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In this paper receptor-based Cellular Neural Network model is considered. Dynamics
and stability of such model are studied by applying describing function technique.
Comparison of the obtained results with the classical ones is made as well.

1. Introduction to Cellular Neural Networks (CNNs). Spatial and spatio-
temporal patterns occur widely in physics, chemistry and biology. In many cases, they
seem to be generated spontaneously. These phenomena have motivated a great deal of
mathematical modelling and the analysis of the resultant systems has led to a greater
understanding of the underlaying mechanisms. Partial differential equations of diffusion
type have long served as models for regulatory feedbacks and pattern formation in
aggregates in living cells. In this work we propose receptor-based models for pattern
formation and regulation in multicellar biological systems. The systems describing our
models are composed of both diffusion-type and ordinary differential equations. Such
systems cause some difficulties, since both existence and behavior of the solutions are
more difficult to establish. Many aspects of qualitative behavior have to be investigated
numerically. For this purpose, we apply the Cellular Neural Networks (CNN) approach
for studying such models.

CNN is simply an analogue dynamic processor array, made of cells which contain linear
capacitors, linear resistors and linear and nonlinear controlled sources. Let us consider a
two-dimensional grid with 3 × 3 neighborhood system as it is shown on Fig.1.

The squares are the circuit units-cells, and the links between the cells indicate that
there are interactions between linked cells. One of the key features of a CNN is that
the individual cells are nonlinear dynamical systems, but the coupling between them is
linear. Roughly speaking, one could say that these arrays are nonlinear but have a linear
spatial structure which makes the use of techniques for their investigation common in
engineering or physics attractive.

We will give the general definition of a CNN which follows the original one:
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Fig. 1. 3 × 3 neighborhood CNN.

Definition 1.The CNN is a

a) 2-, 3-, or n-dimensional array of

b) mainly identical dynamical systems, called cells, which satisfy two properties:

c) most interactions are local within a finite radius r, and

d) all state variables are continuous valued signals.

Definition 2.An M × M cellular neural network is defined mathematically by four
specifications:

1) CNN cell dynamics;

2) CNN synaptic law which represents the interactions (spatial coupling) within the
neighbor cells;

3) Boundary conditions;

4) Initial conditions.

Suppose for simplicity that the processing elements of a CNN are arranged on a
2-dimensional (2-D) grid (Fig. 1). Then, the dynamics of a CNN, in general, can be
described by:

ẋij(t) = −xij(t) +
∑

C(k,l)∈Nr(i,j)

Ãij,kl(ykl(t), yij(t)) +(1)

+
∑

C(k,l)∈Nr(i,j)

B̃ij,kl(ukl, uij) + Iij ,

(2) yij(t) = f(xij),

1 ≤ i ≤ M, 1 ≤ j ≤ M,

xij , yij , uij refer to the state, output and input voltage of a cell C(i, j); C(i, j) refers to
a grid point associated with a cell on the 2-D grid, C(k, l) ∈ Nr(i, j) is a grid point (cell)
in the neighborhood within a radius r of the cell C(i, j), Iij is an independent current

source. Ã and B̃ are nonlinear cloning templates which specify the interactions between
each cell and all its neighbor cells in terms of their input, state, and output variables.
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Moreover, as we mentioned above the cloning template has geometrical meanings which
can be exploited to provide us with geometric insights and simpler design methods.

Now, in terms of definition 2 we can present the dynamical systems describing CNNs.
For a general CNN whose cells are made of time-invariant circuit elements, each cell
C(ij) is characterized by its CNN cell dynamics

(3) ẋij = −g(xij , uij , I
s
ij),

where xij ∈ R
m and uij is usually a scalar. In most cases, the interactions (spatial

coupling) with the neighbor cell C(i + k, j + l) are specified by a CNN synaptic law:

Is
ij = Aij,klxi+k,j+l + Ãij,kl ∗ fkl(xij , xi+k,j+l) + B̃ij,kl ∗ ui+k,j+l(t).(4)

The first term Aij,klxi+k,j+l of (4) is simply a linear feedback of the states of the
neighborhood nodes. The second term provides an arbitrary nonlinear coupling, and the
third term accounts for the contributions from the external inputs of each neighbor cell
that is located in the Nr neighborhood.

