ON HOMOCLINIC SOLUTIONS OF A FOURTH-ORDER ODE ARISING IN WATER WAVE MODELS*

Meline O. Aprahamian, Diko M. Souroujon, Stepan A. Tersian
We study the existence and symmetry of homoclinic solutions of a fourth-order differential equation arising in the theory of water waves. Two existence results are proved using the shooting method and a boundary point lemma.

1. Introduction. In this paper we investigate the existence and symmetry of traveling wave solutions of fifth-order Korteweg-de Vries equation of the form

$$
\begin{equation*}
u_{t}+\gamma u_{x x x x x}+\beta u_{x x x}=\left(F\left(u, u_{x}, u_{x x}\right)\right)_{x} \tag{1}
\end{equation*}
$$

which appear in the classical water wave problem with gravity and capillarity. In (1) subscripts denote partial differentiation,

$$
F\left(u, u_{x}, u_{x x}\right)=\mu\left(2 u u^{\prime \prime}+\left(u^{\prime}\right)^{2}\right)+f(u),
$$

$\beta, \mu \in \mathbb{R}, \gamma>0$ and $f(u)$ is a second-order polynomial. Looking for traveling waves $u(x, t)=u(x-c t)$, we obtain after appropriate scaling an equation of the form

$$
\begin{equation*}
\gamma u^{i v}=u^{\prime \prime}+\mu\left(2 u u^{\prime \prime}+\left(u^{\prime \prime}\right)^{2}\right)+f(u) . \tag{2}
\end{equation*}
$$

A tipical example is the ODE

$$
\frac{2}{15} u^{i v}-b u^{\prime \prime}+a u+\frac{3}{2} u^{2}+\mu\left(\frac{1}{2}\left(u^{\prime}\right)^{2}+\left(u u^{\prime}\right)^{\prime}\right)=0
$$

derived by Craig and Groves $[\mathrm{CrG}]$, which describes gravity water waves on a surface with finite depth (see also [ChG], [GMYK], [P]).

In this work we study the existence of homoclinic solutions of the equation

$$
\begin{equation*}
\gamma u^{i v}=u^{\prime \prime}+\mu\left(2 u u^{\prime \prime}+\left(u^{\prime}\right)^{2}\right)+u-u^{2} \tag{3}
\end{equation*}
$$

i.e., classical solutions $u=u(x)$ of Eq. (3), defined on \mathbb{R} which satisfy the condition

$$
\begin{equation*}
\left(u, u^{\prime}, u^{\prime \prime}, u^{\prime \prime \prime}\right)(x) \rightarrow(1,0,0,0) \quad \text { as } \quad x \rightarrow \pm \infty \tag{4}
\end{equation*}
$$

The problem is inspired by the paper of Peletier, Rotariu-Bruma and Troy [PBT] where homoclinic solutions are studied for the stationary extended Fisher-Kolmogorov equation

$$
\gamma u^{i v}=u^{\prime \prime}+f(u), \quad \gamma>0
$$

[^0]by the shooting method. It is mentioned in $[\mathrm{PBT}]$ that this method can be applied to equations of the form (2) with $f(u)=-u-u^{2}$. Note that, under the change $u(x)=$ $1+v(x / \sqrt{1+2 \mu})$, Eq. (3) becomes
$$
\frac{\gamma}{(1+2 \mu)^{2}} v^{i v}=v^{\prime \prime}+\frac{\mu}{1+2 \mu}\left(2 v v^{\prime \prime}+v^{\prime 2}\right)-v-v^{2}
$$
which is of the mentioned form.
Eq. (3) is invariant with respect to the change of $u(x)$ by $u(-x)$. Therefore, we are looking for even solutions on \mathbb{R} and consider Eq. (3) on $\mathbb{R}^{+}=\{x \in \mathbb{R}: x \geq 0\}$. In order to have $u \in C^{4}(\mathbb{R})$, we require that $u^{\prime}(0)=u^{\prime \prime \prime}(0)=0$.

