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ON HOMOCLINIC SOLUTIONS OF A FOURTH-ORDER
ODE ARISING IN WATER WAVE MODELS"

Meline O. Aprahamian, Diko M. Souroujon, Stepan A. Tersian

We study the existence and symmetry of homoclinic solutions of a fourth-order
differential equation arising in the theory of water waves. Two existence results are
proved using the shooting method and a boundary point lemma.

1. Introduction. In this paper we investigate the existence and symmetry of traveling
wave solutions of fifth-order Korteweg-de Vries equation of the form

(1) Up + YUzzzax + ﬁuwww = (F(U, Ug, uzx))zz
which appear in the classical water wave problem with gravity and capillarity. In (1)
subscripts denote partial differentiation,
F(u,tug, Uy ) = p(2uu” + (u’)z) + f(u),
By € R, v > 0 and f(u) is a second-order polynomial. Looking for traveling waves
u(x,t) = u(z — ct), we obtain after appropriate scaling an equation of the form
(2) = 4 pl2un” + (")) + f(u).
A tipical example is the ODE

2 iv 1" 3 2 1 "2 "y _
U bu —|—au—|—2u +u(2(u) + (uu)) =0,

derived by Craig and Groves [CrG], which describes gravity water waves on a surface
with finite depth (see also [ChG|, [GMYK], [P]).
In this work we study the existence of homoclinic solutions of the equation

(3) Y =" + puu’ + (1)) + u— u?,
i.e., classical solutions v = u(z) of Eq. (3), defined on R which satisfy the condition
(4) (u,u’ u" u") (x) — (1,0,0,0) as x — +oo.

The problem is inspired by the paper of Peletier, Rotariu—Bruma and Troy [PBT]
where homoclinic solutions are studied for the stationary extended Fisher—Kolmogorov
equation

't =" + f(u), >0,
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by the shooting method. It is mentioned in [PBT] that this method can be applied to
equations of the form (2) with f(u) = —u — u?. Note that, under the change u(z) =
1+v(z/v/1+2u), Eq. (3) becomes
v iv " H % 2 2
— v =v" + 200" +0) —v—w
(14 2p) 1+ QM( )

which is of the mentioned form.

Eq. (3) is invariant with respect to the change of u(z) by u(—=z). Therefore, we are
looking for even solutions on R and consider Eq. (3) on RT = {x € R: z > 0}. In order
to have u € C*(R), we require that u'(0) = u"(0) = 0.

Our main result concerning the existence of even homoclinic solutions of Eq.(3) is as
follows:

Theorem 1. Let 0 < v < (1+2u)2/4 if —1/2 < pu < 1/2 or 0 <~y < 2pu if p > 1/2.
Then, Eq. (3) admits an even homoclinic solution u(zx) such that —1/2 < u(x) < 1 for
all z € R, u(0) <0 and v'(x) >0 for all x > 0.

By our next result we give conditions on coefficients and w which ensure that a
homoclinic solution of Eq.(3) is necessarily symmetric with respect to a point of minimum
y eR, ie.

(5) uly+z)=u(y—=z), Ve €R,
(6) u(z) > u(y), Ve eR.

Theorem 2. Let pn € [0,1] and v > 0 be such that (1 + 2u)? > 4y > 6u + 3u? and
let the solution of (3), (4) satisfy —1/2 < u(x) <1  for all x € R. Then, there exists

a point y € R such that (5) and (6) hold. If (1 + 2u)? > 4y and p € (—1/2,0), then the
assertions (5) and (6) are still valid provided u has an unique local minimum point.
2. Sketch of proofs of basic results. To prove Theorem 1 we use the shooting
method conserning the initial value problem
Py { et = pu - (W)7)
(u, v, u”,u"") (0) = (o, 0, 3,0).

We require that 3 > 0 and seek for a solution of (P) which is increasing on R™T.
1
1
Let f(s) = s —s% and F (s) = /f(t)dt = 6(1—5)2(1—1—25). We have F'(s) > 0 iff

s> —1/2. Eq. (3) has a prime ingegral (conservation law). Indeed, if we multiply (3) by
2u/, integrate over (—oo, z) and use (4), then we obtain
(7) 2yu'u" — yu'"? — u'? — 2uun’® 4 2F (u) = 0,
which is known as the conservation law.
We choose z = 0 in (7) and « in the interval I := (—1/2,1) and obtain v3? = 2F ().

So that 8 = (a) = %F(a).

Problem (P) has a unique local solution v = u (z,a). If « € I, then 3 (a) > 0 and
v (x,) > 0 in a right neighborhood of 0. Then, the number

(8) E(a) =sup{z>0: v (t,a) >0, t € (0,2)}
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is well defined for any « € I. Define as well as the “shooting set”

(9) S:= {62 >—-1/2: 0<¢(a) <00, u(€(a),a) <1, YVa € (—;,a)}.
2
Lemma 3.If 0 <~v < M, then
(a) v (€ (a),a) =0 foralla €S,
(b) £ € CL(S),
(¢) S is an open set.

The proof follows exactly the same arguments as those of Lemma 2.2 in [PBT]. Next,
we have

Lemma 4. Let a* =sup S. Then —1/2 < a* < 0.
The proof is complicated. It needs the following technical results

Lemma 5. Let u € C? ([a,b]) and suppose that: u' (a) = 0,u (a) > 0,u” (z) >
[a,b] and u" is a nondecreasing function. Then u'?(x) < 2u (z)u” (x) for all x €

0,z €
[a, b].
We know three different proofs.

x

The shortest is based on the inequality /(u” (x) —u" () (t)dt > 0, =z € [a,b].

a
Note that the reverse inequality u/? (x) > u (x)u” (x) is known as Laguere’s inequality.
It is satisfied for a class of polynomials.
Below we also need the Maximum principle and so called Boundary Point Lemma
[PW, Theorem 4| which we formulate as:

Lemma 6. Suppose that u € C?([a,b]) is a nonconstant solution of differential
inequality v” (z) — c(z)u(x) > 0, z € [a,b] where c(x) > 0 for all x € [a,b]. If u
has a nonnegative mazimum at a, then u'(a) < 0. If u has a nonnegative mazimum at b,
then v’ (b) > 0.

