
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2007
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2007

Proceedings of the Thirty Sixth Spring Conference of
the Union of Bulgarian Mathematicians

St. Konstantin & Elena resort, Varna, April 2–6, 2007

CRYPTOGRAPHIC PROTOCOL
*

Ivan Landjev

This paper is a concise introduction to the vast field of cryptographic protocol. It
contains a compressed description of some basic cryptographic protocols: oblivious
transfer schemes, commitment schemes, zero knowledge proofs and interactive bit
generation. A digital voting scheme and a digital cash scheme are also given as
examples of more complex protocols.

1. Introduction. In the past 25 years dramatic changes took place in the field of
cryptographic research. While not so long ago cryptography was considered as “the science
and art” of secret writing, nowadays it is customary to put a much broader meaning in
this word. One possible definition is that cryptography is the science concerned with “the
construction of (communication) schemes that are robust against malicious attempts to
make these schemes deviate from their prescribed functionality” [8]. A cryptographer
should design a scheme that not only satisfies a desired functionality, but also maintains
this functionality in face of adversarial attempts that are devised after the cryptographer
has completed his task. As a rule, an adversary will devise his attack after the scheme
has been specified and will try to take actions other than the ones envisioned by the
cryptographer. So, it makes no sense to make assumptions regarding the specific startegy
the adversary may use. This might be the case if the cryptographer has a very good idea
about the environment in which the scheme is to operate. Yet, a cryptographic scheme
has to operate in a maliciously selected environment that transcends the designer’s view.
So, the only assumptions that can be justified refer to the computational abilities of the
adversary (that include the available computing power, but also the state-of-the art in
the algorithms for specific problems).

There is no unified definition of cryptographic protocol. In [15] it is defined as a
distributed algorithm described by a sequence of steps precisely specifying the actions
required of two or more entities to achieve a specific security objective (functionality). In
this paper, we consider several basic cryptographic protocols: oblivious transfer, commit-
ment schemes, zero-knowledge proofs, random bit generation. Due to space limitations
we skip the vast area of secret sharing protocols (cf., for instance, [14, 15]). Further, we
describe in some detail two applications of the basic protocols: digital voting and digital
cash.

*This research has been supported by the Bulgarian NSRF under Contract MM-1405/2005.
Key words: cryptographic protocol, oblivious transfer, commitment schemes, bit commitment, zero

knowledge, zero knowledge proofs, random bit generation, digital voting, digital cash
2000 Mathematics Subject Classification: 94A60, 68P25, 11T71

67

2. Some basic cryptographic protocols.

2.1. Oblivious transfer. A party A possessing a secret wants to transfer it to
another party B in such a way that, after the protocol, A does not know whether B got
the secret, but B knows it. Another version of this problem is the following: A possesses
several secrets and wants to transfer one of them to B. The transfer should be done in
such way, that only B knows which of the secrets was transferred. All these problems
belong to a subfield of cryptography known as oblivious transfer (cf. [13]).

Let us note that all constraints involved in oblivious transfer are easily met with the
help of a trusted referee. The importance of the protocols for oblivious transfer lies in
the fact that they do not assume the existence of such trusted party.

Example 2.1.Consider the case where A wants to transfer to B obliviously the
factorization of an integer n into two primes. This is no loss of generality since the secret
can be anything encrypted using an RSA cryptosystem. The protocol below is based on
the fact that the knowledge of two square roots modulo n enables us to find a factorization
of n.

(1) B chooses an integer x, 1 ≤ x ≤ n − 1, and tells A the number x2 (mod n);

(2) A, who knows the factorization of n = pq, computes the four square roots ±x, ±y
of x2 (mod n) and tells one of them to B.

(3) B checks whether the square root obtained is congruent to ±x (mod n). If this is
the case, then B has no new information and the factorization of n is infeasible.
Otherwise, B knows two different square roots of the same number and is able to
factor n. In both cases A does not know whether B has the factorization or not.

Clearly, the probability of B’s obtaining the factorization is
1

2
.

Example 2.2.Now, we present another protocol for oblivious transfer. The setup is
more general: A has two secrets s0 and s1, and wants to transfer one of them to B. This
time the protocol is non-interactive – B sends nothing to A.

The transfer can be carried out between any two users of some system. All users
in such system share a large prime number p, a generator g ∈ Z

∗

p and a number c,
1 ≤ c ≤ p − 1. The prime p is chosen in such a way, that it is infeasible to compute gxy

(mod p) from gx (mod p) and gy (mod p). Every user, say B, computes his public and
secret keys as follows:

• B chooses randomly an i ∈ {0, 1} and a number x, 0 ≤ x ≤ p − 2;

• B computes βi = gx and β1−i = cg−x;

• B’s public key is the pair (β0, β1); B’s secret key is the pair (i, x).

Let us note at this point that B does not know the discrete logarithm of both β0 and
β1, since he can not compute the discrete logarithm of c modulo p (cf. [16, 17]). It is not
clear, however, which one of the two discrete logarithms, logg β0 and logg β1, is known to
B. Every user in the system can check that the encryption key has been formed correctly
by checking the identity c = β0β1.

