.

*Key words: exponential of a matrix, characteristic polynomial, Cayley-Hamilton theorem, canonical
basis, transition matrix

344



(iii) If P 2 = P , i.e. P is a projector, then etP = I + (et − 1)P = I − P + etP .
(iv) If J2 = −I, then etJ = (cos t) I + (sin t)J .
(v) If J2 = I, then etJ = (cosh t) I + (sinh t)J = 1

2 [et (I + J) + e−t (I − J)].
Proof. The properties (i)–(ii) are obvious, and if P is a projector, we calculate

etP =
∞∑
n=0

tnPn

n!
= I +

∞∑
n=1

tn

n!
P = I +

(
et − 1

)
P,

which proves (iii).
If J2 = −I, then we have:

etJ =
∞∑
n=0

tnJn

n!
=
∞∑
n=0

t2nJ2n

(2n)!
+
∞∑
n=0

t2n+1J2n+1

(2n+ 1)!
=

=
∞∑
n=0

(−1)n t2n

(2n)!
I +

∞∑
n=0

(−1)n t2n+1

(2n+ 1)!
J = (cos t) I + (sin t)J,

as required. By analogy one proves (v):

etJ =
∞∑
n=0

tnJn

n!
=
∞∑
n=0

t2nJ2n

(2n)!
+
∞∑
n=0

t2n+1J2n+1

(2n+ 1)!
=

∞∑
n=0

t2n

(2n)!
I +

∞∑
n=0

t2n+1

(2n+ 1)!
J = (cosh t) I + (sinh t)J,

as required.
In Section 3 we shall use an easy generalization of the last two properties:
Lemma 1.2.For the exponential of a given (real) matrix we have:
(i) Let J2n = (−1)nQ, and J2n−1 = (−1)n−1

J , n = 1, 2, . . . . Then
etJ = I −Q+ (cos t)Q+ (sin t) J.

(ii) Let J2n = Q, and J2n−1 = J , n = 1, 2, . . . . Then
etJ = I −Q+ (cosh t)Q+ (sinh t)J = I −Q+ et (Q+ J) + e−t (Q− J) .

Proof. The proof is analogous to the proof of the last three properties of Lemma 1.1
and we leave it to the reader.

Some of the relations, just described, can be found in many books on linear algebra
and applications, see Artin [1] and Malcev [2]. The calculation of the exponential of an
arbitrary matrix however is much more complicated. The technology uses some of the
canonical forms of A, say the Jordan one. One has to find a transition matrix T , such
that C = T−1AT = diag (C1, C2, . . . ) with Jordan cells C1, C2, . . . on the diagonal and
then eA = Tdiag

(
eC1 , eC2 , . . .

)
T−1. Next, each Jordan cell Ck, k = 1, 2, . . . has the form

Ck = λkI+N, where N is nilpotent and one evaluates eCk = eλk
∑

n≥0

Nn

n!
, where the last

sum is finite, because N is nilpotent.
The procedure discussed is universal, but it has some misgivings:
– The algorithm for calculating the transition matrix is heavy and time consuming. It

is especially complicated in the case of multiple characteristic roots, when the construc-
tion of the chain of generalized eigenvectors requires skills well beyond in a typical course
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of linear algebra and applications.
– The original framework Rn must be extended to Cn, which usually is confusing for

non-mathematicians.
In this article we derive some explicit formulae for evaluating etA for a given 2 × 2

and 3× 3 matrix A with real entries (in Section 2 and Section 3, respectively). They are
in terms of characteristic roots of A and do not involve neither the eigenvectors of A,
nor the transition matrix associated with a particular canonical basis. We believe that
our approach is suitable for handbooks in the sense that one can work it with limited
background in linear algebra, in particular without having a slightest idea about change
of bases and the “ransition matrices”.

Our consideration essentially exploits the characteristic polynomial fA (λ) = (−1)n det
(A− λI) of the matrix A, and the Cayley-Hamilton theorem, which says that fA (A) =0.

As a corollary of the main results in each section we identify some matrices closely
related to A, which allows easy calculations of some invariant subspaces of A and an
efficient construction of canonical bases of A.

The eigenspace of A corresponding to the particular eigenvalue c ∈ C will be denoted
by Eλ=c (A).