2. Reaction-diffusion CNNs. It is known that some autonomous CNNs represent
an excellent approximation to nonlinear partial differential equations (PDEs). In this
paper we present the receptor-based model by a reaction-diffusion CNNs. The intrinsic
space distributed topology makes the CNN able to produce real-time solutions of nonlinear
PDEs. Consider the following well-known PDE, generally referred to us in the literature
as a reaction-diffusion equation:

∂u

∂t
= f(u) + D∇2u,

where u ∈ R
N and f ∈ R

N , D is a matrix with the diffusion coefficients, and ∇2u is the
Laplacian operator in R

2. There are several ways to approximate the Laplacian operator
in discrete space by a CNN synaptic law with an appropriate A-template.

As a first example of CNN models we consider the Fisher equation. Sixty years ago
Fisher showed that the propagation of a mutant gene can be modeled by a nonlinear
reaction-diffusion partial differential equation (PDE):

(5)
∂u

∂t
= D

∂2u

∂x2
+ f(u).

where f(u) = qu(1 − u). This classic equation, also known as the “diffusional logistic”
equation, has been found to be useful in many other applications and has been widely
studied. In chemical media the function u(t, x) is the concentration of the reactant, D
represents its diffusion coefficient, and the positive constant q specifies the rate of the
chemical reaction. In media of other natures u, D, q can represent different quantities.
In general, medium described by (5) is often refered to as a bistable medium, because
it has two homogeneous stationary states: u = 0 and u = 1. Observe the case when
f(u) = u(u−1)(u−E) in which f(u) has three zeros: at u = 0, E and 1. This generalized
model arises in many areas of ecology, including selection-migration models and other
bistable population models. It is also found in a degenerate form of Nagumo’s equation.

After rescaling the time t′ = qt and space coordinate x′ = (q/D)1/2x, and dropping
the prime, in one-dimensional space (5) becomes:

(6) ut = uxx + u(1− u).

As we mentioned, Fisher equation (6) can be precented by a reaction-diffusion auto-
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nomous CNN where the cells are a degenerate special case of Chua’s oscillator. We will
map u(x, t) into a CNN layer such that the state voltage of a CNN cell xkl(t) at a grid
point (k, l) is associated with u(kh, t), h = ∆x. Therefore, an one-dimensional Laplacian
template is of the following form:

A1 = (1,−2, 1),

and the CNN model in this case is:

(7)
duk

dt
= (uk−1 − 2uk + uk+1) + uk(1 − uk),

k = 1, . . . , n, n = M.M , where we have M × M cells.

In a two-dimensional isotropic medium Fisher’s equation (5) in rescaled variables is:

(8) ut = uxx + uyy + u(1 − u).

The solution u(x, y, t) of (8) is a continuous function of the time t and the space variables
x, y. We shall approximate the function u(x, y, t) by a set of functions ujk(t) which are
defined as

ujk(t) = u(jhx, khy, t),

where hx and hy are the space intervals in the x and y coordinates. Then, two-dimensional
discretized Laplacian A template takes the following form:

A2 =





0 1 0
1 −4 1
0 1 0



 .

The CNN model for two-dimensional Fisher’s equation (8) is:

dujk

dt
= (ujk−1(t) + ujk+1(t) − 4ujk(t) + uj−1k(t) + uj+1k(t))(9)

+ ujk(t)(1 − ujk(t)) = (ujk−1(t) + ujk+1(t) − 4ujk(t)

+ uj−1k(t)uj+1k(t)) + njk(t),

1 ≤ j ≤ M , 1 ≤ k ≤ M .

