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Diophantine figures have been studied by different authors [1, 2, 3,4, 5, 6] and others.
Here we consider Diophantine figures modulo p, where p is a prime number of the
kind p = 4k+ 3, k €N. In fact, these figures are defined as special subsets of the finite
field Z,i]. The points of the mentioned special subsets are called Gauss-Pythagorean
points. Diophantine figure is a subset of Gauss-Pythagorean points such that all the
distances between pair of points of the figure are quadratic remainders. An algorithm
for finding maximal Diophantine figures modulo p is given. A conjecture in general
case is announced.

1. Some recalls. Denote by Z,[i] the ring of remainders modulo p of Gauss integer
numbers, i.e. n+im, where n, m € Z, (Z, is the ring of remainders modulo p, p € Z). It is
well known that for p = 4k + 3 the ring Z,[7] is a field with well defined pairwise distance
between its points. Let P(a,b) and Q(c, d) are two points in Zy[i], (a,b) corresponds to
the Gauss integer number a + ib, and (¢, d) — to ¢ + id. The distance between P and @
is defined by the ordinary Cartesian coordinate formula

Dist? [P, Q] = (a — ¢)> + (b—d)*.

In the case when it is a quadratic remainder in the finite field Z,, we say that the
distance Dist [P, Q] between the point P and the point Q is an integer distance in Zp|i].

A point P(a,b) is called Gauss-Pythagorean point in Z,[i] (or Gauss-Pythagorean
point modulo p) if the distance between this point and the origin O(0,0) is an integer
distance in Z,[].

A subset @ of Z,[i] is called a Diophantine figure in Z,[i] if all pairwise distances in ®
are integer distances in Z,[i]. We call it also Diophantine figure modulo p. Let us remark
also that we consider only Diophantine figures which contain the origin O. Under this
condition all points (vertices) of a Diophantine figure modulo p are Gauss-Pythagorean
points modulo p.

A Diophantine figure modulo p is called a maximal Diophantine figure modulo p if
there is no other strictly larger Diophantine figure ¥ modulo p such that ® C .
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The set of all Gauss-Pythagorean points modulo p = 4k + 3 without the origin is a
group with respect to the multiplication in the field Z,[i]. We denote this set by GP,[i]
— the group of all Gauss-Pythagorean points modulo p. Clearly, GP,[i] C Zyli].

The following theorem was announced in [4]:

Theorem 1. The mapping & — o&:Zp[i] — Zp|i] induces a bijective homomorphism
on the group of Gauss-Pythagorean points GP,li] of Z,i], £ € Z,[i], « € GP,li].

The set of all Gauss-Pythagorean homomorphisms is a group denoted by MapGP,[i].
This group is the structural group of the geometry of Diophantine figures. It means that
the set of Diophantine figures is invariant determined with respect to Gauss-Pythagorean
homomorphisms.

2. Algorithm for finding maximal Diophantine figures in Z,[i]. We follow
all the necessary steps to find maximal Diophantine figures in Z,[i]. First we find the
set GPP[1] of all Gauss-Pythagorean points in Z,[i]. Let us recall, e.g., that quadratic
remainders modulo 7 are 0, 1, 2, 4. Let us denote the set of quadratic reminder with
added 0 by rem. So rem={0,1,2,4} for the prime number p=7.

Algorithm for finding GPP[1]:
begin
GPP={empty list}
for i from O to p-1 do
for j from 0 to p-1 do
if Dist(i,j)**2 in rem do
GPP.append(i, j)
end
end
return GPP

We already have mentioned that GPP[1] without the origin (0,0) is a group GPp|i].
The cardinality of this group is (p* — 1)/2.

Next, we go on with finding Diophantine pairs consisting of 2 Gauss-Pythagorean
points. Let us mention that the origin is always a vertex in all Diophantine figures but
for the simplicity in computations, we remove the origin from the further constructions.
Let us denote the set of Diophantine pairs without origin by GPP|[2]. Going ahead by
induction, suppose that we have a set GPP [n — 1] of Diophantine figures each one
containing n—1 Gauss-Pythagorean points from GPP[1] without the origin. Next we
follow the intuitive idea for trying to append to a figure ® from GPP [n — 1] a point
from GPP[1] in order to obtain a Diophantine figure. If all attempts of appending over
all points from GPP[1] to ® fail, then ® is a maximal Diophantine figure. Let us denote
the set of all maximal Diophantine figures where each one consists of n — 1 points with
GPPmax [n — 1]. The idea is simple, but it needs an exhaustive search.

