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We study the existence and symmetry of homoclinic solutions of a fourth-order
differential equation arising in the theory of water waves. Two existence results are
proved using the shooting method and a boundary point lemma.

1. Introduction. In this paper we investigate the existence and symmetry of traveling
wave solutions of fifth-order Korteweg-de Vries equation of the form
(1) ut + γuxxxxx + βuxxx = (F (u, ux, uxx))x,

which appear in the classical water wave problem with gravity and capillarity. In (1)
subscripts denote partial differentiation,

F (u, ux, uxx) = µ(2uu′′ + (u′)2) + f(u),
β, µ ∈ R, γ > 0 and f(u) is a second-order polynomial. Looking for traveling waves
u (x, t) = u (x− ct), we obtain after appropriate scaling an equation of the form

(2) γuiv = u′′ + µ(2uu′′ + (u′′)2) + f(u).
A tipical example is the ODE

2
15

uiv − bu′′ + au +
3
2
u2 + µ(

1
2

(u′)2 + (uu′)′) = 0,

derived by Craig and Groves [CrG], which describes gravity water waves on a surface
with finite depth (see also [ChG], [GMYK], [P]).

In this work we study the existence of homoclinic solutions of the equation

(3) γuiv = u′′ + µ(2uu′′ + (u′)2) + u− u2,

i.e., classical solutions u = u(x) of Eq. (3), defined on R which satisfy the condition
(4) (u, u′, u′′, u′′′) (x) → (1, 0, 0, 0) as x → ±∞.

The problem is inspired by the paper of Peletier, Rotariu–Bruma and Troy [PBT]
where homoclinic solutions are studied for the stationary extended Fisher–Kolmogorov
equation

γuiv = u′′ + f(u), γ > 0,
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by the shooting method. It is mentioned in [PBT] that this method can be applied to
equations of the form (2) with f(u) = −u − u2. Note that, under the change u(x) =
1 + v(x/

√
1 + 2µ), Eq. (3) becomes

γ

(1 + 2µ)2
viv = v′′ +

µ

1 + 2µ
(2vv′′ + v′2)− v − v2

which is of the mentioned form.
Eq. (3) is invariant with respect to the change of u(x) by u(−x). Therefore, we are

looking for even solutions on R and consider Eq. (3) on R+ = {x ∈ R : x ≥ 0}. In order
to have u ∈ C4(R), we require that u′(0) = u′′′(0) = 0.

Our main result concerning the existence of even homoclinic solutions of Eq.(3) is as
follows:

Theorem 1. Let 0 < γ ≤ (1 + 2µ)2/4 if −1/2 < µ ≤ 1/2 or 0 < γ ≤ 2µ if µ > 1/2.
Then, Eq. (3) admits an even homoclinic solution u(x) such that −1/2 < u(x) < 1 for
all x ∈ R, u(0) < 0 and u′(x) > 0 for all x > 0.

By our next result we give conditions on coefficients and u which ensure that a
homoclinic solution of Eq.(3) is necessarily symmetric with respect to a point of minimum
y ∈ R, i.e.
(5) u (y + x) = u (y − x) , ∀x ∈ R,

(6) u (x) ≥ u (y) , ∀x ∈ R.

Theorem 2. Let µ ∈ [0, 1] and γ > 0 be such that (1 + 2µ)2 ≥ 4γ ≥ 6µ + 3µ2 and
let the solution of (3), (4) satisfy −1/2 < u(x) < 1 for all x ∈ R. Then, there exists
a point y ∈ R such that (5) and (6) hold. If (1 + 2µ)2 ≥ 4γ and µ ∈ (−1/2, 0), then the
assertions (5) and (6) are still valid provided u has an unique local minimum point.

2. Sketch of proofs of basic results. To prove Theorem 1 we use the shooting
method conserning the initial value problem

(P ) :
{

γuiv = u′′ + µ(2uu′′ + (u′)2) + u− u2,
(u, u′, u′′, u′′′) (0) = (α, 0, β, 0) .

We require that β ≥ 0 and seek for a solution of (P ) which is increasing on R+.