Assume that s0 and s1 are bit sequences of the same length. This is no restriction,
since we can always complete the shorter one by inserting leading zeros. Then, we can
compute the bitwise sum s0 ⊕ s1.

68

(1) A picks randomly y0 and y1, 0 ≤ y0, y1 ≤ p − 2, and computes

α0 = gy0 , γ0 = βy0

0 , r0 = s0 ⊕ γ0,

α1 = gy1 , γ1 = βy1

1 , r1 = s1 ⊕ γ1.

A sends α0, α1, r0 and r1 to B.
(2) B computes αx

i = gxyi = βyi

i = γi and si = γi ⊕ ri. For the other index 1 − i, one
has αx

1−i = gxy1−i = β
y1−i

i 6= γ1−i.

Example 2.3. Now, consider the situation, when A has several secrets s1, . . . , sk,
where each of the si’s is a sequence of bits. A protocol for oblivious transfer which
transmits to B one of the secrets runs as follows.

(1) A tells B a one-way function f but keeps f−1 to himself.
(2) B decides to buy the secret si. He chooses k random values x1, . . . , xk from the

domain of f and tells A the k-tuple (y1, . . . , yk), where

yj =

{

xj for j 6= i;
f(xj) for j = i.

(3) A computes the numbers zj = f−1(yj) and tells B the numbers zj⊕sj , j = 1, . . . , k.
(4) B knows zi = f−1(f(xi)) = xi and can compute si.

If B is an active cheater and deviates from the protocol, then he can learn more secrets
by presenting several of the numbers yj in the form f(xj).

Now, consider the case where active cheating is possible. We assume that not both
parties are active cheaters. It is customary to assume in such protocols that at most half
of the parties are active cheaters. Let the active cheater be B. To prevent himself from
cheating, he has to commit himself to specific action, i.e. to specify which one of the
secrets he is about to buy. The commitment can be concealed using a one-way function.
This he should do without disclosing any information about the action itself (e.g. by a
zero-knowledge proof). We also use the notion of flipping a number in the same sense as
in section 2.3. As before, the secrets are the strings s1, . . . , sk.

(1) A flips to B k numbers x1 . . . , xk. The number of bits in the xi’s has been agreed
upon in advance, e.g. it coincides with the number of bits in the si’s.

(2) A tells B an one-way function f , but keeps f−1 to himself.
(3) If B has decided to buy si, then he computes f(xi). Some bits in f(xi) coincide

with the corresponding bits in xi. Let the positions of coincidence be u1, . . . , ut.
(4) B tells the bit xα in a position uβ, for all 1 ≤ α ≤ k, 1 ≤ β ≤ t. He does this in

such a way that A can verify the information (cf. section 2.3).
(5) B tells A the k-tuple (y1, . . . , yk), where

yj =

{

xj for j 6= i;
f(xj) for j = i.

A verifies that the information is in accordance with step (4).
(6) A tells B the numbers f−1(yj) ⊕ sj , j = 1 . . . , k.

Note that f(xi) has the same bits with xi in positions u1, . . . , ut, but f(f(xj)) has
the same bits as f(xj) in these positions with probability 2−t. If t is big enough, then
this probability is negligible. The protocol is based on the fact that the number t in step
(3) is approximately half of the bits in xj (if f has a reasonably random behavior). If

69

B would choose two exceptional yj ’s in step (5), then the stable bits for both such yj ’s
would be different which would not go unnoticed by A.

A may cheat by computing, for each j, the positions of the bits for which yj and
f−1(yj) coincide. For j = i the bits are precisely those communicated to A in step (4),
whereas for j 6= i the positions are different with an overwhelming probability. A simple
way to overcome this difficulty is to consider two buyers B and C. We assume that the
parties A, B, C do not form coalitions.

(1) A tells to B and C one-way functions f and g, but keeps the inverses to himself.

(2) B tells C (resp. C tells B) random numbers x1, . . . , xk (resp. x′

1, . . . , x
′

k). The
numbers need not be flipped and they have as many bits as the sj ’s.

(3) Assume B wants to buy sb and C wants to buy sc. B (resp. C) computes f(x′

b)
(resp. g(xc)) for his chosen index. The function and argument values are compared
with respect to fixed bits, i.e. bits remaining invariant in the transition from x′

b to
f(x′

b) (resp. from xc to g(xc)).

(4) B tells C (resp. C tells B) the indices of the fixed points stable for B (resp. stable
for C).

(5) B (resp. C) tells A the numbers y1, . . . , yk (resp. y′

1, . . . , y
′

k) where the yj ’s and y′

j ’s
result from the corresponding x’s by changing every bit, whose index is not stable
for C (resp. for B), to its complement.

(6) A tells to B the numbers f−1(y′

j) ⊕ sj , and to C the numbers g−1(yj) ⊕ sj , j =
1, . . . , k.

