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POSITIVE SOLUTIONS OF FOURTH ORDER SINGULAR
BOUNDARY VALUE PROBLEMS"

Julia Chaparova, Luis Sanchez

Sufficient conditions are given for existence of positive solutions of fourth order
sublinear singular BVPs related to the generalized Emden-Fowler equation. A
variational approach is used.

1. Introduction. In this note the boundary value problem for the fourth order
equation

(1) ul = p(t)f(u), 0<t<1
is considered, subject to the boundary conditions
(2) uw(0) = u(l) =/(0) =u'(1) = 0.

For the function f it is supposed to be continuous and nonnegative in R*, f(0) = 0,
and that f is sublinear at 0 and at infinity. The function p is positive and continuous on
(0,1), and p may grow to infinity at ¢ = 0 and ¢ = 1. The motivation for studying such
problems is due to their applications. For example, the deformation of an elastic beam
with clamped ends in equilibrium state can be described by a fourth order BVP of that
type.

It is worth indicating here that the nontrivial solution wu of (1), (2) must be positive,
ie. u > 0 on (0,1). Indeed, for any nonzero solution v € C*[0,1] N C*(0,1), by the
equation it follows that u” is convex. Also, by the boundary conditions we have that
both « and «” have zeros in (0,1). Indeed, suppose that v’ > 0 on (0,1). Then, u’
increases on [0, 1] which is a contradiction. Now, the question is how many (simple) zeros
u has: one or two. Suppose u” has only one (simple) zero. Then, v’ does not possess zeros
on (0,1), and we come to a contradiction again. Finally, there are 0 < t; < tp < to <1
such that u/(tg) = v’ (t1) = u”(t2) = 0 which combined with the convexity of u” means
that w > 0 on (0,1).

The model equation of (1) is

(3) u® =ptt, 0<t<1
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where A € (0, 1) is given. The problem (3), (2) has been studied recently by Ma & Tisdell
[1] and Cui & Zou [2] via the method of lower and upper solutions and fixed point
index theorem. In [1] the authors have shown that necessary and sufficient condition for
existence of positive solutions u € C2[0,1] N C*(0,1) is

1
(4) 0< / 22 (1= )2 p () dt < oo,
0
and if
1
(5) o</ 21—t p@t)dt < oo
0

is satisfied, then (3), (2) has positive solutions v € C*[0,1] N C*(0,1).
In this note a sufficient condition is obtained for existence of positive solutions u €
HZ (0,1) of the problem (1), (2). As a corollary we have that if

1
(6) 0 </ 3040 (1 = )20 5 (1) dt < oo,
0

then (3), (2) has positive solutions v € HZ (0,1). Since 0 < A < 1, the condition (4)
implies (6) which is natural because

C?[0,1] ¢ H*(0,1) c C*[0,1],
1
by the embedding theorem. On the other hand, if 0 < A < 3’ then (6) implies (5), i.e.

our result is between those of Ma & Tisdell [1] in that case. However, if E < A <1, then
(5) implies (6) which means that the condition (6) is better than (5).

2. Existence results. In this section we consider the boundary value problem
(7) u =p(t)f(u), 0<t<1,

u(0) =u(l) =u'(0) =u'(1) =0,

where p and f satisfy the following assumptions:
(1) peC(0,1), p>0on(0,1),
(2) feCE®T,RY), f(0)=0,
(3) forsome A\, 0 < A<,

1 3(14X2)
(1) O</ (s(1—38)) 2 p(s)ds < oo,
0
g o) f(w)
(i7) 0< 1LH_1,%)2f " < hiris(,)tip 5 <%

lim M

u——+0o0 U

(4) =0.

The main result is:

Theorem 1. Suppose that the conditions (1) — (4) are satisfied. Then, (7) has positive
solutions v € H (0,1).

We begin the proof with the following
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Lemma 2. Under the conditions (1), (3i), the space HZ (0, 1) is embedded continuously
into the Banach space

LI (0,1) = {u : /Olpcs) fu (s)]" " ds < oo}

1 T
with the norm |ul|, = (/ p(s)|u(s) ds) .
0

Proof. Let us mention first that

1 3
full = [ a2
0

is an equivalent norm in HZ (0,1), since

1 1t 11 1 1t
/ udt < 7/ u?dt + f/ u?dt, / wldt < —4/ u?dt, u€ HE(0,1).
0 2Jo 2.Jo 0 ™ Jo

For u € H{ (0,1) we have

// deS/Ot(tT)’U,H(T)dT, te[0,1].

fu(®)] < lul (/ (t—r)er)tajgnuu re 0.1,

In the same way for u € Hg (0,1) one has

Thus,

(-t
()] < 2l te 0.1,
Consequently,
t
(1— 30+ / p(s) Ju ()"
0
t
< 3 (/ <s<1—s>>3““>p<s>ds) ™, e (0,1),
0
. 1
0 [ us)
t
1
< 3 (/ (s (1 - )30V p (5)d )nunl“ te (0,1,
t
1
Choosing t = ok the last two inequalities yield

Hu||11)+/\ < (2)13A (/01 (s(1— s))%(lﬂ)p(s) ds) o

which completes the proof. [

Lemma 3. Under the hypotheses of Lemma 2, the embedding of HE (0,1) into
Lt (0,1) is compact.

Proof. Let (u;) be a sequence which is weakly convergent to 0 in HZ (0,1). Then,
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there exists ¢ > 0 such that
(8) Jugl| < e, Vk.

Since (ug) is uniformly convergent to 0 in [0, 1], for € > 0 there is a number N such that
lun, (t)| < € for all n > N and all ¢ € [0, 1].

1
By the absolute continuity of the Lebesgue integral, there are 0 < §; < 3 <dy <1
such that

01 3(14A 1 3(14A
/ (s(1—19)) E )p(s)ds<£, / (s(1—19)) E )p(s)ds<5.
0

02
Then, by (8) we have

1\ 20+Y o A 340 [ A
(3) [ p@moras < a=si [T o e
0 0
14 o1 3(14+2)
< S_TCH')‘/ (s(1—9))" 2 p(s)ds
0

_10a
< 37T e

1
550+ /5 P (8) [un ()] ds
2

7N
N
~_
nlw
=
+
R
\,_.
i
—
®»
S—
=
3
—~
»
N—
T
+
>
<8
)
AN

IN

! (2
37%cl+)‘/ (s(l—s))gl?ﬂ p(s)ds
d2

_14a
< 37z e

Consequently,

o DY ' 142
[ @l s =0, [ p)un (9] ds 0.
0

02
On the other hand
o2
/ P (8) [un ()" ds — 0,

01
and the proof is complete. [

Now, we are ready to establish Theorem 1. We put the problem (7) in a variational
setting by introducing the functional

T (u) = /01 (;qﬂ —p(t)F(u)) dt

with F (u) = [ f (s)ds and f (u) defined by f (u) =0 for u <0, f(u)= f(u) for u > 0.
As in [3], Theorem 1, it can be shown that .J is bounded from below, coercive and weakly
lower semicontinuous in Hg (0,1). Then, by the general minimization theorem (cf. [4],
Theorem ), J has a minimizer which is a solution of (7). Moreover, since f is sublinear
near 0, the minimizer of J is nontrivial, i.e. the problem (7) possesses positive solution.
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