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We derive explicit formulae for calculating the exponential e? of a given 2x2 and 3x 3
matrix A. They are exclusively in terms of characteristic roots of A and do not involve
neither the eigenvectors of A, nor the transition matrix associated with a particular
canonical basis. In addition, some specific matrices, closely related to A are identified,
which allows an easy calculation of some invariant subspaces and canonical bases of
A, if needed. We believe that our approach has advantage (especially if applied by
non-mathematicians) over the more conventional methods based on the construction
of canonical bases. We support this point with several examples.

1. Introduction. The exponential e? of a square matrix A and the related one-
parametric family ‘4 are important concept in mathematics, e.g. the description of one-
parameter subgroups of GL,, allows an useful geometrical visualization and interpretation
in the Lie structures associated. Here, one example on an undergraduate college level:

d
Let %f (t) = AZ (t) be a system of first-order constant-coefficient ordinary differential

equations with initial condition #(0) = #y € R", where A is a n x n matrix (with real
entries). Then the solution of the system is given by Z (t) = e*4%.

The exponential e? of a given n x n real or complex matrix A is defined by the

o0 n

Taylor expansion e? = Z — which converges absolutely for all complex matrices A.
n!

So defined matrix expor?ential satisfies the following properties:

— If the matrices A and B commute, i.e. AB = BA, then e*1t8 = ¢4¢B,

— If the matrices A and B are similar, i.e. B = T~ 'AT, then e = T~ 1eAT.

— The exponential of a cell-diagonal matrix is the diagonal matrix of the exponents
of the cells, i.e. if A = diag, (41, A, ...), then ' = diag (e, e!42,.. ).

For some specific kind of matrices (scalar, nilpotent, idempotent) the exponential can
be easily evaluated. Here we list some explicit formulae we shall use later:

Lemma 1.1. For the exponential of a given (real) matriz we have:
(i) If A = I is the identity matriz, then et = e'I.
tN tmN™

(ii) If N is nilpotent with Nt =0, then 'V =T + oot '
! m!

*Key words: exponential of a matrix, characteristic polynomial, Cayley-Hamilton theorem, canonical
basis, transition matrix
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(iii) If P? = P, i.e. P is a projector, then ' = I+ (¢! —1)P=1— P +¢'P.
(iv) If J?> = —1I, then '/ = (cost) I + (sint) J.
(v) If J* =1, then ' = (cosht) I + (sinht)J = L [e' (I + J) + e~ ' (I — J)].

Proof. The properties (i)—(ii) are obvious, and if P is a projector, we calculate

tP o~ P 1 t
M= ——=I+) P=I+('-1)P
n=0 n=1

which proves (iii).
If J?2 = —I, then we have:
oo t2nJ2n 0 t2n+1J2n+1

(AR AL
tJ __ — - =
=D _nz:% 2n)] *T; @2n+ 1)
> (_1)nt2n > (_1)7lt2n+1
(2n+1)!

J = (cost) I + (sint) J,
0

e} e} 00

thn t2nJ2n tQ’rL-‘rlJQTL—l-l
tJ = = —_—
= nz_% 2n)] +n§ @2n+ 1)

> t2n & t2;L+1

2 ! 2 gy T (o0 T+ (b))

as required.
In Section 3 we shall use an easy generalization of the last two properties:

Lemma 1.2. For the exponential of a given (real) matriz we have:
(i) Let J>» = (=1)" Q, and J?>" 1 = (=1)"""J, n=1,2,.... Then
el =T —Q+ (cost)Q+ (sint) J.
(ii) Let J* = Q, and J>"~ ' =J, n=1,2,.... Then
e/ =T —Q+ (cosht)Q+ (sinht) J=T-Q+e' (Q+J)+e t(Q—1J).

Proof. The proof is analogous to the proof of the last three properties of Lemma 1.1
and we leave it to the reader.