Our main result concerning the existence of even homoclinic solutions of Eq.(3) is as follows:

Theorem 1. Let $0<\gamma \leq(1+2 \mu)^{2} / 4$ if $-1 / 2<\mu \leq 1 / 2$ or $0<\gamma \leq 2 \mu$ if $\mu>1 / 2$. Then, Eq. (3) admits an even homoclinic solution $u(x)$ such that $-1 / 2<u(x)<1$ for all $x \in \mathbb{R}, u(0)<0$ and $u^{\prime}(x)>0$ for all $x>0$.

By our next result we give conditions on coefficients and u which ensure that a homoclinic solution of Eq.(3) is necessarily symmetric with respect to a point of minimum $y \in \mathbb{R}$, i.e.

$$
\begin{gather*}
u(y+x)=u(y-x), \forall x \in \mathbb{R} \tag{5}\\
u(x) \geq u(y), \forall x \in \mathbb{R} \tag{6}
\end{gather*}
$$

Theorem 2. Let $\mu \in[0,1]$ and $\gamma>0$ be such that $(1+2 \mu)^{2} \geq 4 \gamma \geq 6 \mu+3 \mu^{2}$ and let the solution of (3), (4) satisfy $-1 / 2<u(x)<1$ for all $x \in \mathbb{R}$. Then, there exists a point $y \in \mathbb{R}$ such that (5) and (6) hold. If $(1+2 \mu)^{2} \geq 4 \gamma$ and $\mu \in(-1 / 2,0)$, then the assertions (5) and (6) are still valid provided u has an unique local minimum point.
2. Sketch of proofs of basic results. To prove Theorem 1 we use the shooting method conserning the initial value problem

$$
(P):\left\{\begin{array}{c}
\gamma u^{i v}=u^{\prime \prime}+\mu\left(2 u u^{\prime \prime}+\left(u^{\prime}\right)^{2}\right)+u-u^{2} \\
\left(u, u^{\prime}, u^{\prime \prime}, u^{\prime \prime \prime}\right)(0)=(\alpha, 0, \beta, 0)
\end{array}\right.
$$

We require that $\beta \geq 0$ and seek for a solution of (P) which is increasing on \mathbb{R}^{+}. Let $f(s)=s-s^{2}$ and $F(s)=\int_{s}^{1} f(t) d t=\frac{1}{6}(1-s)^{2}(1+2 s)$. We have $F(s) \geq 0$ iff $s \geq-1 / 2$. Eq. (3) has a prime integral (conservation law). Indeed, if we multiply (3) by $2 u^{\prime}$, integrate over $(-\infty, x)$ and use (4), then we obtain

$$
\begin{equation*}
2 \gamma u^{\prime} u^{\prime \prime \prime}-\gamma u^{\prime \prime 2}-u^{\prime 2}-2 \mu u u^{\prime 2}+2 F(u)=0 \tag{7}
\end{equation*}
$$

which is known as the conservation law.
We choose $x=0$ in (7) and α in the interval $I:=(-1 / 2,1)$ and obtain $\gamma \beta^{2}=2 F(\alpha)$. So that $\beta=\beta(\alpha)=\sqrt{\frac{2}{\gamma} F(\alpha)}$.

Problem (P) has a unique local solution $u=u(x, \alpha)$. If $\alpha \in I$, then $\beta(\alpha)>0$ and $u^{\prime}(x, \alpha)>0$ in a right neighborhood of 0 . Then, the number

$$
\begin{equation*}
\xi(\alpha):=\sup \left\{x>0: u^{\prime}(t, \alpha)>0, t \in(0, x)\right\} \tag{8}
\end{equation*}
$$

is well defined for any $\alpha \in I$. Define as well as the "shooting set"

$$
\begin{equation*}
\mathcal{S}:=\left\{\widehat{\alpha}>-1 / 2: 0<\xi(\alpha)<\infty, u(\xi(\alpha), \alpha)<1, \forall \alpha \in\left(-\frac{1}{2}, \widehat{\alpha}\right)\right\} \tag{9}
\end{equation*}
$$

Lemma 3. If $0<\gamma \leq \frac{(1+2 \mu)^{2}}{4}$, then
(a) $u^{\prime}(\xi(\alpha), \alpha)=0$ for all $\alpha \in \mathcal{S}$,
(b) $\xi \in C^{1}(\mathcal{S})$,
(c) \mathcal{S} is an open set.