Attempts to choose more than one secret fail with an overwhelming probability
because of step (5), provided the number of bits in the sj ’s is not very small.

2.2. Commitment schemes. B wants A to commit to a value from some set X
(say a bid) so that he cannot change this at a later moment. On the other hand, A
does not want B to know, at this time, what is the value he is committing to, but will
open it later. This is a typical commitment problem which appears at various places in
cryptography. A rigorous definition of commitment schemes is the following: let X , Y
and Z be finite sets, then a commitment scheme is a function f : X × Y → Z which has
the following properties:

• concealing property – for any x ∈ X , B cannot determine the value of x from
f(x, y);

• binding property – A is not able to find a z such that f(x, y) = f(x′, z), where
x′ ∈ X .

We say that a commitment scheme is:

information-theoretically binding if A cannot change the value he is committed to,
even if he has unlimited computing power;

computationally binding if A cannot change the value he is committed to by poly-
nomial time computations (in the security parameter);

information-theoretically concealing if B is not able to find that the value A is
committed to, even with unlimited computer power;

computationally concealing if B cannot find that the value A is committed to
performing polynomial time computations (in the security parameter).

An important open question is whether it is possible to construct a commitment
scheme which is information theoretically secure with respect to both properties.

70

Let G = 〈g〉 be a finite abelian group of prime order q (i.e. a cyclic group). Let b be
an element of G with an unknown discrete logarithm logg b in G. For instance, we can

take q to be a (large) prime divisor of p − 1, where p is large prime (p ≈ 2210

). Then, G
is the unique subgroup of order q in F

∗

p, the multiplicative group of the finite field with p
elements. The pair (g, b) ∈ G×G is made public to all users. Now, we define two simple
commitment schemes:

(1) In order to commit to the value x, 0 ≤ x ≤ q − 1, A transmits to B: D(x) = gx.
(2) In order to commit to the value x, 0 ≤ x ≤ q − 1, A generates a random integer a,

0 ≤ a ≤ q − 1, and transmits to B: Da(x) = bxga.
To reveal the value he is committed to, A reveals x in scheme (1) and the pair

(a, x) in scheme (2). It is easily checked that the commitment scheme (1) is information
theoretically binding and computationally concealing, while (2) is computationally bin-
ding and information theoretically concealing.

When the message to be committed to is a single bit, we speak of bit commitment
schemes. So, bit commitment schemes are functions f : {0, 1} × Y → Z that have the
concealing and binding properties defined above. One way to perform bit commitment is
to use the Golwasser-Micali probabilistic cryptosystem [10]. In this system n = pq, where
p, q are large primes, and m is a quadratic non-residue modulo n. The integers n and m
are public while the factorization of n is known only to A. Set Y = Z = Z

∗

n and

(1) f(b, y) = mby2 (mod n).

A encrypts a value b by choosing a random y and computing z = f(b, y). Later, when A
wants to open the commitment, he reveals the values b and y. Then, B can verify that

z ≡ mby2 (mod n).

Let us note that this scheme reveals no information whether the bit A is committed to,
provided the problem of finding a solution to x2 ≡ a (mod n), n = pq, is infeasible. Hence,
the scheme is computationally concealing. On the other hand, the scheme is information
theoretically binding, since it is impossible to find integers x1 and x2 from Z

∗

n such that

mx2
1 ≡ x2

2 (mod n).

This would contradict the fact that m is non-residue modulo n.

2.3. Interactive random bit generation (or coin flipping over the telephone).
In some cryptographic protocols it is required that the parties generate together a random
sequence without the assistance of a trusted referee. If the number of parties is two, then
this amounts to a problem known as “flipping a coin over the telephone”. The result
of a protocol should be a random bit which takes with equal probability the values 0
and 1. None of the parties should be able to influence the result, e.g by changing the
probabilities.

A general idea for the algorithm is the following: A picks a random bit a and sends
it to B and B picks a random bit b and sends it to A. The problem is that the party
who moves second, is able to manipulate the result. So, the party who moves first must
commit to its choice. He sends y = f(a) to B so that it is impossible for him to make his
choice b a function of a. He sends back b in the clear. Now, A cannot make a a function
of b since he is committed to the value a.

The following protocol shows how A can flip a coin to B over the telephone:

71

(1) A chooses two large integers p and q and tells their product n = pq to B.

(2) B chooses a random number u from the interval
(

1,
n

2

)

and tells A the square

z = u2 (mod n).
(3) A computes the four square roots of z modulo n. This is possible because he knows

the factorization of n. Let us call the roots ±x and ±y. Denote by x′ the smaller
of the numbers x (mod n) and −x (mod n) and, similarly, let y′ be the smaller of
y (mod n) and −y (mod n). Now, A knows that u = x′ or u = y′.

(4) A guesses whether u = x′ or u = y′ and sends one bit of his guess (e.g. the least
significant bit where x′ and y′ differ). He tells B one of the two guesses “the i-th
bit of your number is 0” or “the i-th bit of your number is 1”.