We recommend our approach for teaching exponential of matrices in a course on linear
algebra and application to differential equations, and to support this point we present
several examples.

2. Exponential of 2 × 2 matrices. Here we derive formulae for evaluating the
exponential of a given 2 × 2 matrix. They are easy to memorize and simple to use.
One can work with a limited background in linear algebra, and in addition the formulae
involve only linear operations between the matrices. This point is illustrated with several
examples of first-order linear systems of ordinary differential equations.

We would like to mention that the results of Case 1 and Case 2 of Theorem 2.1 had
been exploited by Paul Bamberg and Shlomo Sternberg [3] in similar context.

An easy interpretation of the main result in Corollary 2.2 allows a direct construction
of a canonical basis and the transition matrix associated.

The main result of the section is
Theorem 2.1. Let A be a given 2× 2 real matrix with characteristic roots λ1 and λ2.

Then
Case 1. If λ1 = λ2 = λ0 (it is real), then A = λ0I + N, where N = A − λ0I is

nilpotent with N2 = 0. Consequently, for every t ∈ R we have
(1) etA = eλ0t (I + tN) .

Case 2. If λ1,2 = α ± iω for some α, ω ∈ R, ω 6= 0, then A = αI + ωJ , where the

matrix J =
1
ω

(A− αI) satisfies J2 = −I. Consequently, for every t ∈ R we have

(2) etA = eαt [cos (ωt) I + sin (ωt) J ] .

Case 3. If λ1 6= λ2 (real), then A = αI + βJ, where α =
λ1 + λ2

2
, β =

λ1 − λ2

2
, and

the matrix J = 1
β (A− αI) satisfies J2 = I. Consequently, for every t ∈ R we have

(3) etA = eαt [cosh (βt) I + sinh (βt) J ] =
1
2
[
eλ1t (I + J) + eλ2t (I − J)

]
.
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Proof. The characteristic polynomial of A is fA (λ) = λ2 − (λ1 + λ2)λ + λ1λ2, and
by the Cayley-Hamilton theorem we have in each of the cases:

Case 1.A2−2λ0A+λ2
0I = 0, i.e.N2 = (A− λ0I)2 = 0, and we evaluate etA = eλ0tIetN

by (i) and (ii) of Lemma 1.1.
Case 2. A2− 2αA+

(
α2 + ω2

)
I = 0, i.e. (A− αI)2 = −ω2I, which implies J2 = −I.

Now we evaluate etA = eαtIeωtJ by (i) and (iv) of Lemma 1.1.
Case 3. A2−2αA+

(
α2 − β2

)
I = 0, i.e. (A− αI)2 = β2I, which implies J2 = I, and

we complete the calculations by (i) and (v) of Lemma 1.1.
Note that the formulae (1) – (3) use characteristic roots of A only, and the matrices N

and J depend linearly on A. In fact, one can obtain (1) – (3) even without characteristic

roots by examining the square B2 of the matrix B = A − aI, with a =
1
2
tr(A). In

addition, eigenvectors and canonical bases for A can be easily determined in terms of N
and J – the next result follows directly from the above considerations.

Corollary 2.2.Under the notations of the previous theorem we have:
Case 1. If N 6= 0, then Eλ=λ0 (A) = Im (N), i.e. either of the non-zero columns of

N is an eigenvector, and a Jordan basis of A is any pair ~u,N~u, with N~u 6= 0.
Case 2. The matrix A is diagonalizable over the complex numbers with eigenvectors

(I ∓ iJ) ~u, ~u 6= 0, associated with the eigenvalues α± iω. There are no eigenvectors over

the reals and the matrix A has a conformal canonical form
(
α ω
−ω α

)
in the basis ~u, J~u

for every ~u 6= ~0.
Case 3. We have Eλ=λ1 (A) = Im (I + J), and Eλ=λ2 (A) = Im (I − J). The matrix

A is diagonalizable, and any two non-zero vectors (I + J) ~u, (I − J)~v constitute a basis
of eigenvectors of A.

The following examples, tested by the second author in a course on linear algebra and
ordinary differential equations illustrate the results above.

Example 1. Find the solution of the initial value problem
x′ = 3x+ 2y, y′ = −8x− 5y,

with initial condition x (0) = 1, y (0) = −1.