Some of the relations, just described, can be found in many books on linear algebra
and applications, see Artin [1] and Malcev [2]. The calculation of the exponential of an
arbitrary matrix however is much more complicated. The technology uses some of the
canonical forms of A, say the Jordan one. One has to find a transition matrix T, such
that C = T~YAT = diag (Cy,Cy,...) with Jordan cells C;,Cs, ... on the diagonal and
then e = T'diag (ecl e ) T—'. Next, each Jordan cell Cy, k = 1,2, ... has the form

n
C), = M\i + N, where N is nilpotent and one evaluates eCx = et Z N—', where the last
=
sum is finite, because N is nilpotent.
The procedure discussed is universal, but it has some misgivings:
— The algorithm for calculating the transition matrix is heavy and time consuming. It
is especially complicated in the case of multiple characteristic roots, when the construc-
tion of the chain of generalized eigenvectors requires skills well beyond in a typical course
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of linear algebra and applications.

— The original framework R™ must be extended to C™, which usually is confusing for
non-mathematicians.

In this article we derive some explicit formulae for evaluating e for a given 2 x 2
and 3 x 3 matrix A with real entries (in Section 2 and Section 3, respectively). They are
in terms of characteristic roots of A and do not involve neither the eigenvectors of A,
nor the transition matrix associated with a particular canonical basis. We believe that
our approach is suitable for handbooks in the sense that one can work it with limited
background in linear algebra, in particular without having a slightest idea about change
of bases and the “ransition matrices”.

Our consideration essentially exploits the characteristic polynomial f4 (\) = (—1)" det
(A — AI) of the matrix A, and the Cayley-Hamilton theorem, which says that f4 (A4)=0.

As a corollary of the main results in each section we identify some matrices closely
related to A, which allows easy calculations of some invariant subspaces of A and an
efficient construction of canonical bases of A.

The eigenspace of A corresponding to the particular eigenvalue ¢ € C will be denoted
by E)\:c (A)

We recommend our approach for teaching exponential of matrices in a course on linear
algebra and application to differential equations, and to support this point we present
several examples.

2. Exponential of 2 X 2 matrices. Here we derive formulae for evaluating the
exponential of a given 2 x 2 matrix. They are easy to memorize and simple to use.
One can work with a limited background in linear algebra, and in addition the formulae
involve only linear operations between the matrices. This point is illustrated with several
examples of first-order linear systems of ordinary differential equations.

We would like to mention that the results of Case 1 and Case 2 of Theorem 2.1 had
been exploited by Paul Bamberg and Shlomo Sternberg [3] in similar context.

An easy interpretation of the main result in Corollary 2.2 allows a direct construction
of a canonical basis and the transition matrix associated.

The main result of the section is

Theorem 2.1. Let A be a given 2 X 2 real matriz with characteristic roots A1 and As.
Then

Case 1. If \y = Ay = X (it is real), then A = Aol + N, where N = A — M1 s
nilpotent with N? = 0. Consequently, for every t € R we have
(1) et =Mt (I +tN).

Case 2. If \i o = a £ iw for some a,w € R, w # 0, then A = o + wJ, where the

1
matriz J = ” (A — al) satisfies J> = —I1. Consequently, for every t € R we have
(2) et = e [cos (wt) I + sin (wt) J] .
AL+ Ao A1 — A2
Case 3. If \y # My (real), then A = oI 4+ BJ, where o = — 8= 5

the matriz J = % (A — o) satisfies J? = I. Consequently, for every t € R we have

and

3) e = ¢ [cosh (Bt) T + sinh (3¢) J] = % [ (T + ) + ™ (1 — )]
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Proof. The characteristic polynomial of A is f4 (A\) = A% — (A1 + A2) A + A1 A2, and
by the Cayley-Hamilton theorem we have in each of the cases:

Case 1. A2—2Xg A4+ 2] = 0,i.e. N2 = (A — X\oI)* = 0, and we evaluate e/ = ¢t ¢tN
by (i) and (ii) of Lemma 1.1.

Case 2. A2 —2aA+ (a®> +w?) 1 =0,ie (A- al)® = —w?2I, which implies J2 = —1.
Now we evaluate ¢4 = e**/ et/ by (i) and (iv) of Lemma 1.1.

Case 3. A% —20A+ (a2 — 52) I=0,ie (A— aI)2 = (321, which implies J? = I, and
we complete the calculations by (i) and (v) of Lemma 1.1.