(5) B tells whether the guess was correct (the generated bit is 1), or wrong (the
generated bit is 0).

(6) B tells A the number u.
(7) A tells B the factorization of n.

This scheme can be easily generalized provided one-way functions do exist.
(1) A and B know a one-way function f .
(2) B chooses a random x and tells A the value f(x).

(3) A makes a guess about some property of x which holds with probability
1

2
(e.g.

whether x is even or odd).
(4) B tells A whether the guess is correct.
(5) Later B discloses x to A.

2.4. Zero-knowledge proofs. Zero-knowledge proofs are proofs which yield nothing
beyond the validity of a given assertion. In other words, a verifier obtaining such a proof
only gains conviction in the validity of the assertion. In this section, we refer to proofs as
to interactive and randomized processes. So, a proof is a multi-round two-party protocol
(the parties being called prover and verifier) in which the prover P wishes to convince
the verifier V in the validity of a given assertion. Such a proof should have the following
properties:

(1) it should allow the prover to convince the verifier of the validity of any true assertion
(completeness condition);

(2) no prover strategy may fool the verifier to accept false assertions (soundness condi-
tion).

Both the completeness and soundness conditions should hold with a high probability
(i.e. a negligible error probability is allowed). In addition, the verifier strategy is required
to be efficient. No such requirements are made for the prover strategy, yet we consider
“relatively efficient” prover strategies. In what follows, we confine ourselves to a more
simple problem: how can P prove to V that x is in a language L in such way that no
more knowledge than the fact that x ∈ L is revealed.

2.4.1. Interactive proof-systems. We start by introducing the notion of an
interactive Turing machine.

Definition 2.4.An interactive Turing machine (ITM) is a Turing machine with
a read-only input tape, a read-only random tape, a read/write work tape, a read-only
communication tape, a write-only communication tape and a write-only output tape. The
random tape contains an infinite sequence of bits that can be thought of as the outcome of

72

unbiased coin tosses; it can be scanned only from left to right. We say that an interactive
machine flips a coin, when it reads from its random tape. The contents of the write-
only communication tape can be thought of as messages sent by the machine, while the
contents of the read-only communication tape can be thought of as messages received by
the machine.

An interactive protocol is an ordered pair (A, B) of ITM’s which share the same input
tape; B’s write-only communication tape is A’s read-only communication tape and vice
versa. The machines take turns in being active with B being active first. During its active
stage, the machine first performs some internal computations based on the contents of its
tapes, and second writes a string on its write-only communication tape. The i-th message
of A (resp. B) is the string A (resp. B) writes in its write-only communication tape in
the i-th stage. At this point the machine is deactivated and the other machine becomes
active, unless the protocol is terminated. Either machine can terminate the protocol by
not sending any message in its active stage. Machine B accepts or rejects the input by
entering an accept or reject state and terminating the protocol.

Machine A is assumed to be computationally unbounded Turing machine. The compu-
tation time of machine B is defined as the sum of B’s computations during its active
stages, and is taken to be bounded by a polynomial in the length of the input string.

Definition 2.5.Let L ⊆ {0, 1}∗. We say that L has an interactive proof-system if
there exists an interactive Turing machine V such that:

1) ∃ ITM P such that (P, V) is an interactive protocol and for every x ∈ L, |x|
sufficiently large, Pr(V accepts) > 1−ε for some positive constant ε. (Probabilities
are taken over coin tosses of V and P .)

2) ∀ ITM P such that (P, V) is an interactive protocol and for every x 6∈ L, |x|
sufficiently large, Pr(V accepts) < ε for some positive constant ε.

Example 2.6. In the following examples B → A denotes an active stage for machine
B at the end of which B sends a message. Similarly, A → B denotes an active stage of
A.

1) Set

Z
∗

n = {x | x < n, (x, n) = 1},

QR = {{x, n} | (x, n) = 1, ∃ y : y2 ≡ x (mod n)},

QNR = {{x, n} | (x, n) = 1, 6 ∃ y : y2 ≡ x (mod n)}.

We demonstrate an interactive proof-system for QNR. On input x, n to interactive
protocol (A, B):

(1) B → A: B sends to A the list w1, . . . , wk, k = |n|, and

wi =

{

z2
i (mod n) if bi = 1,

xz2
i (mod n) if bi = 0,

where B selects zi ∈ Z
∗

n, bi ∈ {0, 1} at random.

(2) A → B: A sends to B the list c1, . . . , ck:

ci =

{

1 if wi is a quadratic residue modulo n,
0 otherwise .

B accepts if for all i = 1, . . . , k, ci = bi.

73

B interprets bi = ci as evidence that {x, n} ∈ QRN , while bi 6= ci leads him to
reject. (A, B) is an interactive proof system for QNR. If {x, n} ∈ QNR, then wi is a
quadratic residue modulo n iff bi = 1. The all-powerful A can compute whether wi is
a quadratic residue or not, compute ci correctly and make B accept with probability
1. If{x, n} 6∈ QNR and {x, n} ∈ QR then wi is a random quadratic residue modulo n
regardless of whether bi = 0 or 1. Thus, the probability that A can send ci such that
ci = bi is bounded by 1/2 for each i, and the probability that B accepts is at most (1/2)k.