Another most widely studied nonlinear reaction-diffusion partial differential equation
(PDE) is the Brusselator equation, whose dimensionless equation is:

∂u

∂t
= a − (b + 1)u + u2v + D1∇

2u(10)

∂v

∂t
= bu − u2v + D2∇

2v,

where ∇2 =
∂2

∂u2
+

∂2

∂v2
is a two-dimensional Laplacian operator in R

2, a, b are coefficients

of the chemical reaction which give the concentration of initial substances and D1, D2 are
diffusion coefficients. The Brusselator equation (10) is well known in chemical kinetics as
an ideal system for studying the dissipative structures. In some sense this system behaves
as harmonic oscillator.

Our CNN model for the Brusselator equation (10) with A2-template can be written
in the following form:
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ujk = a − (b + 1)ujk + u2
jkvjk + D1[uj+1k + uj−1k + ujk+1 + ujk−1 − 4ujk](11)

vjk = bujk − u2
jkvjk + D2[vj+1k + vj−1k + vjk+1 + vjk−1 − 4vjk ],

1 ≤ j ≤ M , 1 ≤ k ≤ M .

The other model we consider is a more general form of the Hodgkin-Huxley model
for the propagation of the voltage pulse through a nerve axon which is referred to as the
FitzHugh-Nagumo equation:

(12) ut − uxx = u(u − Θ)(1 − u) − b

∫ t

0

u(s, x)ds,

0 < x, t < 1, 0 < Θ < 1/2, b ≥ 0. The proposed equation (12) is a nonlinear parabolic
integro-differential equation, in which ut is the first partial derivative of u(t, x) with
respect to t, uxx is the second derivative of u with respect to x and u is a membrain
potential in a nerve axon. The steady state u = 0 represents the resting state of the
nerve.

Now, if we map u(x, t) into a CNN layer such that the state voltage of a CNN
cell vxkl(t) at a grid point (k, l) is associated with u(kh, t), h = ∆x and use the one-
dimensional discretized Laplacian template A1, then it is easy to design the CNN model
of the proposed FitzHugh-Nagumo equation (12):

(1) CNN cell dynamics:

(13)
duj

dt
− Is

j = uj(uj − Θ)(1 − uj) − b

∫ t

0

uj(s)ds.

(2) CNN synaptic law:

(14) Is
j =

1

h2
(uj−1 − 2uj + uj+1).

Let us assume for simplicity that the grid size of our CNN model is h = 1 and let
us denote the nonlinearity n(uj) = uj(uj − Θ)(1 − uj). Substituting (14) into (13), we
obtain:

duj

dt
− (uj−1 − 2uj + uj+1) = n(uj) − b

∫ t

0

uj(s)ds, 1 ≤ j ≤ N.(15)

Equation (15) is actually an integro-differential equation which is identified as the
state equation of an autonomous CNN made of N × N cells.

3. Receptor-based models. This work is devoted to mathematical modelling of
pattern formation. Partial differential equations of diffusion type have long served as
models for regulatory feedbacks and pattern formation in aggregates of living cells. We
propose new reseptor-based models for pattern formation and regulation in multicellular
biological systems. The idea is that patterns are controlled by specific cell-surface recep-
tors which transmit to the cells signals responsible for their differentiation. The main
aim of this work is to check which aspects of self-organization and regeneration can be
explained within the framework of CNNs.

The simplest model describing receptor-ligand is given in the form of three equations.
It takes into consideration the density of free receptors, of the bound receptors and of the
ligands. We use a representation of this simplest receptor-based model that is as generic
as possible and based on the scheme shown in Fig. 2.
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Fig. 2. General scheme of the simplest receptor-based model

The abreviations in Figure 2 are as follows: l. – ligands, b.r. – bound receptors, e.c. –
epithelial cells, f.r. – free receptors. We assume that new ligands and new free receptors
are produced on cell surface through a combination of recycling (dissociation of bound
receptors) and de novo production within the cell. Then a ligands binds to a free receptor
reversibly which results in a bound receptor that is internalised into the cell. Bound
receptors also dissociate. Both ligands and free receptors undergo natural decay.