Note that the formulae (1) — (3) use characteristic roots of A only, and the matrices N
and J depend linearly on A. In fact, one can obtain (1) — (3) even without characteristic

1
roots by examining the square B? of the matrix B = A — al, with a = §tr(A). In
addition, eigenvectors and canonical bases for A can be easily determined in terms of N

and J — the next result follows directly from the above considerations.

Corollary 2.2. Under the notations of the previous theorem we have:

Case 1. If N # 0, then Ex—y, (A) = Im(N), i.e. either of the non-zero columns of
N is an eigenvector, and a Jordan basis of A is any pair @, Nu, with N4 # 0.

Case 2. The matriz A is diagonalizable over the complex numbers with eigenvectors
(I FiJ)d, 4 #0, associated with the eigenvalues o +iw. There are no eigenvectors over

the reals and the matriz A has a conformal canonical form <ozw g) in the basis i, Ju

for every @ # 0.

Case 3. We have Ex=x, (A) =Im (I +J), and Exzy, (A) = Im (I — J). The matriz
A is diagonalizable, and any two non-zero vectors (I + J) @, (I — J) U constitute a basis
of eigenvectors of A.

The following examples, tested by the second author in a course on linear algebra and
ordinary differential equations illustrate the results above.

Example 1. Find the solution of the initial value problem

' = 3x + 2y, y = —8x — by,

with initial condition z (0) =1, y (0) = —1.

We have A = (38 25> , and Zp = (1l>' The characteristic polynomial f4 (\) =
A2 + 2X + 1 has a multiple root \; = Ay = —1 (Case 1). We calculate N = A+ [ =

(48 24>. Check that N2 = 0. Now applying (1) we have:

o L (144t 2t 1\ [ 1+2t
Z(t)=e "(I+tN)Zy=e (—St )\ )= )

Thus, z (t) = (1+2t)e ', y(t) = —(1+4t)e "
Remark. If a canonical form of the matrix A is needed, then the vectors @ = (0, 1)
and N@ = (2, —4) constitute a Jordan basis by Corollary 2.2, Case 1.
Example 2. Find the solution of the initial value problem
¥ =y, y =-br—2y,
with initial condition z (0) = 2, y (0) = 1.
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We have A = (05 12) , and Ty = (?) The characteristic polynomial f4 (A) =
A2 4+ 2\ + 5 has roots A2 = —1 £ 2i, i.e. « = —1, w = 2 (Case 2). We evaluate
1 171 1 5
J = » (A—al) = 5 (_5 _1>. Now J? = —I and by (2) we have

F(t) = ez = et {cos (20) (é (1)) + %sin (2t) (_15 —11” (f) ,

which after standard calculations gives the solution
3 11
z(t)=e" <2 cos 2t + 3 sin 2t) Ly(t)=et (cos 2 — 5 sin 2t> .

Remark. The matrix A is diagonalizable over the complex numbers - a canonical
basis can be selected, say (I —4J)4d = (2 +4,—57), and (I +iJ) @ = (2 —¢,5i) for 4 =
(2,0). In the framework of real numbers the matrix A is similar to the conformal matrix
(_é 21>, and a canonical basis is @ = (2,0), Ju = (1, —5).

Example 3. Find the solution of the initial value problem

¥ =5rx—y, y=3+y
with initial condition z (0) =1, y (0) = 2.
We have A = <g _11>, and Ty = (;) The characteristic polynomial f4 (A) =
A2 — 6) + 8 has roots \; = 4, Ay = 2 ie. a = 3, B = 1 (Case 3). We evaluate J =

%(A— al) = (; :;) Now J2 = I and by (3) we have

F(t) = My = {cosh ) (é ?) + sinh (¢) @ :;)} @) ,

which after standard calculations gives the solution
1 1
x (t) = e cosht = 3 (e" +€*), y(t) = e* (cosht —sinht) = 3 (e +3e*).

Remark. The matrix A is diagonalizable — a canonical basis can be selected, say
(I+J)d=(-1,-1),and (I — J)ud = (1,3) for & = (0,1). Note that the last two are the
eigenvectors of A.