2) Now, we present an interactive proof system for the problem Graph-Non-Iso-

morphism. The input is a graph pair G1, G2. One is required to prove that there is no
isomorphism between G1 and G2. Graph-Non-Isomorphism is known to be in NP .

The interactive proof (A, B) on input (G1, G2) proceeds as follows:
(1) B → A: B chooses at random one of the input graphs Gαi

, αi ∈ {1, 2}. B creates
a random isomorphic copy of Gαi

and sends it to A. This is repeated k times for
i = 1, . . . , k, with independent random choices.

(2) A → B: A sends B βi ∈ {1, 2} for all i = 1, . . . , k. B accepts, iff βi = αi for all
i = 1, . . . , k. B interprets βi = αi as evidence that the graphs are not isomorphic,
while βi 6= αi leads him to reject.

If the two graphs are not isomorphic, then the prover can always answer correctly,
and the verifier will accept. If the two graphs are isomorphic, then it is impossible to
distinguish a random isomorphic copy of the first from a random isomorphic copy of the
second and the probability that the prover answers correctly to one query is at most 1/2.
The probability that the prover answers correctly all queries is ≤ (1/2)k.

2.4.2. Zero-Knowledge. Now, we address the question of how much knowledge
needs to be transferred in order to convince a polynomial-bounded verifier of the truth
of a proposition. What is meant here by knowledge? Consider SAT, the NP -complete
language of the satisfiable sentences of propositional calculus. The most obvious proof-
system is one in which on logical formulae f the prover gives the verifier a satisfying
argument I , which the verifier can check in polynomial time. If finding this assignment
I by himself would take the verifier more than polynomial time (if P 6= NP), then we
say that the verifier gains additional knowledge to the mere fact that f ∈SAT.

This notion is made precise by Goldwasser, Micali and Rackoff in [11]. They call an
interactive proof-system for the language L zero knowledge if for every x ∈ L whatever the
verifier can compute after participating in the interaction with the prover, it could have
been computed in polynomial time on the input x alone by a probabilistic polynomial
time Turing machine.

The most important result about zero-knowledge is obtained by Goldreich, Micali and
Wigderson [9].

Theorem 2.7. If there exists a (non-uniform) indistinguishable encryption scheme,
then every NP -language has a computational zero-knowledge interactive proof-system.

Example 2.8.Below we describe a zero-knowledge proof of a discrete logarithm from
[4]. The prover P wants to prove to the verifier V that he knows an x that satisfies ax ≡ b
(mod p) when p is a (large) prime and (x, p − 1) = 1. The numbers a, b and p are public
and x is randomly chosen.

74

(1) P generates t random numbers r1, . . . , rt that are less than p − 1.
(2) P computes hi = ari (mod p), i = 1, . . . , t, and sends the hi’s to V .
(3) P and V engage a coin-flipping protocol to generate t bits b1, . . . , bt.
(4) For all t bits P does one of the following:

(a) if bi = 0, then P sends to V the integer ri,
(b) if bi = 1, then P sends to V si = ri − rj (mod p − 1), where j is the lowest

value of i for which bi = 1.
(5) For all t bits V confirms one of the following:

(a) if bi = 0 that ari = hi (mod p),
(b) if bi = 1 that asi = hih

−1
j (mod p).

(6) P sends Z = x − rj (mod p − 1) to V .
(7) V checks that az = bh−1

j (mod p).

The probability of P ’s cheating is 2−t.

Example 2.9.Below we give another zero-knowledge proof of discrete logarithm [3].
Again the integers a, b, and the prime p are public. P wants to prove to V that he knows
the discrete logarithm modulo p of b on the base a.

Repeat t times the following steps:
(1) P chooses a random integer r, 1 ≤ r < p − 1. P computes h = ar (mod p)

and sends h to V .
(2) V sends to P a random bit β.
(3) P computes and sends to V s = r + bx (mod p − 1).
(4) V checks that as ≡ hbβ (mod p)

Again the probability of P ’s cheating is 2−t.

Zero-knowledge proofs provide a revolutionary new way to realize passwords [7, 12].
The idea is for every user to store a statement of a theorem in his publicly readable
directory, the proof of which only he knows. Upon login, the user engages on a zero-
knowledge proof of the correctness of the theorem. If the proof is convincing, then access
permission is granted. This guarantees that even an adversary that overhears the zero-
knowledge proof cannot learn enough to gain unauthorized access. This is a new property
that cannot be achieved with traditional password mechanisms. Fiat and Shamir [7] have
developed variations on some of the previously proposed zero-knowledge protocols which
are quite efficient and particularly useful for user identification and passwords.