We have A =
(

3 2
−8 −5

)
, and ~x0 =

(
1
−1

)
. The characteristic polynomial fA (λ) =

λ2 + 2λ + 1 has a multiple root λ1 = λ2 = −1 (Case 1). We calculate N = A + I =(
4 2
−8 −4

)
. Check that N2 = 0. Now applying (1) we have:

~x (t) = e−t (I + tN) ~x0 = e−t
(

1 + 4t 2t
−8t 1− 4t

)(
1
−1

)
= e−t

(
1 + 2t
−1− 4t

)
.

Thus, x (t) = (1 + 2t) e−t, y (t) = − (1 + 4t) e−t.
Remark. If a canonical form of the matrix A is needed, then the vectors ~u = (0, 1)

and N~u = (2,−4) constitute a Jordan basis by Corollary 2.2, Case 1.
Example 2. Find the solution of the initial value problem

x′ = y, y′ = −5x− 2y,
with initial condition x (0) = 2, y (0) = 1.
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We have A =
(

0 1
−5 −2

)
, and ~x0 =

(
2
1

)
. The characteristic polynomial fA (λ) =

λ2 + 2λ + 5 has roots λ1,2 = −1 ± 2i, i.e. α = −1, ω = 2 (Case 2). We evaluate

J =
1
ω

(A− αI) =
1
2

(
1 1
−5 −1

)
. Now J2 = −I and by (2) we have

~x (t) = etA~x0 = e−t
[
cos (2t)

(
1 0
0 1

)
+

1
2

sin (2t)
(

1 1
−5 −1

)](
2
1

)
,

which after standard calculations gives the solution

x (t) = e−t
(

2 cos 2t+
3
2

sin 2t
)
, y (t) = e−t

(
cos 2t− 11

2
sin 2t

)
.

Remark. The matrix A is diagonalizable over the complex numbers - a canonical
basis can be selected, say (I − iJ) ~u = (2 + i,−5i), and (I + iJ) ~u = (2− i, 5i) for ~u =
(2, 0) . In the framework of real numbers the matrix A is similar to the conformal matrix(−1 2
−2 −1

)
, and a canonical basis is ~u = (2, 0), J~u = (1,−5).

Example 3. Find the solution of the initial value problem
x′ = 5x− y, y′ = 3x+ y

with initial condition x (0) = 1, y (0) = 2.

We have A =
(

5 −1
3 1

)
, and ~x0 =

(
1
2

)
. The characteristic polynomial fA (λ) =

λ2 − 6λ + 8 has roots λ1 = 4, λ2 = 2 i.e. α = 3, β = 1 (Case 3). We evaluate J =
1
β (A− αI) =

(
2 −1
3 −2

)
. Now J2 = I and by (3) we have

~x (t) = etA~x0 = e3t

[
cosh (t)

(
1 0
0 1

)
+ sinh (t)

(
2 −1
3 −2

)](
1
2

)
,

which after standard calculations gives the solution

x (t) = e3t cosh t =
1
2
(
e4t + e2t

)
, y (t) = e3t (cosh t− sinh t) =

1
2
(
e4t + 3e2t

)
.

Remark. The matrix A is diagonalizable – a canonical basis can be selected, say
(I + J) ~u = (−1,−1), and (I − J) ~u = (1, 3) for ~u = (0, 1). Note that the last two are the
eigenvectors of A.

3. Exponential of 3 × 3 matrices. In this section we extend the results of the
previous one for 3×3 matrices. We shall use some elementary and well known facts about
characteristic polynomials, e.g. if B = A− cI, then fB (λ) = fA (λ+ c), i.e. if λ1, λ2, . . .
are the characteristic roots of A, then λ1 − c, λ2 − c, . . . are the characteristic roots of
B = A− cI.