3. Exponential of 3 X 3 matrices. In this section we extend the results of the
previous one for 3 x 3 matrices. We shall use some elementary and well known facts about
characteristic polynomials, e.g. if B = A — cI, then fg (A) = fa (A +¢), i.e. if A\, Ag, ...
are the characteristic roots of A, then A\ — ¢, Ao — ¢, ... are the characteristic roots of
B=A-cl.

The main result of this section is

Theorem 3.1. For a given 3 X 3 real matriz A with characteristic roots A1, Aa, A3 we
have

Case 1. Let \y = Mg = A3 = A (it is real). Then A = X\gI + N, where N = A — Aol
is nilpotent with N2 = 0 Consequently, for every t € R we have

2
(4) et = hot (I +tN + 2N2> .
348



Case 2. Let \1 = X2 = Ao # A3 (both are real), and b = A3 — Ao. Then A =
Mol + bP + N, where the matrices

1
P= b—Q(AfAOI)Q, and N = A — X\oI — bP
satisfies the following relations: PN = NP =0, P?> = P, and N? = 0. Consequently, for
every t € R we have
(5) et =Mt ([ — P4 tN) 4 eMtP.
Case 3. Let \12 = a £ iw for some a,w € R, w # 0, and b = A3 — . Then
A =al +bP + wJ, where the matrices

1 2 9 1
i [(A—OJ) +w|, and J = 5 [A—al —bP]
satisfies the following relations:
PJ=JP=0, P2P=P, J" =(-1)"(I—-P), and J>" ' = (-1)"""J, n=1,2,...

Consequently for every t € R we have

P

(6) etA — ot [(coswt) (I — P) + (sinwt) J] + e**' P,
.y A1+ As Ar—A
Case 4. Let \1, A2, A3 are distinct real, and let denote o = 5 8= 52, and

b=MX3—a. Then A= ol +bP + 3J, where the matrices
P= ﬁ (A—aI)Q—ﬁﬂ, andJ:%[A—aI—bP],
satisfies the following relations:

PJ=JP=0, PP=P, J"=1-P andJ*" '=J n=12,...
Consequently, for every t € R we have
(7) et = e [(cosh 5t) (I — P) + (sinh Bt) J] 4 e*'P =

1 1
= 56’\” (I+J—-P)+ 56’\” (I —J—P)+eMtP,

Proof. We shall consider the cases consecutively:

Case 1. The characteristic polynomial of the matrix N = A — Mgl is fy (\) = A3,
hence N3 = 0, and now (4) is a direct corollary of Lemma 1.1 (i) — (ii).

Case 2. Denote B = A — M\gI, and observe that
1 1

b—ZBQ, and N =B —bP = —EB(B—bI).

The characteristic polynomial of the matrix B is fz (A\) = A? (A — b), and the Cayley-
Hamilton theorem gives B3 = bB? and B* = v2B2.

Now we have P2 = b=*B* = b=2B2 = P, as required.

Next we calculate PN = NP = —b3B2B (B —bl) = —b"2Bfp (B) = 0 and finally
N2 = —p2B2(B—bI)> = —b~2fp (B) (B — bI) = 0, as required.

Now as a direct corollary of Lemma 1.1 (i) — (iii) we have

etA — ertIebtPetN — ert [I _ P+ €btP] (I+tN)

and the one easily obtains (5) after standard calculations.

P =
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Case 3. Denote B = A — o and observe that

1 9 9 1
P= s (B*+021), and J = = (B bP).
The characteristic polynomial of B is fz(A) = (A +w?) (A —b) and the Cayley-
Hamilton theorem gives
B> +w?’B =b(B*+w’l), and B* + w’B* = b* (B* + w’I).

Next we have

1 3 2 b 2 2
which implies B2P = PB? = b?P.
Now we check that P is a projector, namely:
1 1 1
2 _ 2 2 __ 2 2p) _ 2 2p) _
Pe = T (B +w I)P__ 2o (B P+w P) R (b P+w P) =P,

and also PJ = JP =w ! (B—bP)P =w™ ! (bP - bP) = 0.

Finally, we have J? = w2 (B — bP)? = w2 (B? — 2bBP + b’P) =

w2 [(b? + w?) P — w? —b?P] = — (I — P), as required.

