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We give nonlocal rigorous estimates for the accuracy of affine approximation for
matrix valued functions X — X/™, where m > 2 is a positive integer. The results
are obtained by the technique of Lyapunov majorants and fixed point principles.

Introduction and notations. In this paper we derive nonlocal estimates for the
accuracy of affine approximations for matrix valued functions S}*" — S7*", defined
by X — XP, where p € R and S}*" C C"*" is the set of Hermitian positive definite
n X n matrices. Further on, the particular case p = 1/m, 2 < m € N, is considered.
We stress that matrix power functions and their perturbations are subject to intensive
investigations due to their application in a number of applied problems, see e.g. [3].

We use the following notations: A" := a - the complex conjugate transpose of
the matrix A; spect(A) = {A1(A), A2(A),..., \p(A)} — the full spectrum of the matrix
A € K"*" i.e. the collection of its eigenvalues \;(A), counted according to their algebraic
multiplicity; Amax(A) > Amin(A) > 0 — the maximum and minimum eigenvalues of A €
ST*™: || - |l — the Euclidean norm in C™ or the spectral norm in C"*™; || - ||g — the
Frobenius norm in C"*"; A® B — the Kronecker product of the matrices A and B.

For a linear operator £ : C"*™ — C" " we define its matrix Mat(£) € C***"’ from
vec(L(Y)) = Mat(L)vec(Y), Y € C™ " where vec(Y) € C" is the column-wise vector
representation of Y. If, in particular, £(Y) = >, AyY By, then Mat(£) = Y, B} ® Ay.

For a matrix A € C"*™ and a number p € R the definition of the power AP is not
trivial. We define the quantity A” in the following two cases: First, when A € ST*" we
set AP := UAPUY, where A := diag(Ai, A2, ..., A\n), A = M(A) > 0 and U € C™ " is
the unitary matrix such that UMAU = A; Second, when A is not Hermitian positively
definite but has positive pairwise distinct eigenvalues we define AP := UAPU !, where
U € C™*" is nonsingular. In both cases A} is the (real) positive p-th degree of A\, > 0.

We consider the first case with p = 1/m, 2 < m € N. The treatment of the second
case is similar.
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Let the Hermitian matrix £ € C"*" be such that A+ E € S7*". This is fulfilled if
|E]l2 < Amin(A). Then, we have the representation
(1) (A+ E)Y/™ = AY™ 4 F,o(A, E) + Gm(A, B),
where the linear operator F,(A4,-) = F(1/m,A)(-) is the Frechét derivative of the
function X — X/ at the point X = A, and the expression G,, (A, F) := (A+ E)/™ —
AY™ — F,. (A, E) contains terms of second and higher order in E. We recall that the
Frechét derivative F(p, A) of the function X — X? at the point X = A € ST"" is a
linear operator C"*™ — C"*™ such that (A+ E)P = AP+ F(p, A)(E) +O(||E||?), E — 0.

The Frechét derivatives for rational matrix valued functions has been studied in [1]
as a special type of Lyapunov operators. In particular, for m € N one has
m—1
F(m,A)(E) = > A" 'FEAR F(1/m, A) = F~(m, AY™).
k=0
For any B,Y € C"*" denote
(2) Hon(B,Y) = (B+Y)™ — B" — F(m, B)(Y).
Thus, when Y is small we have || H,,(B,Y)|| = O(]|Y]]?).

Problem statement. The aim of this paper is to give rigorous bounds for the norm
of G (A, E) in (1) as a function of ¢ := ||E|lp and, thus, estimating the accuracy of
the affine approximation (A + E)/™ ~ AY/™ 4+ F, (A, E) of the perturbed quantity
(A+ E)Y/™ for small E.