We assume p # 0 in the further considerations, because the case p = 0 is considered
in [PBT]. The key step in the proof of Theorem 1 is
(1+2p)°

4

1 1 1
Lemma7.Letu>—§andO<’y§ ifugiand0<’y§2,uif,u>f.

2
Then & (a*) = +o00 and u (z,a*) — 1 as ¢ — +o0.

The final part of the proof of Theorem 1 is to show that the solution u(z) = u (z, a*),
constructed in previous lemma satisfies as well (v/, v, v )(z) — (0,0,0) as =z — +oo.
Now, we outline the main steps in the proof of Theorem 2. Let u be a solution of (3),
(4). The function v = 1 — u satisfies the equation
(10) Y — (14 2p — 2uv)0” + v = v? — '

Let v takes it maximum value at y € R. We may set y = 0 since (3) and (10) are
autonomous, i.e. not depending on z. Define vy (z) = v (x) for > 0, ve(x) = v (—z) for
x>0 and z(z) = v1(z) — ve (z) for x > 0. Then, (z,2’,2")(0) = (0,0,0). If 2"”(0) = 0,
then by the existence uniqueness theorem it follows that z(z) = 0 for > 0 which implies
that v and u are symmetric on R. Assume that 2z”/(0) > 0. Then, there exists § > 0 such
that z’'(z) > 0, € (0,9) and let
(11) 1 =sup{z >0:2'(t) >0, t € (0,z)}.
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We have 21 < 400 because z(+00) = v(+00) — v(—00) = 0. Eq. (10) is equivalent to
the system

v — v = w,
(12) 1 1 5, M o3
w’ — pow = ;(1 — p(p0 + 5#20))1) + WU )
where
1
H = o — v, s = a0 — Sv, o = —(1+2u-D)
(13) ) 2y v 2y
fi20 = %(1 +2u+ VD), D=(1+2u)?— 4.
Then, v; and vy satisfy (12) and let w = wy — wy where w; = v§’ — vy, j=1,2

1 2
and h(v) = (1 — p(p1o + 5/1420))1)2 + —g v, Tt follows that
Y

2= (10 — (01 + 1))z =w,

2y
(14) " 1 N
w” — (20 — Fvg)w = —(h(v1) — h(v2)) — ~ws 2.
( ~v2) 7( (v1) ) 5
Let p € [0,1] We can apply Lemma 6 to the systems (12) and (14) provided
1
(15) Uio — %(’Ul + U2) >0, pog — %Uz >0, 1— ,u(,LLl() + 5,&20) > 0.

Since vj;,j = 1,2, takes its maximum at 0 and v1(0) = v2(0) =1 — o, a € (—1/2,1),
the last conditions are satisfied if

1
(16) H1o0 — %(1 —a) >0, pg0— %(1 —a)>0, 1—p(po+ 5#20) > 0.
. . % o 1 3p . .
The inequality p10 — ;(1 —a) > 0 holds if ﬂ(l +2u—vD) > % The last inequality

is equivalent to 4y > 6u + 3u? which is assumption of Theorem 2. The inequality poo —

1
H(l —a) > 0 holds if 2—(1 +2u++vD) > Z—'u which is equivalent to 1 — p+ v D > 0,
v g g

1
which is fulfilled since p < 1. Finally, the inequality 1 — p(p10 + 5/,620) >0 for p>0is

2
—4
equivalent to VD >0> M

w
By w(0) = 0, w(z1) < 0 and Lemma 6 we obtain that w(z) < 0, 0 < z < z1. By
2(0) =0 and z(z1) > 0 again by Lemma 6, we have z(z) >0, 0 <z < z; and 2/(0) > 0
which contradicts to 2/(0) = 0. Then, z(z) = 0 for x > 0. If p € (—1/2,0), then we

cannot apply Lemma 6 to system (14) because the term —=w;z is negative. We can

which is true by the assumption of Theorem 2.

avoid this difficulty assuming that v(z) = 1 — u(x) has unique local maximum point and
apply Lemma 6 twice to the equivalent system
v — v =w,
1—
TN Sy I Y
Y Y
where 1 = 19 — %v, ta = poo. Here pig and pgg are defined in (13).

W' — pow
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BBbPXY XOMOKJIMHNYHUNUTE PEIITEHNA HA OBUMKHOBEHUA
JNOEPEHIINMAJIHA YPABHEHUA OT YETB'LPTU PE/]
OIINCBAIIIY BO/JIHUM B'bJIHN

Menune O. Anpaxamsn, Jduko M. CypyxkoHn, Crennan A. Tepsusu

B paborata ce n3yyaBaT ChIIeCTBYyBaHETO U CUMETPUATA HA XOMOKJ/IMHUYHU PEIIEHU
Ha JudEepeHInaHl YPaBHEHNUsSI OT YeTBbPTHU PEJl, KOUTO Ce CPEIaT B TeOpUsiTa Ha
BOZHUTE BbJHU. JloKazaHu ca ABa pe3yJsiTara ¢ M3MOJI3BaHE HA METOJ Ha CTpeadbara u
JeMa 3a TPaHUYHUTE TOYKH.
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