The proof follows exactly the same arguments as those of Lemma 2.2 in [PBT]. Next, we have

Lemma 4. Let $\alpha^{*}=\sup S$. Then $-1 / 2<\alpha^{*}<0$.
The proof is complicated. It needs the following technical results
Lemma 5. Let $u \in C^{2}([a, b])$ and suppose that: $u^{\prime}(a)=0, u(a) \geq 0, u^{\prime \prime}(x) \geq 0, x \in$ $[a, b]$ and $u^{\prime \prime}$ is a nondecreasing function. Then $u^{2}(x) \leq 2 u(x) u^{\prime \prime}(x)$ for all $x \in[a, b]$.

We know three different proofs.
The shortest is based on the inequality $\int_{a}^{x}\left(u^{\prime \prime}(x)-u^{\prime \prime}(t)\right) u^{\prime}(t) d t \geq 0, \quad x \in[a, b]$.
Note that the reverse inequality $u^{\prime 2}(x) \geq u(x) u^{\prime \prime}(x)$ is known as Laguere's inequality. It is satisfied for a class of polynomials.

Below we also need the Maximum principle and so called Boundary Point Lemma [PW, Theorem 4] which we formulate as:

Lemma 6. Suppose that $u \in C^{2}([a, b])$ is a nonconstant solution of differential inequality $u^{\prime \prime}(x)-c(x) u(x) \geq 0, x \in[a, b]$ where $c(x) \geq 0$ for all $x \in[a, b]$. If u has a nonnegative maximum at a, then $u^{\prime}(a)<0$. If u has a nonnegative maximum at b, then $u^{\prime}(b)>0$.

We assume $\mu \neq 0$ in the further considerations, because the case $\mu=0$ is considered in [PBT]. The key step in the proof of Theorem 1 is

Lemma 7. Let $\mu>-\frac{1}{2}$ and $0<\gamma \leq \frac{(1+2 \mu)^{2}}{4}$ if $\mu \leq \frac{1}{2}$ and $0<\gamma \leq 2 \mu$ if $\mu>\frac{1}{2}$. Then $\xi\left(\alpha^{*}\right)=+\infty$ and $u\left(x, \alpha^{*}\right) \rightarrow 1$ as $x \rightarrow+\infty$.

The final part of the proof of Theorem 1 is to show that the solution $u(x)=u\left(x, \alpha^{*}\right)$, constructed in previous lemma satisfies as well $\left(u^{\prime}, u^{\prime \prime}, u^{\prime \prime \prime}\right)(x) \rightarrow(0,0,0)$ as $x \rightarrow+\infty$.

Now, we outline the main steps in the proof of Theorem 2. Let u be a solution of (3), (4). The function $v=1-u$ satisfies the equation

$$
\begin{equation*}
\gamma v^{i v}-(1+2 \mu-2 \mu v) v^{\prime \prime}+v=v^{2}-\mu v^{\prime 2} \tag{10}
\end{equation*}
$$

Let v takes it maximum value at $y \in \mathbb{R}$. We may set $y=0$ since (3) and (10) are autonomous, i.e. not depending on x. Define $v_{1}(x)=v(x)$ for $x>0, v_{2}(x)=v(-x)$ for $x>0$ and $z(x)=v_{1}(x)-v_{2}(x)$ for $x \geq 0$. Then, $\left(z, z^{\prime}, z^{\prime \prime}\right)(0)=(0,0,0)$. If $z^{\prime \prime \prime}(0)=0$, then by the existence uniqueness theorem it follows that $z(x) \equiv 0$ for $x \geq 0$ which implies that v and u are symmetric on \mathbb{R}. Assume that $z^{\prime \prime \prime}(0)>0$. Then, there exists $\delta>0$ such that $z^{\prime}(x)>0, x \in(0, \delta)$ and let

$$
\begin{equation*}
x_{1}=\sup \left\{x>0: z^{\prime}(t)>0, t \in(0, x)\right\} \tag{11}
\end{equation*}
$$