3. Some applications of cryptographic protocol.

3.1. Digital voting. In this section, we describe the electronic voting scheme
by Cramer-Franklin-Schoenmakers-Yung [6]. The design of a good voting scheme must
satisfy a number of criteria that are sometimes competing and even contradictory. Below
we list the most obvious of them:

(1) Only legitimate voters must be allowed to vote.
(2) No one can vote more than once.
(3) Each vote is secret; no one can find out the vote of another voter.
(4) No one should be able to repeat the vote of another voter.
(5) The final result should be computed correctly.
(6) Each of the participants should be able to check that his vote is computed correctly.
(7) The protocol works correctly even if some of the users are dishonest.

75

In this note, we do not discuss such requirements for the system as to be comprehen-
sible and usable by the entire voting population. This is mainly an engineering problem
which, when done well, would provide a great improvement over current paper systems.

We assume that the participants in the scheme are m legitimate voters and n panels
(or poll workers) counting the results of the elections. The use of many panels guarantees
the anonymity of the vote and prevents manipulation of the votes being cast. Further,
we assume that each voter can give his vote for one of two candidates. Of course, this is
not a real restriction. The current scheme can be generalized for use in more complicated
elections.

(1) Setting up the scheme

Each of the panels has a public enciphering transformation, Ei say, i = 1, . . . , n,
within an asymmetric cryptosystem (such as RSA). A cyclic group G of prime order
q is fixed for all voters. In the group a pair of elements b, g is chosen, b, g 6= 1. The
order of G is so large that the problem of finding the logarithm of b on the base g is
intractable. Further, we assume that each voter has his own digital signature generated
via some asymmetric digital signature scheme (such as DSA, for example). For the sake
of simplicity, we assume that the two possible votes to be cast are +1 and −1.

(2) Vote generation

In order to generate a vote, the j-th voter picks up a vote vj ∈ {+1,−1}, chooses a
blinding number aj ∈ Zq and publishes

dj = daj
(vj) = bvj gaj .

The element dj ∈ G is made known to all participants in the election: voters and panels.
Together with the element dj the voter publishes a transcript of a protocol which certifies
that the vote has been selected from {+1,−1}. The vote and the transcript are signed
with the digital signature of the j-th voter.

(3) Casting a vote

In order to submit aj and vj to the panels each voter uses a Shamir secret sharing
scheme. To this end, he selects randomly two polynomials over Fq of degree t < n each:

Rj(x) = vj + r1,jx + . . . + rt,jx
t,

Sj(x) = aj + s1,jx + . . . + st,jx
t.

Every voter computes (ui,j , wi,j) = (Rj(i), Sj(i)), 1 ≤ i ≤ n. Every voter enciphers
the pair (ui,j , wi,j) using the algorithm Ei of the i-th panel and sends the result to this
panel. After that he registers the polynomial Rj(x) by publishing the group element
dl,j = dsl,j(rl,j), 1 ≤ l ≤ t.

(4) Checking the correctness of the information

Every panel checks whether the pair (ui,j , wi,j) has been obtained from the j-th voter
and whether it corresponds to the commitment dj . This is obtained by checking the
validity of the following identity:

76

dj

t
∏

l=1

dil

l,j = daj
(vj)

t
∏

l=1

dsl,j
(rl,j)

il

= bvj gaj

t
∏

l=1

(brl,jgsl,j)il

= b(vj+
�

t
l=1

rl,j il)g(aj+
�

t
l=1

sl,j il)

= bui,j gwi,j .

(5) Counting the votes

Each of the panels computes and publishes as results of the election the elements
Ui =

∑m

j=1 ui,j . Apart from this, each panel computes and publishes the sums of the

blinding numbers Wi =
∑m

j=1 wi,j . Every other participant in the scheme – voter or
panel – can convince himself in the correctness of the results by checking that

m
∏

j=1

(

dj

d
∏

l=1

bjl

l,j

)

=

m
∏

j=1

bui,j gwi,j = bUigWi .

Each participant can determine the result of the election by taking t values Ui and
interpolating by them the final result. In fact, Ui is the value of a certain polynomial at
point i:

Ui =

m
∑

j=1

ui,j

=





m
∑

j=1

vj



+





m
∑

j=1

r1,j



 i + · · · +





m
∑

j=1

rt,j



 it.

If the result is in

{

1, . . . ,
q − 1

2

}

, then the majority of the voters has put +1 as their

vote; if the result is in

{

q + 1

2
, . . . , q − 1

}

, then the majority of the voters has put −1.

3.2. Digital cash. One major argument against credit Internet shopping is that
it is not anonymous. The identity of the user is established each time he makes a
purchase. In the real life, we have the possibility to use cash whenever we want to buy
something without establishing our identity. The solution to this problem would be to
create untraceable digital money or digital cash. The idea has been developed in [1, 2, 5].

By the term digital cash, we denote cryptographic techniques that aim at creating a
paying scheme with the following functionality:

• forgery is hard;
• duplication is prevented, or at least detected;
• customers anonymity is preserved;
• the on-line operations on large databases are minimized.