Let f (s) = s − s2 and F (s) =

1∫

s

f (t) dt =
1
6

(1− s)2 (1 + 2s). We have F (s) ≥ 0 iff

s ≥ −1/2. Eq. (3) has a prime integral (conservation law). Indeed, if we multiply (3) by
2u′, integrate over (−∞, x) and use (4), then we obtain
(7) 2γu′u′′′ − γu′′2 − u′2 − 2µuu′2 + 2F (u) = 0,

which is known as the conservation law.
We choose x = 0 in (7) and α in the interval I := (−1/2, 1) and obtain γβ2 = 2F (α).

So that β = β (α) =
√

2
γ

F (α).

Problem (P ) has a unique local solution u = u (x, α). If α ∈ I, then β (α) > 0 and
u′ (x, α) > 0 in a right neighborhood of 0. Then, the number
(8) ξ (α) := sup {x > 0 : u′ (t, α) > 0, t ∈ (0, x)}
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is well defined for any α ∈ I. Define as well as the “shooting set”

(9) S :=
{

α̂ > −1/2 : 0 < ξ (α) < ∞, u (ξ (α) , α) < 1, ∀α ∈ (−1
2
, α̂)

}
.

Lemma 3. If 0 < γ ≤ (1 + 2µ)2

4
, then

(a) u′ (ξ (α) , α) = 0 for all α ∈ S,
(b) ξ ∈ C1 (S),
(c) S is an open set.
The proof follows exactly the same arguments as those of Lemma 2.2 in [PBT]. Next,

we have
Lemma 4. Let α∗ = sup S. Then −1/2 < α∗ < 0.
The proof is complicated. It needs the following technical results
Lemma 5. Let u ∈ C2 ([a, b]) and suppose that: u′ (a) = 0, u (a) ≥ 0, u′′ (x) ≥ 0, x ∈

[a, b] and u′′ is a nondecreasing function. Then u′2 (x) ≤ 2u (x)u′′ (x) for all x ∈ [a, b].
We know three different proofs.

The shortest is based on the inequality
x∫

a

(u′′ (x)− u′′ (t)) u′ (t) dt ≥ 0, x ∈ [a, b].

Note that the reverse inequality u′2 (x) ≥ u (x) u′′ (x) is known as Laguere’s inequality.
It is satisfied for a class of polynomials.

Below we also need the Maximum principle and so called Boundary Point Lemma
[PW, Theorem 4] which we formulate as:

Lemma 6. Suppose that u ∈ C2 ([a, b]) is a nonconstant solution of differential
inequality u′′ (x) − c (x)u (x) ≥ 0, x ∈ [a, b] where c (x) ≥ 0 for all x ∈ [a, b]. If u
has a nonnegative maximum at a, then u′(a) < 0. If u has a nonnegative maximum at b,
then u′(b) > 0.

We assume µ 6= 0 in the further considerations, because the case µ = 0 is considered
in [PBT]. The key step in the proof of Theorem 1 is

Lemma 7. Let µ > −1
2
and 0 < γ ≤ (1 + 2µ)2

4
if µ ≤ 1

2
and 0 < γ ≤ 2µ if µ >

1
2
.

Then ξ (α∗) = +∞ and u (x, α∗) → 1 as x → +∞.
The final part of the proof of Theorem 1 is to show that the solution u(x) = u (x, α∗),

constructed in previous lemma satisfies as well (u′, u′′, u′′′)(x) → (0, 0, 0) as x → +∞.
Now, we outline the main steps in the proof of Theorem 2. Let u be a solution of (3),

(4). The function v = 1− u satisfies the equation
(10) γviv − (1 + 2µ− 2µv)v′′ + v = v2 − µv′2.

