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Sufficient conditions are given for existence of positive solutions of fourth order
sublinear singular BVPs related to the generalized Emden-Fowler equation. A
variational approach is used.

1. Introduction. In this note the boundary value problem for the fourth order
equation

(1) u(4) = p(t)f(u), 0 < t < 1
is considered, subject to the boundary conditions
(2) u(0) = u(1) = u′(0) = u′(1) = 0.

For the function f it is supposed to be continuous and nonnegative in R+, f(0) = 0,
and that f is sublinear at 0 and at infinity. The function p is positive and continuous on
(0, 1) , and p may grow to infinity at t = 0 and t = 1. The motivation for studying such
problems is due to their applications. For example, the deformation of an elastic beam
with clamped ends in equilibrium state can be described by a fourth order BVP of that
type.

It is worth indicating here that the nontrivial solution u of (1), (2) must be positive,
i.e. u > 0 on (0, 1). Indeed, for any nonzero solution u ∈ C1 [0, 1] ∩ C4 (0, 1), by the
equation it follows that u′′ is convex. Also, by the boundary conditions we have that
both u′ and u′′ have zeros in (0, 1). Indeed, suppose that u′′ ≥ 0 on (0, 1). Then, u′

increases on [0, 1] which is a contradiction. Now, the question is how many (simple) zeros
u′′ has: one or two. Suppose u′′ has only one (simple) zero. Then, u′ does not possess zeros
on (0, 1) , and we come to a contradiction again. Finally, there are 0 < t1 < t0 < t2 < 1
such that u′(t0) = u′′(t1) = u′′(t2) = 0 which combined with the convexity of u′′ means
that u > 0 on (0, 1) .

The model equation of (1) is
(3) u(4) = p(t)uλ, 0 < t < 1
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where λ ∈ (0, 1) is given. The problem (3), (2) has been studied recently by Ma & Tisdell
[1] and Cui & Zou [2] via the method of lower and upper solutions and fixed point
index theorem. In [1] the authors have shown that necessary and sufficient condition for
existence of positive solutions u ∈ C2 [0, 1] ∩ C4 (0, 1) is

(4) 0 <

∫ 1

0

t1+2λ (1− t)1+2λ
p (t) dt < ∞,

and if

(5) 0 <

∫ 1

0

t2 (1− t)2 p (t) dt < ∞

is satisfied, then (3), (2) has positive solutions u ∈ C1 [0, 1] ∩ C4 (0, 1) .
In this note a sufficient condition is obtained for existence of positive solutions u ∈

H2
0 (0, 1) of the problem (1), (2). As a corollary we have that if

(6) 0 <

∫ 1

0

t
3
2 (1+λ) (1− t)

3
2 (1+λ)

p (t) dt < ∞,

then (3), (2) has positive solutions u ∈ H2
0 (0, 1) . Since 0 < λ < 1, the condition (4)

implies (6) which is natural because
C2 [0, 1] ⊂ H2 (0, 1) ⊂ C1[0, 1],

by the embedding theorem. On the other hand, if 0 < λ ≤ 1
3
, then (6) implies (5), i.e.

our result is between those of Ma & Tisdell [1] in that case. However, if
1
3

< λ < 1, then
(5) implies (6) which means that the condition (6) is better than (5).

2. Existence results. In this section we consider the boundary value problem
u(4) = p(t)f(u), 0 < t < 1,(7)

u (0) = u (1) = u′ (0) = u′ (1) = 0,

where p and f satisfy the following assumptions:

(1) p ∈ C (0, 1) , p > 0 on (0, 1) ,

(2) f ∈ C (R+,R+) , f (0) = 0,

(3) for some λ, 0 < λ < 1,

(i) 0 <

∫ 1

0

(s (1− s))
3(1+λ)

2 p (s) ds < ∞,

(ii) 0 < lim inf
u→0+

f (u)
uλ

≤ lim sup
u→0+

f (u)
uλ

< ∞,

(4) lim
u→+∞

f (u)
u

= 0.

The main result is:
Theorem 1. Suppose that the conditions (1)−(4) are satisfied. Then, (7) has positive

solutions u ∈ H2
0 (0, 1) .

We begin the proof with the following
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Lemma 2.Under the conditions (1), (3i), the space H2
0 (0, 1) is embedded continuously

into the Banach space

L1+λ
p (0, 1) :=

{
u :

∫ 1

0

p (s) |u (s)|1+λ
ds < ∞

}

with the norm ‖u‖p =
(∫ 1

0

p (s) |u (s)|1+λ
ds

) 1
1+λ

.

Proof. Let us mention first that

‖u‖ =
(∫ 1

0

u′′2dt

) 1
2

is an equivalent norm in H2
0 (0, 1), since

∫ 1

0

u′2dt ≤ 1
2

∫ 1

0

u2dt +
1
2

∫ 1

0

u′′2dt,

∫ 1

0

u2dt ≤ 1
π4

∫ 1

0

u′′2dt, u ∈ H2
0 (0, 1) .