We consider one-dimensional epithelial sheet of length L. We denote the concentration
of ligands by w(x, t), where x and t are space- and time-coordinates, with x increasing
from 0 to L along the body column. The bound and free receptors densities are denoted
by u(x, t) and v(x, t), respectively. For simlicity we assume that all binding processes are
governed by the law of mass action without saturation effects. The model is described
by the following dynamical system:

∂

∂t
u = f1(u, v, w)(16)

∂

∂t
v = f2(u, v, w)

∂

∂t
w = d

∂2

∂x2
w + f3(u, v, w),

where u, v, w : [0, 1] × R
+ → R

+, the functions fi, i = 1, 2, 3, are nonnegative for
nonnegative arguments and they have the following form:

f1 = −a1u + g1(u, v) − buw + cv,

f2 = −a2v + buw − cv,

f3 = −a3w − buw + g3(u, v) + cv,

ai > 0, i = 1, 2, 3, b, c > 0. We suppose that the functions gi, i = 1, 3 are of quadratic
form, i.e. gi(u, v) = giu

2. The model has biological interpretation for such functions [7].
a1 is the rate of decay of free receptors, a2 is the rate of decay of bound receptors and
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a3 is the rate of decay of ligands, the function g1 defines the rate of production of new
free receptors, the function g3 defines the rate of production of ligands, cv is the rate of
dissociation of bound receptors, b is the rate os binding of ligands and free receptors and
d is the diffusion coefficient for ligands.

After the seminal paper of Turing [7], the study of patterns arising through bifurcation
has been prevalent in the modelling literature, especially regarding morphogenesis. Again
we restrict our attention here to bifurcation solutions. Diffusion-driven instability is also a
mechanism of pattern formation in the activator-inhibitor models. The results of de novo
pattern formation from the dissociated cells and of the cutting experiments suggest that
there exists an organising centre which creates a global structure of the set of solutions.
Thus, a natural approach is to study at first the diffusion-driven instabilities (Turing
type instability). We show that a three-variable receptor-based model (16) can produce
diffusion-driven patterns only under assumption that the number of free receptors increases
nonlinearly by some kind of positive feedback (autocatalysis). Also production of ligands
must depend on free receptors. In the next sections we outline the results concerning
stability of the solutions of such reaction-diffusion equations. Diffusion-driven instability
(Turing-type instability) arises when there exists a spatial homogeneous solution which
is asymptotically stable in the sense of linearised stability in the space of constant
functions, but is unstable with respect to inhomogeneous perturbation. We study the
linear instabilities of the homogeneous steady state to classify the patterns which may
grow.

4. Dynamical behavior of the CNN model. Describing function approach.
As we mentioned above, there are several ways to approximate the Laplacian operator
in discrete space by a CNN synaptic law with an appropriate A-template [2]. In our case
we take one-dimensional discretized Laplacian template:

A : (1,−2, 1).

Therefore, the CNN representaion for our reseptor-based model (16) is the following:

duj

dt
= −a1uj + g1u

2
j − bujwj + cvj(17)

dvj

dt
= −a2vj + bujwj − cvj

dwj

dt
= −a3wj + d(wj−1 − 2wj + wj+1) − bujwj + g3u

2
j + cvj ,

1 ≤ j ≤ N . The above equation is actualy ordinary differential equation which is
identified as the state equation of an autonomous CNN made of N cells. For the output
of our CNN model we take the standard sigmoid function [2].

In this section we introduce an approximative method for studying the dynamics
of CNN model (17), based on a special Fourier transform. The idea of using Fourier
expansion for finding the solutions of PDEs is well known in physics. It is used to predict
what spatial frequences or modes will dominate in nonlinear PDEs. In CNN literature
this approach has been developed for analyzing the dynamics of CNNs with symmetric
templates [4, 5].

In this paper we investigate the dynamic behavior of a CNN model (17) by use of
Harmonic Balance Method well known in control theory and in the study of electronic
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oscillators [5] as describing function method. The method is based on the fact that all
cells in CNN are identical [2] and, therefore, by introducing a suitable double transform,
the network can be reduced to a scalar Lur’s scheme [5].