Let v takes it maximum value at y ∈ R. We may set y = 0 since (3) and (10) are
autonomous, i.e. not depending on x. Define v1(x) = v (x) for x > 0, v2(x) = v (−x) for
x > 0 and z(x) = v1(x) − v2 (x) for x ≥ 0. Then, (z, z′, z′′)(0) = (0, 0, 0). If z′′′(0) = 0,
then by the existence uniqueness theorem it follows that z(x) ≡ 0 for x ≥ 0 which implies
that v and u are symmetric on R. Assume that z′′′(0) > 0. Then, there exists δ > 0 such
that z′(x) > 0, x ∈ (0, δ) and let
(11) x1 = sup{x > 0 : z′(t) > 0, t ∈ (0, x)}.
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We have x1 < +∞ because z(+∞) = v(+∞)− v(−∞) = 0. Eq. (10) is equivalent to
the system

(12)





v′′ − µ1v = w,

w′′ − µ2w =
1
γ

(1− µ(µ10 +
1
2
µ20))v2 +

µ2

2γ2
v3,

where

(13)
µ1 = µ10 − µ

2γ
v, µ2 = µ20 − µ

γ
v, µ10 =

1
2γ

(1 + 2µ−
√

D)

µ20 =
1
2γ

(1 + 2µ +
√

D), D = (1 + 2µ)2 − 4γ.

Then, v1 and v2 satisfy (12) and let w = w1 − w2 where wj = v′′j − µ1vj , j = 1, 2

and h(v) = (1− µ(µ10 +
1
2
µ20))v2 +

µ2

2γ
v3. It follows that

(14)





z′′ − (µ10 − µ

2γ
(v1 + v2))z = w,

w′′ − (µ20 − µ

γ
v2)w =

1
γ

(h(v1)− h(v2))− µ

γ
w1z.

Let µ ∈ [0, 1] We can apply Lemma 6 to the systems (12) and (14) provided

(15) µ10 − µ

2γ
(v1 + v2) > 0, µ20 − µ

γ
v2 > 0, 1− µ(µ10 +

1
2
µ20) ≥ 0.

Since vj , j = 1, 2, takes its maximum at 0 and v1(0) = v2(0) = 1− α, α ∈ (−1/2, 1),
the last conditions are satisfied if

(16) µ10 − µ

γ
(1− α) > 0, µ20 − µ

γ
(1− α) > 0, 1− µ(µ10 +

1
2
µ20) ≥ 0.

The inequality µ10− µ

γ
(1−α) > 0 holds if

1
2γ

(1+2µ−
√

D) ≥ 3µ

2γ
. The last inequality

is equivalent to 4γ ≥ 6µ + 3µ2 which is assumption of Theorem 2. The inequality µ20 −
µ

γ
(1 − α) > 0 holds if

1
2γ

(1 + 2µ +
√

D) ≥ 3µ

2γ
which is equivalent to 1 − µ +

√
D ≥ 0,

which is fulfilled since µ ≤ 1. Finally, the inequality 1 − µ(µ10 +
1
2
µ20) ≥ 0 for µ > 0 is

equivalent to
√

D ≥ 0 ≥ 6µ + 3µ2 − 4γ

µ
which is true by the assumption of Theorem 2.

By w(0) = 0, w(x1) < 0 and Lemma 6 we obtain that w (x) < 0, 0 < x ≤ x1 . By
z(0) = 0 and z(x1) > 0 again by Lemma 6, we have z(x) > 0, 0 < x ≤ x1 and z′(0) > 0
which contradicts to z′(0) = 0. Then, z(x) ≡ 0 for x ≥ 0. If µ ∈ (−1/2, 0), then we
cannot apply Lemma 6 to system (14) because the term −µ

γ
w1z is negative. We can

avoid this difficulty assuming that v(x) = 1− u(x) has unique local maximum point and
apply Lemma 6 twice to the equivalent system




v′′ − µ1v = w,

w′′ − µ2w =
µ

γ
v′2 +

1− µµ20

γ
v2,

where µ1 = µ10 − µ
γ v, µ2 = µ20. Here µ10 and µ20 are defined in (13).
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ВЪРХУ ХОМОКЛИНИЧНИТЕ РЕШЕНИЯ НА ОБИКНОВЕНИ
ДИФЕРЕНЦИАЛНИ УРАВНЕНИЯ ОТ ЧЕТВЪРТИ РЕД

ОПИСВАЩИ ВОДНИ ВЪЛНИ

Мелине О. Апрахамян, Дико М. Суружон, Степан А. Терзиян

В работата се изучават съществуването и симетрията на хомоклинични решения
на диференциални уравнения от четвърти ред, които се срещат в теорията на
водните вълни. Доказани са два резултата с използване на метод на стрелбата и
лема за граничните точки.
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