Taking the m—th degree of both sides of (1), then in view of (2) with B := AY™  we
obtain

A+ E=A+F(m,B)(Fn)+ F(m,B)(Gn) + Hpn(B, Fn + Gp).
Since F(m, B)(Fy,) = F(m, AY™)oF(1/m,A)(E) = E, we have F,,, = F~'(m, AY™)(E)
and || F|lr < ¢me, where
om = pm(A) = ‘|-7:71(m7A1/m)||'
Here the norm ||£|| of the linear operator £ : C**™ — C"*" is defined by
1£] == max{[[L(Y)[lr : [Y]lr = 1} = [[Mat(L)]|2,
where Mat(£) € C" *"” is the matrix of L.

An expression for ¢, may be derived using the results from [1], namely
B )\l/mfl(A)

e m

Furthermore, setting Z := G,,, we obtain the operator equation
(3) Z =1(E, Z) .= —F Y(m, AY™)(H,,(AY™, F,,(A,E) + 2)).
Since TI(0,0) = 0, it follows that for small E the operator equation (3) has a small
solution Z = Z(F) vanishing together with E. To estimate the quantity |Z(E)|r as a
function of € = ||E||p we use the technique of Lyapunov majorants.

Suppose that || Z||r < p. Then, it follows from the definition of II that there exists a
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polynomial m—th degree Lyapunov majorant h,, (e, p) for IT such that
IM(E, Z)|le - < max{[[II(E, Z)||r : |Elle <& [[Z]le < p} < him(e, p),

hm(gvp) = Z@k(g)pk~
k=0

For a given € > 0 consider the majorant equation

p = hn(e,p)
for determining p = p(e) > 0. The coefficients ar = ax(¢) are non-decreasing functions
of € > 0 and satisfy ag(0) = a1(0) = 0. At the same time the function h,, (g, ) is convex.
Hence, there exists a quantity €,, > 0 such that for € < g,,,, the majorant equation has
two nonnegative solutions (depending on ). One of them is “small” and vanishes together
with €. For € = g, both solutions coincide. Finally, for € > ¢,, the majorant equation
has no positive solutions.

In the sequel we also need the (unique) root p, = pm(e) of the equation 1 =
Ohm/(g,p)/0p in p. This root exists for all € > 0 such that aq(g) < 1.

Denote the small solution of the majorant equation by f,,(¢). The function f,, :
[0,e,m] — R4 is continuous, increasing and f,,(0) = 0.

Thus, for e < &, and ||Z]|lr < fm(e) we have ||II(E, Z)||r < fm(g). Therefore, the
operator II(E, -) transforms the closed convex set B, := {Z € C"*" : | Z||r < fm(e)}
into itself. According to the Schauder fixed point principle, there exists Z € B, such that
Z =TI(E, Z). In this way, recalling that we have set Z = G,,,, we find that
(4) [Gm (A, E)l[p < fm(e), € €[0,em], &= [Ellp.
is the desired nonlocal rigorous bound for the norm of the higher order terms G,, in the
representation (1).

Main results. In this section we give easily computable bounds fm(s) > fm(e),
€ < &n < &, for the expressions f,,(¢) in (4). In this way we obtain accuracy estimates
for the affine approximations of the matrix functions X — X'/ at points X = A € el
for m > 2.

We consider first the case m = 2 when an explicit expression for f2(¢) may be found.
For m > 2 we use the technique, proposed in [2], in order to find a bound f,(g) > fm(c).

(i) The case m = 2. Here we have Hy(AY? Fy 4+ Z) = —(Fy + Z)?. Hence, the
Lyapunov majorant is ho(e, p) = ag(e) + a1(€)p + azp? with ap(e) = p3e?, a1(c) = 2p3e
and ay = 3. The majorant equation is ag(e) —(1—ay(g))p+azp® = 0 and, hence, e is the
largest root of the equation d(¢) := (1—ay(¢))? —4azag(e) = 0, or a1(¢) +2+/azap(e) = 1.
In this case the root e = 1/(4¢3) is unique. Hence