We study the dynamics and the stability properties of (17) by using the describing
function method [5]. Applying the double Fourier transform:

F (s, z) =

k=∞
∑

k=−∞

z−k

∫

∞

−∞

fk(t) exp(−st)dt,

to the CNN equation (17) we obtain:

sU = −a1U + g1U
2 − bUW + cV(18)

sV = −a2V + bUW − cV

sW = −a3W + d(z−1W − 2W + zW ) + g3U
2
b UW + cV.

Without loss of generality we can denote N(U, V, W ) = giU
2 − bUW + cV and then we

obtain from (18):

U =
1

s + a1
N(19)

V =
1

s + a2
N

W =
1

s + a3 − d(z−1 − 2 − z)
N.

In the double Fourier transform we suppose that s = iω0, and z = exp(iΩ0), where
ω0 is a temporal frequency, Ω0 is a spatial frequency.

According to the describing function method, H(s, z) =
s + a1

s + a3 − d(z−1 − 2 + z)
is the

transform function, which can be expressed in terms of ω0 and Ω0, i.e. H(s, z) = HΩ0
(ω0).

We are looking for possible periodic state solutions of system (18) of the form:

(20) XΩ0
(ω0) = Xm0

sin(ω0t + jΩ0),

where X = (U, V, W ). According to the describing function method we take the first
harmonics, i.e. j = 0 ⇒

XΩ0
(ω0) = Xm0

sin ω0t,

On the other hand, if we substitute s = iω0 and z = exp(iΩ0) in the transfer function
H(s, z), then we obtain:

(21) HΩ0
(ω0) =

iω0 + a1

iω0 + a3 − d(2 cosΩ0 − 2)
.

According to (21), the following constraints hold:

<(HΩ0
(ω0)) =

Xm0

Ym0

,(22)

=(HΩ0
(ω0)) = 0.

Hence, we obtain the following constraints:
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ω0 =
1

a3 − a1 + d(2 cosΩ0 − 2)
(23)

Xm0
=

4

π

[

Xm0
arcsin

(

1

Xm0

)

+

√

1 −
1

X2
m0

]

.

Suppose that our CNN model (17) is a finite circular array of N cells. In this case we
have finite set of frequences:

(24) Ω0 =
2πk

N
, 0 ≤ k ≤ N − 1.

Thus, (22), (23) and (24) give us necessary set of equations for finding the unknowns
Xm0

, ω0, Ω0. As we mentioned above, we are looking for a periodic wave solution of (18),

therefore, Xm0
determines approximate amplitude of the wave, and T0 =

2π

ω0
determines

the wave speed.

Proposition 1.CNN model (17) of the receptor-based system (16) with circular array
of N cells has periodic state solutions xj(t) with a finite set of spatial frequences Ω0 =
2πk

N
, 0 ≤ k ≤ N − 1.

The following bifuraction diagrams are obtained for our CNN model:
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Remark 1. For the Turing-type instability [7], the functions describing production
of free receptors (f.r.) must depend on the density of f.r. and this dependence must be
a power function of the order α + 1, where α > 0. Hence, Turing type patterns can
occur if g1(u) = g1u

α+1, α > 0. This function can depend also on the density of bound
receptors (b.r.), but also it is critical here that it depends on the density of f.r. For
numerical simulations the simplest function fulfilling the above condition is used, namely
g1(u) = g1u

2. To model the production rate of ligands (l.) g3 we also take a function of
the concentration of free receptors. In numerical simulations as a function similar to g1

is used g3(u) = g3u
2.
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КЛЕТЪЧНО НЕВРОННИ МРЕЖИ НА РЕАКЦИЯ ДИФУЗИЯ

Анжела Славова

В тази статия са предствени клетъчно невронни модели на уравнения на реакция-
дифузия, възникващи в биолигията, физиката, инженерството. Динамиката и
устойчивостта на рецепторен модел са изследвани с метода на описващата фун-
кция. Направени са симулации на клетъчно невронния модел и резултатите са
сравнени с класическите.
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