The main result of this section is

Theorem 3.1.For a given 3× 3 real matrix A with characteristic roots λ1, λ2, λ3 we
have

Case 1. Let λ1 = λ2 = λ3 = λ0 (it is real). Then A = λ0I +N , where N = A− λ0I
is nilpotent with N3 = 0 Consequently, for every t ∈ R we have

(4) etA = eλ0t

(
I + tN +

t2

2
N2

)
.
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Case 2. Let λ1 = λ2 = λ0 6= λ3 (both are real), and b = λ3 − λ0. Then A =
λ0I + bP +N, where the matrices

P =
1
b2

(A− λ0I)2
, and N = A− λ0I − bP

satisfies the following relations: PN = NP = 0, P 2 = P , and N2 = 0. Consequently, for
every t ∈ R we have
(5) etA = eλ0t (I − P + tN) + eλ3tP.

Case 3. Let λ1,2 = α ± iω for some α, ω ∈ R, ω 6= 0, and b = λ3 − α. Then
A = αI + bP + ωJ , where the matrices

P =
1

b2 + ω2

[
(A− αI)2 + ω2I

]
, and J =

1
ω

[A− αI − bP ]

satisfies the following relations:
PJ = JP = 0, P 2 = P, J2n = (−1)n (I − P ) , and J2n−1 = (−1)n−1

J, n = 1, 2, . . .
Consequently for every t ∈ R we have
(6) etA = eαt [(cosωt) (I − P ) + (sinωt) J ] + eλ3tP.

Case 4. Let λ1, λ2, λ3 are distinct real, and let denote α =
λ1 + λ2

2
, β = λ1−λ2

2 , and
b = λ3 − α. Then A = αI + bP + βJ , where the matrices

P =
1

b2 − β2

[
(A− αI)2 − β2I

]
, and J =

1
β

[A− αI − bP ] ,

satisfies the following relations:
PJ = JP = 0, P 2 = P, J2n = I − P, and J2n−1 = J, n = 1, 2, . . .

Consequently, for every t ∈ R we have
(7) etA = eαt [(coshβt) (I − P ) + (sinhβt) J ] + eλ3tP =

=
1
2
eλ1t (I + J − P ) +

1
2
eλ2t (I − J − P ) + eλ3tP.

Proof. We shall consider the cases consecutively:
Case 1. The characteristic polynomial of the matrix N = A − λ0I is fN (λ) = λ3,

hence N3 = 0, and now (4) is a direct corollary of Lemma 1.1 (i) – (ii).
Case 2. Denote B = A− λ0I, and observe that

P =
1
b2
B2, and N = B − bP = −1

b
B (B − bI) .

The characteristic polynomial of the matrix B is fB (λ) = λ2 (λ− b), and the Cayley-
Hamilton theorem gives B3 = bB2 and B4 = b2B2.

Now we have P 2 = b−4B4 = b−2B2 = P , as required.
Next we calculate PN = NP = −b−3B2B (B − bI) = −b−3BfB (B) = 0 and finally

N2 = −b−2B2 (B − bI)2 = −b−2fB (B) (B − bI) = 0, as required.
Now as a direct corollary of Lemma 1.1 (i) – (iii) we have

etA = eλ0tIebtP etN = eλ0t
[
I − P + ebtP

]
(I + tN)

and the one easily obtains (5) after standard calculations.
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Case 3. Denote B = A− αI and observe that

P =
1

b2 + ω2

(
B2 + ω2I

)
, and J =

1
ω

(B − bP ) .

The characteristic polynomial of B is fB (λ) =
(
λ2 + ω2

)
(λ− b) and the Cayley-

Hamilton theorem gives
B3 + ω2B = b

(
B2 + ω2I

)
, and B4 + ω2B2 = b2

(
B2 + ω2I

)
.

Next we have

PB = BP =
1

b2 + ω2

(
B3 + ω2B

)
=

b

b2 + ω2

(
B2 + ω2I

)
= bP,

which implies B2P = PB2 = b2P .
Now we check that P is a projector, namely:

P 2 =
1

b2 + ω2

(
B2 + ω2I

)
P ==

1
b2 + ω2

(
B2P + ω2P

)
=

1
b2 + ω2

(
b2P + ω2P

)
= P,

and also PJ = JP = ω−1 (B − bP )P = ω−1 (bP − bP ) = 0.
Finally, we have J2 = ω−2 (B − bP )2 = ω−2

(
B2 − 2bBP + b2P

)
=

ω−2
[(
b2 + ω2

)
P − ω2I − b2P ] = − (I − P ), as required.