1—ai(e) — /(1 —ai(e))? — dazap(e)

f2(€) 2@2
2
= ao(t’:‘) , €€ [0,62],
1—ai(e) + \/(1 —a1(€))? — dagap(e)
or
2¢3¢e? 1

5 €)= , €€10,e3], €9 := —5.
o) 1O = T e << e =
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(ii) The case m = 3. Here the majorant equation
(6) p = ha(e,p) = ao(e) + a1 ()p + az(e)p? + azp?
is cubic, where

ao(€) P3e” (B + p3e),

ai1(e) = 3ypie(2as + ws¢),

az(e) = 3ps(as + ps¢),
as = ¥3

and
1= 477l = AL (A)

Let, for a given € > 0 such that a;(¢) < 1, the quantity p3(e) be the unique solution

of the equation 1 = ay () + 2a2(g)p + 3azp?, i.e.
. 1-— al({-:)
as(e) ++/a3(e) + 3az(1 — ay(e))

For the small solution of the majorant equation, it holds that f3(e) < ps(e). Hence,
hs(e, p) = ag(e) + a1(e)p + az2(e)p?, with @z(e) := aa(e) + azps(¢), is again a Lyapunov
majorant in the form of a second degree polynomial in p such that hs(e, p) < hs(e, p). So
that we may apply the estimates already obtained for m = 2. Let &,,, > 0 be the largest
root of the equation 1 = a;(e) + 2¢/ap(e)az(e). Then,
2a(¢)

p3(e)

(7) f3(€) < ﬁ%(g) = = , €€ [Oaé\m}
1-— al(e) + \/(1 - al(a))Q — 4&0(5)&2(5)
(iii) The case m > 3. For this case the majorant equation is
p=>_ ar(e)p",
k=0
where the coeflicients a;, are given by
ao(e) = ©om ((am + Ome)™ —ma™ e — aﬁ) ,
ai(e) = mpmn ((am + cpms)mfl - aﬁfl) ,
m _
ar(e) = <pm<k)(am +ome)™F E=2,3,...,m.

As in the case m = 3, we introduce a new quadratic majorant. For this purpose we note
that for the positive root p,, = pm(€) of the equation 1 = Z;nzl ja;(e)p’ =1 it is fulfilled
(4 + Dajt1(e)pl, <1 —aq(e). Hence,
1-1/j
. 1/4 1-— al E) .
aj+1(5)p271 ! < ijrl(E) = aj-/kjl(g) (]—Fl( v J=23,...,m—1
and

m—1 m—1
Z aj1(e)ph, "t < Z bjt1(e).
j=2 =2

Thus, we may construct the quadratic Lyapunov majorant

T (€, ) = ao(€) + a1(e)p + bm(€)p® > hum(e, p),
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where
m—1
b (e) = az(e) + 3 by (e):
=2
Finally, we have
2a0(¢)

R WSy e ) e T T ey

where &, is the largest positive root of the equation 1 = aq(e) + 2+/ag(€)bm (). Thus,
we proved the following result:

, €€ [Oagm]a

Theorem 1. The relations (4), (5), (7) and (8) give the desired nonlocal accuracy
estimates for the affine approzimation of the function X — XY™ 2 < m €N, at points
X =Aesp .
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AOPNHHUN AIITPOKCUMAIINN HA PAIITMOHAJIHO-CTEIIEHHN
MATPUYHN ®YHKIINN

FOununana K. BoueBa, Muxauna M. Koucrauntunos,
Baagumup T, Tomopos, Ilerko Xp. IleTkos

Hamepenu ca HesloKaJIHU CTPOIY OIEHKY 33 apUHHATE AIIPOKCUMAIMN HA MATPUIHUTE
1

by X — X /m kbaero 2 < m € N. Pesynrarure ca monmyvuenu ¢ momormira Ha

MaKOPaHTUTE HaA ﬂHHyHOB U Ha IPUHIUIIANTE 3a HEIIOJABUX>KHaTa TOYKa.
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