The rest of the relations for the powers of J follow immediately. At the end as a direct
corollary of Lemma 1.1 (i) — (iii) and Lemma 1.2 (i) we have

eth = et PP ot — pat (I-P+ ebtP) [P + (coswt) (I — P) + (sinwt) J],
which easily leads to (6) after standard manipulations.

Case 4. Denote, as before B = A — al, and observe that

1 9 9 1

In this case the characteristic polynomial of B is fp (A\) = (A? — 3%) (A — b) and the

Cayley-Hamilton theorem gives
B®— B =0b(B*- (1), and B* — 3>°B* = b* (B> — 5°I)..

Now the relations needed between B, P and J follow exactly the same steps as in
the Case 3. At the end with the help of Lemma 1.1 (i) — (iii), and Lemma 1.2 (ii) we
evaluate:

et = et P ewt) — e (I — P+ " P) [P + (coshwt) (I — P) + (sinhwt) J],
which after standard calculations proves (7).

The formulae (4) — (7) show that one can evaluate the exponential of a 3 x 3 matrix

without eigenvectors technique. However, the eigenvectors, canonical forms and bases

can be easily extracted from the matrices N, P and J introduced above. The next result
follows easily from the above considerations.

Corollary 3.2. Under the notations of the previous theorem we have:

Case 1. If N? # 0, then Ex_», (A) = Im (N?). In particular either of the non-zero
columns of N2 is an eigenvector of A, a Jordan basis can be selected as i, Ni, N2,
provided that N2 # 0 and A is similar to a Jordan cell of order 3 corresponding to the
root N\o. If N = 0, then A = X\oI. If N> = 0 and N # 0, then Ex—, 2 Im(N). To
complete a Jordan basis we select an additional eigenvector by an easy inspection of the
columns of N.
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Case 2. If N # 0, then Exzy, (A) = Im (N) and Ex=x, (A) = Im (P). In particular
either of the non-zero columns of N and P is an eigenvector of A and a Jordan basis can
be selected as (A — Aol) (A — AsI) @, (A — A3I) @, PU, provided that they are not zero. If
N =0, then A is diagonalizable.

Case 3. Over the complex numbers the matriz A is diagonalizable with eigenvalues
A2 = a L iw and A3 and eigenvectors (J$iJ2) i, Pv,d # 0, PU # 0. Quer the reals
the only eigenspace is Ex—x, (A) = Im (P). A canonical form in the basis J*i, Jii, P¥
has a conformal cell like in the Case 2 of Corollary 2.2.

Case 4. Here we have Ex—x, (A) = Im (J + J?), Exzy, (A) = Im (J — J?) and
Ex—»; (A) = Im (P). Thus, the matriz A is diagonalizable in the basis consisting of the
eigenvectors listed above.

Here, several examples illustrate the results of Theorem 3.1 and Corollary 3.2 in the
first three cases (either a multiple, or complex characteristic roots).

2 -1 2
Example 4. The matrix A = | 5 —3 3 | has a multiple characteristic root
-1 0 -2
)\1 = )\2 = Ag =-1 (Case ].)
We evaluate
3 -1 2 2 -1 1
N=A+I=|5 -2 3 |,N2=|2 -1 1|, N=0.
-1 0 -1 -2 1 -1

Then according to (4) we have

St+t2 1-—2t—t%/2  3t+t2)2

—t—t2 t2/2 1—t—12)2

L+3t+t2  —t—1t%)2 2t +t2/2
—t
)

2
etd = ot (I—|— tN + t—NQ

In addition, E,\__l(A) =Im (N2 and a Jordan basis can be easily selected, say
=(0,0,1), Ni = (2,3, —1), N?i& =
—3 4
Example 5. The matrix A = ( —7 8] has a multiple characteristic root A\; =
-7 7
Ao =—1=Xg and A\3 =3 (Case 2), and b =4
We determine the matrices B = A+ 1, P = %632 and N = B — 4P as prescribed:

2 -3 4 1 -1 1 -2 1 0
B=|4 -6 8|, P=[2 —2 2|, N=[-4 2 0
6 -7 8 2 -2 2 -2 1 0
Then according to (5) we have
-2t 1+t -1 1 -1 1
et =et|—2-4t 3+2t 2|+ |2 -2 2
—-2-2t 2+t -1 2 -2 2