For u ∈ H2
0 (0, 1) we have

u (t) =
∫ t

0

∫ s

0

u′′ (τ) dτds =
∫ t

0

(t− τ)u′′ (τ) dτ, t ∈ [0, 1] .

Thus,

|u(t)| ≤ ‖u‖
(∫ t

0

(t− τ)2 dτ

) 1
2

=
t

3
2√
3
‖u‖ , t ∈ [0, 1] .

In the same way for u ∈ H2
0 (0, 1) one has

|u(t)| ≤ (1− t)
3
2√

3
‖u‖ , t ∈ [0, 1] .

Consequently,

(1− t)
3
2 (1+λ)

∫ t

0

p (s) |u (s)|1+λ

≤ 3−
1+λ
2

(∫ t

0

(s (1− s))
3
2 (1+λ)

p (s) ds

)
‖u‖1+λ

, t ∈ [0, 1),

t
3
2 (1+λ)

∫ 1

t

p (s) |u (s)|1+λ

≤ 3−
1+λ
2

(∫ 1

t

(s (1− s))
3
2 (1+λ)

p (s) ds

)
‖u‖1+λ

, t ∈ (0, 1].

Choosing t =
1
2
, the last two inequalities yield

‖u‖1+λ
p ≤

(
8
3

) 1+λ
2

(∫ 1

0

(s (1− s))
3
2 (1+λ)

p (s) ds

)
‖u‖1+λ

which completes the proof. ¤
Lemma 3.Under the hypotheses of Lemma 2, the embedding of H2

0 (0, 1) into
L1+λ

p (0, 1) is compact.
Proof. Let (uk) be a sequence which is weakly convergent to 0 in H2

0 (0, 1). Then,
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there exists c > 0 such that
(8) ‖uk‖ ≤ c, ∀k.

Since (uk) is uniformly convergent to 0 in [0, 1] , for ε > 0 there is a number N such that
|un (t)| < ε for all n > N and all t ∈ [0, 1].

By the absolute continuity of the Lebesgue integral, there are 0 < δ1 <
1
2

< δ2 < 1
such that ∫ δ1

0

(s (1− s))
3(1+λ)

2 p (s) ds < ε,

∫ 1

δ2

(s (1− s))
3(1+λ)

2 p (s) ds < ε.

Then, by (8) we have
(

1
2

) 3
2 (1+λ) ∫ δ1

0

p (s) |un (s)|1+λ
ds ≤ (1− δ1)

3
2 (1+λ)

∫ δ1

0

p (s) |un (s)|1+λ
ds

≤ 3−
1+λ
2 c1+λ

∫ δ1

0

(s (1− s))
3(1+λ)

2 p (s) ds

< 3−
1+λ
2 c1+λε,

(
1
2

) 3
2 (1+λ) ∫ 1

δ2

p (s) |un (s)|1+λ
ds ≤ δ

3
2 (1+λ)
2

∫ 1

δ2

p (s) |un (s)|1+λ
ds

≤ 3−
1+λ
2 c1+λ

∫ 1

δ2

(s (1− s))
3(1+λ)

2 p (s) ds

< 3−
1+λ
2 c1+λε.

Consequently,∫ δ1

0

p (s) |un (s)|1+λ
ds → 0,

∫ 1

δ2

p (s) |un (s)|1+λ
ds → 0.

On the other hand ∫ δ2

δ1

p (s) |un (s)|1+λ
ds → 0,

and the proof is complete. ¤

Now, we are ready to establish Theorem 1. We put the problem (7) in a variational
setting by introducing the functional

J (u) =
∫ 1

0

(
1
2
u′′2 − p (t) F (u)

)
dt

with F (u) =
∫ u

0
f (s) ds and f (u) defined by f (u) = 0 for u < 0, f (u) = f(u) for u ≥ 0.

As in [3], Theorem 1, it can be shown that J is bounded from below, coercive and weakly
lower semicontinuous in H2

0 (0, 1). Then, by the general minimization theorem (cf. [4],
Theorem ), J has a minimizer which is a solution of (7). Moreover, since f is sublinear
near 0, the minimizer of J is nontrivial, i.e. the problem (7) possesses positive solution.
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ПОЛОЖИТЕЛНИ РЕШЕНИЯ НА СИНГУЛЯРНИ ГРАНИЧНИ
ЗАДАЧИ ОТ ЧЕТВЪРТИ РЕД

Юлия В. Чапарова, Луис Санчез

Получено е достатъчно условие за съществуване на положително решение на
сингулярна сублинейна гранична задача от четвърти ред, свързана с обобщеното
уравнение на Емден-Фоулър. Използван е вариационен подход.
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