A digital cash scheme consist of three protocols:
• a withdrawal protocol which allows the user U to obtain digital cash from the

bank B;

77

• a payment protocol which allows the user to buy goods from the vendor V in
exchange for the digital cash;

• a deposit protocol where the vendor deposits the cash to his account at the bank.
Henceforth it is assumed that B has a public key-private key pair (PB , SB). By {M}B

we denote the message M together with its signature created by B’s private key. The
general scheme for the three protocols is given below.

Withdrawal Protocol
(1) U tells to B he would like to withdraw a dollars.
(2) B returns to U randomized bill with the following format: {a, r}B. B withdraws a

dollars from U ’s account.
(3) U checks the signature for validity and accepts the bill.

Payment Protocol
(1) U pays to V the bill.
(2) V checks the signature and if it is valid, accepts the bill.

Deposit Protocol
(1) V gives the bill to B.
(2) B checks the signature; if it is valid, then B credits V ’s account.

If the signature scheme is assumed to be (reasonably) secure, then the digital cash
will be hard to forge. However, it is easy to duplicate and double spend the same digital
cash. Anonymity is also not preserved, since the bank can link the name of U with the
random number r and determine where U spent his cash. Now, we are going to address
these problems.

The anonymity problem is solved by using blind signatures. By definition, these are
signatures that the signer signs without knowing their content. The bank signs the bill
without seeing the content of the bill. In particular, the bank cannot determine where
the bill comes from. There is a problem with this. The user can ask the bank make a
small withdrawal, say for $1, and then ask it to sign a $1000 bill.

Recall that in the RSA-signature scheme, the signature to the message M is s = md

(mod n), where n = pq for some primes p, q, and ed ≡ 1 (mod ϕ(n)). Here n and e are
publicly known values. Verification consists in comparing se (mod n) and m. In the case
of blind signatures, U wants B to provide a signature s to m without revealing m. Here
is a possible anonymous withdrawal protocol.

Withdrawal Protocol
(1) U chooses a random number r, 0 ≤ r ≤ n.
(2) U calculates M ′ = M · re (mod n).
(3) U sends M to the bank.
(4) B returns a signature s′ to M ′: s′ = (M ′)d (mod n). We have:

s′ = (M ′)d = Md · red = Md · r (mod n).

(5) B debits U ’s account with $a.
(6) U obtains s = Md (mod n) by computing M ′ · r−1 (mod n).

There are two possible solutions of the problem of letting the bank sign higher bills.
The first is to have one possible denomination per public key. So the bank provides
several public keys and each one of the is used sign one fixed dollar amount only. The
second possibility is the so-called “cut-and-choose” procedure. In this case U makes N

78

bills of $a each, blinds them all and gives them to the bank picks and signs one bill at
random and asks U to open the remaining N − 1. The signature is returned only if all

the unblinded bills were correct. The probability of successful cheating is
1

N
and can be

made sufficiently small by taking N sufficiently large.

The problem of copying and double spending has different solutions in the on-line and
off-line versions of the protocol. In the on-line version, the bank is required to record all
the bills it receives in a database. During the payment protocol, V would transmit the
bill to the bank and ask if the bill was already received. If this is the first time the bill
is being used, then it is received; otherwise it is rejected. This simple solution resembles
very much to the solution with credit cards when V waits for authorization to finish the
transaction. This causes a communication overhead which might cause problems. Also
the size of the database to be managed could be problematic.

Now we are going to introduce a protocol from [5] which detects double-spending and
does not require an on-line identification. The idea behind off-line digital cash is that
during the payment U is forced to write a random identity string on the bill which has
the following properties:

− it is different for every two payments;

− only U can create a valid random identity string;

− two different random identity strings on the same coin should allow the bank to
retrieve the identity of U .

If the bank receives two identical bills with different random identity strings, then
U has cheated and the bank can identify him. If the bank receives two identical bills
with the same random identity strings, then V has cheated. The protocols make use of
a one-way hash function which we denote by h.

Withdrawal Protocol

(1) U prepares N bills of a dollars each having the following format:

Mi = (a, r, yi,1, y
′

i,1, . . . , yi,K , y′

i,K).

Here yi,j = h(xi,j), yi,j = h(x′

i,j), where xi,j are randomly chosen and x′

i,j are
computed from

xi,j ⊕ x′

i,j = 〈username〉, ∀i = 1, . . . , N, j = 1, . . . , K.

(2) U blinds all the Mi to random M ′

i ’s (using the blinding protocol above) and sends
them to B.

(3) B asks U to open N − 1 of the N blinded bills.

(4) When U unblinds them, then he also reveals the appropriate xi,j and x′

i,j .

(5) B checks that these are a dollar bills, that yi,j = h(xi,j , y′

i,j = h(x′

i,j), and that
xi,j ⊕ x′

i,j equals U ’s username.

(6) B returns a signature s of the only unrevealed blind message M = Mi0 , say.

(7) U checks the signature s on M .