We have $x_{1}<+\infty$ because $z(+\infty)=v(+\infty)-v(-\infty)=0$. Eq. (10) is equivalent to the system

$$
\left\{\begin{align*}
v^{\prime \prime}-\mu_{1} v & =w \tag{12}\\
w^{\prime \prime}-\mu_{2} w & =\frac{1}{\gamma}\left(1-\mu\left(\mu_{10}+\frac{1}{2} \mu_{20}\right)\right) v^{2}+\frac{\mu^{2}}{2 \gamma^{2}} v^{3}
\end{align*}\right.
$$

where

$$
\begin{align*}
& \mu_{1}=\mu_{10}-\frac{\mu}{2 \gamma} v, \mu_{2}=\mu_{20}-\frac{\mu}{\gamma} v, \quad \mu_{10}=\frac{1}{2 \gamma}(1+2 \mu-\sqrt{D}) \tag{13}\\
& \mu_{20}=\frac{1}{2 \gamma}(1+2 \mu+\sqrt{D}), \quad D=(1+2 \mu)^{2}-4 \gamma
\end{align*}
$$

Then, v_{1} and v_{2} satisfy (12) and let $w=w_{1}-w_{2}$ where $w_{j}=v_{j}^{\prime \prime}-\mu_{1} v_{j}, \quad j=1,2$ and $h(v)=\left(1-\mu\left(\mu_{10}+\frac{1}{2} \mu_{20}\right)\right) v^{2}+\frac{\mu^{2}}{2 \gamma} v^{3}$. It follows that

$$
\begin{cases}z^{\prime \prime}-\left(\mu_{10}-\frac{\mu}{2 \gamma}\left(v_{1}+v_{2}\right)\right) z & =w \tag{14}\\ w^{\prime \prime}-\left(\mu_{20}-\frac{\mu}{\gamma} v_{2}\right) w & =\frac{1}{\gamma}\left(h\left(v_{1}\right)-h\left(v_{2}\right)\right)-\frac{\mu}{\gamma} w_{1} z\end{cases}
$$

Let $\mu \in[0,1]$ We can apply Lemma 6 to the systems (12) and (14) provided

$$
\begin{equation*}
\mu_{10}-\frac{\mu}{2 \gamma}\left(v_{1}+v_{2}\right)>0, \mu_{20}-\frac{\mu}{\gamma} v_{2}>0,1-\mu\left(\mu_{10}+\frac{1}{2} \mu_{20}\right) \geq 0 \tag{15}
\end{equation*}
$$

Since $v_{j}, j=1,2$, takes its maximum at 0 and $v_{1}(0)=v_{2}(0)=1-\alpha, \alpha \in(-1 / 2,1)$, the last conditions are satisfied if

$$
\begin{equation*}
\mu_{10}-\frac{\mu}{\gamma}(1-\alpha)>0, \quad \mu_{20}-\frac{\mu}{\gamma}(1-\alpha)>0, \quad 1-\mu\left(\mu_{10}+\frac{1}{2} \mu_{20}\right) \geq 0 \tag{16}
\end{equation*}
$$