The rest of the relations for the powers of J follow immediately. At the end as a direct
corollary of Lemma 1.1 (i) – (iii) and Lemma 1.2 (i) we have

etA = eαtIebtP eωtJ = eαt
(
I − P + ebtP

)
[P + (cosωt) (I − P ) + (sinωt)J ] ,

which easily leads to (6) after standard manipulations.
Case 4. Denote, as before B = A− αI, and observe that

P =
1

b2 − β2

(
B2 − β2I

)
, and J =

1
β

(B − bP ) .

In this case the characteristic polynomial of B is fB (λ) =
(
λ2 − β2

)
(λ− b) and the

Cayley-Hamilton theorem gives
B3 − β2B = b

(
B2 − β2I

)
, and B4 − β2B2 = b2

(
B2 − β2I

)
.

Now the relations needed between B, P and J follow exactly the same steps as in
the Case 3. At the end with the help of Lemma 1.1 (i) – (iii), and Lemma 1.2 (ii) we
evaluate:

etA = eαtIebtP eωtJ = eαt
(
I − P + ebtP

)
[P + (coshωt) (I − P ) + (sinhωt)J ] ,

which after standard calculations proves (7).
The formulae (4) – (7) show that one can evaluate the exponential of a 3× 3 matrix

without eigenvectors technique. However, the eigenvectors, canonical forms and bases
can be easily extracted from the matrices N,P and J introduced above. The next result
follows easily from the above considerations.

Corollary 3.2.Under the notations of the previous theorem we have:
Case 1. If N2 6= 0, then Eλ=λ0 (A) = Im

(
N2
)
. In particular either of the non-zero

columns of N2 is an eigenvector of A, a Jordan basis can be selected as ~u,N~u,N2~u,
provided that N2~u 6= 0 and A is similar to a Jordan cell of order 3 corresponding to the
root λ0. If N = 0, then A = λ0I. If N2 = 0 and N 6= 0, then Eλ=λ0 6⊇ Im (N). To
complete a Jordan basis we select an additional eigenvector by an easy inspection of the
columns of N .
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Case 2. If N 6= 0, then Eλ=λ0 (A) = Im (N) and Eλ=λ3 (A) = Im (P ). In particular
either of the non-zero columns of N and P is an eigenvector of A and a Jordan basis can
be selected as (A− λ0I) (A− λ3I) ~u, (A− λ3I) ~u, P~v, provided that they are not zero. If
N = 0, then A is diagonalizable.

Case 3. Over the complex numbers the matrix A is diagonalizable with eigenvalues
λ1,2 = α ± iω and λ3 and eigenvectors

(
J ∓ iJ2

)
~u, P~v, ~u 6= 0, P~v 6= 0. Over the reals

the only eigenspace is Eλ=λ3 (A) = Im (P ). A canonical form in the basis J2~u, J~u, P~v
has a conformal cell like in the Case 2 of Corollary 2.2.

Case 4. Here we have Eλ=λ1 (A) = Im
(
J + J2

)
, Eλ=λ2 (A) = Im

(
J − J2

)
and

Eλ=λ3 (A) = Im (P ). Thus, the matrix A is diagonalizable in the basis consisting of the
eigenvectors listed above.

Here, several examples illustrate the results of Theorem 3.1 and Corollary 3.2 in the
first three cases (either a multiple, or complex characteristic roots).

Example 4. The matrix A =




2 −1 2
5 −3 3
−1 0 −2


 has a multiple characteristic root

λ1 = λ2 = λ3 = −1 (Case 1).
We evaluate

N = A+ I =




3 −1 2
5 −2 3
−1 0 −1


 , N2 =




2 −1 1
2 −1 1
−2 1 −1


 , N3 = 0.

Then according to (4) we have

etA = eλ0t

(
I + tN +

t2

2
N2

)
= e−t




1 + 3t+ t2 −t− t2/2 2t+ t2/2
5t+ t2 1− 2t− t2/2 3t+ t2/2
−t− t2 t2/2 1− t− t2/2


 .

In addition, Eλ=−1(A) = Im
(
N2
)
and a Jordan basis can be easily selected, say

~u = (0, 0, 1), N~u = (2, 3,−1), N2~u = (1, 1,−1).