The payment protocol forces U to produce a random identity string on the coin. It is
one of xi,j or x′

i,j for each j = 1, . . . , K. Which one of the two is to be produced depends
on a random challenge from V .

Payment Protocol

(1) U gives (M, s) to V .

79

(2) V checks the bank’s signature on the bill. If it is valid, then V sends U a random
bit-string of length K: b1b2 . . . bK .

(3) If bi = 0, then U reveals xi0,j , otherwise he reveals x′

i0,j .
(4) V checks that yi0,j = h(xi0 ,j) or y′

i0,j = h(x′

i0,j) depending on the value of bj . If
the above equalities hold, then he accepts the bill.

The probability that in a different payment of the same random identity string is
produced is 2−K , since V chooses his challenge at random. Only U can produce a valid
random identity string since the hash function is one-way. Finally, two different random
identity strings on the same coin leak the name of U since in this case there is an index
j for which we know xi0,j and x′

i0,j .

Deposit Protocol
(1) V brings the coin (M, s) as well as the random identity string to B.
(2) B verifies the signature and checks whether the coin (M, s) has already been

returned to the bank.
If the coin is already in the database (of returned coins), then B compares the
random identity strings of the two coins. If the random identity strings are different,
then U double spent the coin; otherwise, U is trying to deposit the same coin twice.

REFERENCES

[1] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonims. Commu-

nications of the ACM 28 (1981), 84–88.

[2] D. Chaum. Multiparty unconditionally secure protocols. Pros CRYPTO’87 (ed. C. Pome-
rance), Lecture Notes in Comp. Science, vol. 293, 1988, 462.

[3] D. Chaum, J.-H. Evertse, J. van de Graff. An improved protocol for demonstrating
possession of discrete logarithms and some generalizations. Advances in Cryptology – EURO-
CRYPT’87, Springer Verlag, Berlin, 1988, 127–141.

[4] D. Chaum, J.-H. Evertse, J. van de Graff, R. Peralta. Demonstrating possession
of a discrete logarithm without revealing it. Advances in Cryptology – CRYPTO’86, Springer
Verlag, Berlin, 1987, 200–212.

[5] D. Chaum, A. Fiat, M. Naor. Untraceable electronic cash. Proc. CRYPTO’88 (ed. S.
Goldwasser), Lecture Notes in Comp. Science, vol. 403, 1988, 319–327.

[6] R. Cramer, M. Franklin, B. Schoenmakers, M. Yung. Multi-authority secret-ballot
elections with linear work. Advances in Cryptology, EuroCrypt’96, Springer Verlag, Lect. Notes
in Compute Science, vol. 1070 (1996), 72–83.
[7] A. Fiat, A. Shamir. How to prove yourself: practical solutions to identification and
signature problems. Proc. CRYPTO’86 (ed. A. Odlyzko), Lect. Notes in Comp. Science, vol.
263, 1987, 186–194.

[8] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Sprin-
ger Verlag, Berlin-Heidelberg-New York, 1999.
[9] O. Goldreich, S. Micali, A. Wigderson. Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design. Proc. 27th IEEE Symp. on Foundations
of Comp. Science, Toronto, 1986, 174–187.

[10] S. Goldwasser, A. Micali. Probabilistic encryption. Journal of Computer Systems and

Science 28 (1984), 270–299.

[11] S. Goldwasser, S. Micali, C. Rackoff. The knowledge complexity of interactive proof-
systems. Proc. 17th ACM Symp. on Theory of Complexity, 1985, 291–304.

80

[12] S. Goldwasser, S. Micali, C. Rackoff. The knowledge complexity of interactive proof-
systems. SIAM J. Computing 18 (1989), No 1, 186–208.
[13] J. Kilian. Use of Randomness in Algorithms and Protocols. Cambridge, MIT Press, 1990.
[14] I. Landjev. Secret sharing schemes and linear codes over finite fields. Math. and Education

in Math., 26 (1997), 13–27.
[15] A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
CRC Press Inc., 1997.
[16] A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance.
Advances in Cryptology: Proc. Eurocrypt ’84 (eds Th. Beth, N. Cot, I. Ingemarsson) Lecture
Notes in Computer Science, vol. 209, 1985, 224–314.
[17] A. M. Odlyzko. Discrete logarithms: the past and the future. Designs, Codes and Crypto-

graphy 19 (2000), 129–145.

Ivan Landjev
Institute of Mathematics and Informatics
Acad. G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria
e-mail: ivan@moi.math.bas.bg

New Bulgarian University
21, Montevideo Str.
1618 Sofia, Bulgaria
e-mail: i.landjev@nbu.bg

КРИПТОГРАФСКИ ПРОТОКОЛ

Иван Ланджев

Настоящата статия е кратко въведение в областта на криптографските прото-
коли. Тя съдържа кратко описание на някои фундаментални протоколи, като
доказателство с нулево разгласяване, интерактивно генериране на случаен бит,
схеми за поемане на задължения и др. Като примери за по-сложни протоколи са
представени една схема за цифрово гласуване и схема за цифров кеш.

81