In addition, E,\_,l( ) = Im(N), Exc3(A) = Im(P) and a Jordan basis can be
easily selected, say for @ = v = (1,0,0) we get

(A= XoI) (A= XsI) @ = (8,16,8), (A—XsI)ii = (—1,2,3), Pv=(1,2,2).
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-2 3 1

Example 6. The matrix | —6 —1 4| has characteristic roots A; 3 =14 27 and
-10 0 7
A3 =2 (Case 3), and b = 1.
1 1
We determine the matrices B = A -1, P = 5 (B> +4I) and J = 3 (B—P) as
prescribed:
-3 3 1 -3 -3 3 0 3 -1
B=| -6 -2 4|,P=|-2 -2 2|,J=|-2 0 1
-10 0 6 -6 -6 6 -2 3 0
Then according to (6) we have
4 3 -3 0 3 -1 -3 -3 3
e =¢elcos2t |2 3 2| +sin2t| -2 0 1 ||+e¥|-2 -2 2
6 6 —5 -2 3 0 -6 —6 6

In addition a canonical basis can be easily selected, say J2@ = (—3,-3,—6), Ji =
(1,0,1), Pt = (3,2,6), for @ = (0,1,0) and ¥ = (0,0, 1).
4. Further applications. For a given square matrix A we can define another

o0
A2n+1
elementary functions by the Taylor series, e.g. sin (A) = Z (-=1)" ) cosh (A) =
n=0 ’

> 2n

Z W’ etc. If the series is closely related to the Taylor expansion of ef, then one can

n=0
obtain formulae similar to the results of Theorem 2.1 and Theorem 3.1, e.g.

Corollary. Under the notations of the Theorem 2.1 we have:
Case 1. Let \y = ha = Ao (it is real), and N = A — \oI. Then

cos A = cos (Ag) I —sin (Ag) N,
sin A = sin (A\g) I + cos (Ag) V.
Case 2. Let \1 2 = atiw for some a,w € R, w# 0 and A = ol +wJ. Then
cos A = cos (a) cosh (w) I — sin («) sinh (w) J,
sin A = sin () cosh (w) I 4 cos (@) sinh (w) J.
Case 3. Let \; # Xy (both real), and A = ol + BJ, with a = 21522 g = 22
Then
cos A = cos (a) cos () I — sin («) sin (8) J,
sin A = sin («) cos (6) I + cos (o) sin (8) J.
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ITPECMSA{TAHE HA EKCITOHEHTATA HA MATPUIIA OT PEJI 2 11 3
BE3 KAHOHU3AIINA

Asnren ITonos, Tonop Tomopos

Ilonyuenu ca exkcuaunuTaHE (GOPMYIH 33 MPECMATAHE HA E€KCIIOHEHTATa Ha JTaJeHa
marpuna A ot pex 2 niu 3. Te n3nos3yBar ChIECTBEHO XapaKTEPUCTHIHUTE KOPEHU
Ha MaTpurara, 6e3 Ja ce TbPCAT COOCTBEHH BEKTOPH, Ja Ce KOHCTPYHMpa KAHOHU-
geH 6a3uc M CbOTBETHATA Marpuila Ha mnpexofa. OCBeH TOBa, ce MOoJydaBaT HIKOU
CBbP3aHU C A MATPUIM, KOUTO JUPEKTHO JIABAT KAHOHNUYEH 06a3uc U UIAeHTUDUIUPAT
HSIKOW WHBapHAHTHU mofnpocTpancTBa Ha A. Cropen HAC TO3W MTOAXOJT UMa PEJINIA
[IPEINMCTBA MPEJT TTO-TPAJAUIUOHHUTE METOIN, OA3UPAHN HA KOHCTPYHUPAHETO HA Ka-
HOHUYEH 0a3uC, 0COOEHO aKO ce IpHUjara OT HeIPOMECHOHAJUCTH B MATEMATUKATA.
Karo npuioxkenre Ha Ta3u TeXHHUKA CA IPUBEJIECHU HAKOJIKO ITPUMEPA.
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