Algorithm for finding GPP[n]:
begin
GPP [n]={empty list}
GPPmax [n — 1] ={empty list}
for Figure in GPP[n — 1] do
count=0
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for Point in GPP[1] do
if (Figure and Point) is a DiophantineFigure do
count=count+1
GPP[n|.append (Figure,Point)
if count=0 do
GPPmax [n — 1].append (Figure)
end
end
return GPP [n],GPPmax [n — 1]

Following these steps, we found all maximal Diophantine figures modulo p = 7 and
p = 11. Some of the results are explained below. Maximal Diophantine figures are divided
into two subsets. The first subset contains all figures with (p 4+ 3) /2 vertices, the second
subset consists of Maximal Diophantine figures with maximal length. The tables below
clear out the situation for p =7 and p = 11.

Case p = T:

Diophantine GPP GPP
figure GPP[1] | GPP[2] | GPP[3] | GPP[4] max[4] GPP[5] | GPPI6] max|6]

Number of
figures

24 132 200 90 30 24 4 4

Case p = 11:

Diophantine GPP
figure GPP[1]| GPP[2] | GPP[3] | GPP[4] | GPP|5] | GPP[6] max]6]

Number of |4, 870 | 3920 | 6060 | 4032 | 1680 | 420 | 720 | 270
figures

Diophantine GPP
figure GPP[9] | GPPJ[10] max]10]
Number of 60 6 6
figures

GPP[7]| GPP[8]

We give some illustrations for the case p = 7. For the sake of simplicity, in all figures
the origin is not drawn.

3. Group action of GP,[i| and orbits of maximal Diophantine figures. We
shall skip recalling some basic group notions from textbooks. Consider the action of
GP,[i] on the set DF), of Diophantine figures modulo p. Viewing each ® € DF,, as a set
of points, we define the formula of GP,[i] on DF, by g — r4: g € GP,li], where r4(®)
consists of the vertices of @, multiplied by g. We consider the figure ® as a set of points,
so that the action of GP,[i] on ® is well defined by multiplication of all vertices of ®
with a given element g from GP,[i]. This action is interesting from the point of view of
finding all orbits of all already found maximal Diophantine figures. In this case we should
consider as equivalent all the figures in one orbit. We have made computations for the
cases p=17 and p = 11.

For the case p = 7 the maximal Diophantine figures in GPPmax[4] (like the upper
in Figure 2) are divided into two orbits of lengths 6 and 24. All maximal Diophantine
figures in GPPmax[6] belong to one orbit, or all the “line” figures in Figure 3 could be
obtained from each other by multiplication with a suitable point from GPP[1].
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Figure 2. Two nonlinear maximal Dio-
phantine figures in case p = 7 first —

Figure 1. All Gauss-Pythagorean points in [(0;5),(056),(1;6),(6;6)]; second —
case p =T [(034),(4;4),(2:2),(4,0)]
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Figure 3. All four maximal Diophantine figures with maximal length — all are linear
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For the case p = 11 the maximal Diophantine figures in GPPmax[6] are divided into:
6 orbits of length 60, 1 orbit of length 30, 1 orbit of length 20, and 1 orbit of length 10.

All maximal Diophantine figures in GPPmax[10] are linear and belong to one and the
same orbit as in the case p = 7.

From computational observation we come to the:

Conjecture. For all p = 4k + 3 maximal Diophantine figures modulo p exist and
are divided into two types (including the origin): the first — from nonlinear figures with
number of vertices (p + 3) /2, and the second — of linear figures belonging to one and the
same orbit with p vertices.
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AJITOPUTBM 3A HAMUPAHE HA MAKCVUMAJIHA INO®AHTOBUA
onuryrm

Amnnpeit Auronos, Mapusa Bpamnviesa

Huodanrosure dburypu ca usciensanu or pasiandau asropu [1,2,3,4,5] u qpyru. B
Ta3U CTATUS pasrileskaaMe [IOJAMHOXKECTBA Ha KpaitHoTo nose Zy[i], KbJeTo p e upoc-
TO yncyio ot Buga p = 4k + 3, k € N, a i e umMaruHepHaTa eJUHALA. dpe3 MOAXOIII0
nedUHUPAHO PAa3CTOsIHUE MEXKJy €JIeMEHTHUTE Ha TOBAa II0JIe CEé BbBEXK/IA HOHITUETO
Tayc-ITuraroposa Touka. Jnodanrosa durypa ce Hapuda IOAMHOXKECTBO Ha Zp[i]
cberosino ce or [ayc-ITuraropoBu ToUKM TaKMBA, Y€ PA3CTOAHUETO MEXKIY BCEKH JIBE
TouKu OT dUrypara Jja € KBaJpaTHdeH oCTaTbK B mojero Z,. Cien BbBexkaaHe Ha
MOHSITUSATA, B CTATUSITA € ONKUCaH e(PEeKTUBEH aJrOPUTHM 3a Hamupane Ha JlnodanTo-
Bu ¢durypu. [locouenu ca n Hsikon HOBU cBoiicTBa Ha Jlnodanrosure purypu. Haxoun
OT pe3yJITaTUTE Ca OHAaredeHn 3a p =7 u p = 11.
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