The inequality $\mu_{10}-\frac{\mu}{\gamma}(1-\alpha)>0$ holds if $\frac{1}{2 \gamma}(1+2 \mu-\sqrt{D}) \geq \frac{3 \mu}{2 \gamma}$. The last inequality is equivalent to $4 \gamma \geq 6 \mu+3 \mu^{2}$ which is assumption of Theorem 2. The inequality $\mu_{20}-$ $\frac{\mu}{\gamma}(1-\alpha)>0$ holds if $\frac{1}{2 \gamma}(1+2 \mu+\sqrt{D}) \geq \frac{3 \mu}{2 \gamma}$ which is equivalent to $1-\mu+\sqrt{D} \geq 0$, which is fulfilled since $\mu \leq 1$. Finally, the inequality $1-\mu\left(\mu_{10}+\frac{1}{2} \mu_{20}\right) \geq 0$ for $\mu>0$ is equivalent to $\sqrt{D} \geq 0 \geq \frac{6 \mu+3 \mu^{2}-4 \gamma}{\mu}$ which is true by the assumption of Theorem 2 . By $w(0)=0, w\left(x_{1}\right)<0$ and Lemma 6 we obtain that $w(x)<0,0<x \leq x_{1}$. By $z(0)=0$ and $z\left(x_{1}\right)>0$ again by Lemma 6 , we have $z(x)>0,0<x \leq x_{1}$ and $z^{\prime}(0)>0$ which contradicts to $z^{\prime}(0)=0$. Then, $z(x) \equiv 0$ for $x \geq 0$. If $\mu \in(-1 / 2,0)$, then we cannot apply Lemma 6 to system (14) because the term $-\frac{\mu}{\gamma} w_{1} z$ is negative. We can avoid this difficulty assuming that $v(x)=1-u(x)$ has unique local maximum point and apply Lemma 6 twice to the equivalent system

$$
\left\{\begin{aligned}
v^{\prime \prime}-\mu_{1} v & =w \\
w^{\prime \prime}-\mu_{2} w & =\frac{\mu}{\gamma} v^{\prime 2}+\frac{1-\mu \mu_{20}}{\gamma} v^{2}
\end{aligned}\right.
$$

where $\mu_{1}=\mu_{10}-\frac{\mu}{\gamma} v, \mu_{2}=\mu_{20}$. Here μ_{10} and μ_{20} are defined in (13).

REFERENCES

[1] A. R. Champneys, B. A. Malomed, J. Yang, D. J. Kaup. Embedded solutions: solitary waves in resonance with the linear spectrum. Physica D, 152-153 (2001), 340-354.
[2] A. R. Champneys, M. D. Groves. A global investigation of solitary waves solutions to a two-parameter model for water waves. J. Fluid Mech., 342 (1997), 199-229.
[3] W. Craig, M. D. Groves. Hamiltonian long-wave approximations to the water-wave problem. Wave Motion, 19 (1994), 367-389.
[4] J. A. Pava. On the instability of solitary-wave solutions for fifth-order water-wave models. Electronic J. Diff. Eq., 6 (2003), 1-18.
[5] L. A. Peletier, A. I. Rotariu-Bruma, W. C. Troy. Pusle-like spatial patterns descibed by higher-order model equations. J. Diff. Eq., 150 (1998), 124-187.
[6] M. H. Protter, H. F. Weinberger. Maximum principles in differential equations. Springer Verlag, Berlin/NY, 1984.

Meline Onik Aprahamian
Technical University of Varna
Department of Mathematics
1, "Studentska" Str.
9010 Varna, Bulgaria
e-mail: maprahamian@abv.bg

Diko Mois Souroujon
Economic University of Varna Department of Mathematics 1, "Knjaz Boris" Blvd 9000 Varna, Bulgaria

> Stepan Agop Tersian University of Rousse Department of Mathematical Analysis 8, "Studentska" Str. 7017 Rousse, Bulgaria e-mail: sterzian@ru.acad.bg

ВЪРХУ ХОМОКЛИНИЧНИТЕ РЕШЕНИЯ НА ОБИКНОВЕНИ ДИФЕРЕНЦИАЛНИ УРАВНЕНИЯ ОТ ЧЕТВЪРТИ РЕД ОПИСВАЩИ ВОДНИ ВЪЛНИ

Мелине О. Апрахамян, Дико М. Суружон, Степан А. Терзиян

В работата се изучават съществуването и симетрията на хомоклинични решения на диференциални уравнения от четвърти ред, които се срещат в теорията на водните вълни. Доказани са два резултата с използване на метод на стрелбата и лема за граничните точки.

[^0]: ${ }^{*}$ This work was partially sponsored by the National Research Fund in Bulgaria, under Grant VU-MI02/05.

 2000 Mathematics Subject Classification: 34 C 37
 Key words: Shooting method, water waves, boundary point lemma