Example 5. The matrix A =




1 −3 4
4 −7 8
6 −7 7


 has a multiple characteristic root λ1 =

λ2 = −1 = λ0 and λ3 = 3 (Case 2), and b = 4.
We determine the matrices B = A+ I, P = 1

16B
2 and N = B − 4P as prescribed:

B =




2 −3 4
4 −6 8
6 −7 8


 , P =




1 −1 1
2 −2 2
2 −2 2


 , N =



−2 1 0
−4 2 0
−2 1 0


 .

Then according to (5) we have

etA = e−t



−2t 1 + t −1
−2− 4t 3 + 2t −2
−2− 2t 2 + t −1


+ e3t




1 −1 1
2 −2 2
2 −2 2


 .

In addition, Eλ=−1(A) = Im (N), Eλ=3(A) = Im (P ) and a Jordan basis can be
easily selected, say for ~u = ~v = (1, 0, 0) we get

(A− λ0I) (A− λ3I) ~u = (8, 16, 8) , (A− λ3I) ~u = (−1, 2, 3) , P~v = (1, 2, 2) .
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Example 6. The matrix



−2 3 1
−6 −1 4
−10 0 7


 has characteristic roots λ1,2 = 1± 2i and

λ3 = 2 (Case 3), and b = 1.

We determine the matrices B = A − I, P =
1
5
(
B2 + 4I

)
and J =

1
2

(B − P ) as
prescribed:

B =



−3 3 1
−6 −2 4
−10 0 6


 , P =



−3 −3 3
−2 −2 2
−6 −6 6


 , J =




0 3 −1
−2 0 1
−2 3 0


 .

Then according to (6) we have

etA = et


cos 2t




4 3 −3
2 3 −2
6 6 −5


+ sin 2t




0 3 −1
−2 0 1
−2 3 0




+ e3t



−3 −3 3
−2 −2 2
−6 −6 6


 .

In addition a canonical basis can be easily selected, say J2~u = (−3,−3,−6), J~u =
(1, 0, 1), P~v = (3, 2, 6), for ~u = (0, 1, 0) and ~v = (0, 0, 1).

4. Further applications. For a given square matrix A we can define another

elementary functions by the Taylor series, e.g. sin (A) =
∞∑
n=0

(−1)n
A2n+1

(2n+ 1)!
, cosh (A) =

∞∑
n=0

A2n

(2n)!
, etc. If the series is closely related to the Taylor expansion of et, then one can

obtain formulae similar to the results of Theorem 2.1 and Theorem 3.1, e.g.
Corollary. Under the notations of the Theorem 2.1 we have:
Case 1. Let λ1 = λ2 = λ0 (it is real), and N = A− λ0I. Then

cosA = cos (λ0) I − sin (λ0)N,
sinA = sin (λ0) I + cos (λ0)N.

Case 2. Let λ1,2 = α± iω for some α, ω ∈ R, ω 6= 0 and A = αI + ωJ . Then
cosA = cos (α) cosh (ω) I − sin (α) sinh (ω)J,
sinA = sin (α) cosh (ω) I + cos (α) sinh (ω)J.

Case 3. Let λ1 6= λ2 (both real), and A = αI + βJ, with α = λ1+λ2
2 , β = λ1−λ2

2 .
Then

cosA = cos (α) cos (β) I − sin (α) sin (β) J,
sinA = sin (α) cos (β) I + cos (α) sin (β) J.
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ПРЕСМЯТАНЕ НА ЕКСПОНЕНТАТА НА МАТРИЦИ ОТ РЕД 2 И 3
БЕЗ КАНОНИЗАЦИЯ

Ангел Попов, Тодор Тодоров

Получени са експлицитни формули за пресмятане на експонентата на дадена
матрица А от ред 2 или 3. Те използуват съществено характеристичните корени
на матрицата, без да се търсят собствени вектори, да се конструира канони-
чен базис и съответната матрица на прехода. Освен това, се получават някои
свързани с А матрици, които директно дават каноничен базис и идентифицират
някои инвариантни подпространства на А. Според нас този подход има редица
предимства пред по-традиционните методи, базирани на конструирането на ка-
ноничен базис, особено ако се прилага от непрофесионалисти в математиката.
Като приложение на тази техника са приведени няколко примера.
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