POSITIVE SOLUTIONS OF FOURTH ORDER SINGULAR BOUNDARY VALUE PROBLEMS*

Julia Chaparova, Luis Sanchez

Sufficient conditions are given for existence of positive solutions of fourth order sublinear singular BVPs related to the generalized Emden-Fowler equation. A variational approach is used.

1. Introduction. In this note the boundary value problem for the fourth order equation

$$
\begin{equation*}
u^{(4)}=p(t) f(u), \quad 0<t<1 \tag{1}
\end{equation*}
$$

is considered, subject to the boundary conditions

$$
\begin{equation*}
u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0 \tag{2}
\end{equation*}
$$

For the function f it is supposed to be continuous and nonnegative in $\mathbf{R}^{+}, f(0)=0$, and that f is sublinear at 0 and at infinity. The function p is positive and continuous on $(0,1)$, and p may grow to infinity at $t=0$ and $t=1$. The motivation for studying such problems is due to their applications. For example, the deformation of an elastic beam with clamped ends in equilibrium state can be described by a fourth order BVP of that type.

It is worth indicating here that the nontrivial solution u of (1), (2) must be positive, i.e. $u>0$ on $(0,1)$. Indeed, for any nonzero solution $u \in C^{1}[0,1] \cap C^{4}(0,1)$, by the equation it follows that $u^{\prime \prime}$ is convex. Also, by the boundary conditions we have that both u^{\prime} and $u^{\prime \prime}$ have zeros in $(0,1)$. Indeed, suppose that $u^{\prime \prime} \geq 0$ on $(0,1)$. Then, u^{\prime} increases on $[0,1]$ which is a contradiction. Now, the question is how many (simple) zeros $u^{\prime \prime}$ has: one or two. Suppose $u^{\prime \prime}$ has only one (simple) zero. Then, u^{\prime} does not possess zeros on (0,1), and we come to a contradiction again. Finally, there are $0<t_{1}<t_{0}<t_{2}<1$ such that $u^{\prime}\left(t_{0}\right)=u^{\prime \prime}\left(t_{1}\right)=u^{\prime \prime}\left(t_{2}\right)=0$ which combined with the convexity of $u^{\prime \prime}$ means that $u>0$ on $(0,1)$.

The model equation of (1) is

$$
\begin{equation*}
u^{(4)}=p(t) u^{\lambda}, \quad 0<t<1 \tag{3}
\end{equation*}
$$

[^0]where $\lambda \in(0,1)$ is given. The problem (3), (2) has been studied recently by Ma \& Tisdell [1] and Cui \& Zou [2] via the method of lower and upper solutions and fixed point index theorem. In [1] the authors have shown that necessary and sufficient condition for existence of positive solutions $u \in C^{2}[0,1] \cap C^{4}(0,1)$ is
\[

$$
\begin{equation*}
0<\int_{0}^{1} t^{1+2 \lambda}(1-t)^{1+2 \lambda} p(t) d t<\infty \tag{4}
\end{equation*}
$$

\]

and if

$$
\begin{equation*}
0<\int_{0}^{1} t^{2}(1-t)^{2} p(t) d t<\infty \tag{5}
\end{equation*}
$$

is satisfied, then (3), (2) has positive solutions $u \in C^{1}[0,1] \cap C^{4}(0,1)$.
In this note a sufficient condition is obtained for existence of positive solutions $u \in$ $H_{0}^{2}(0,1)$ of the problem (1), (2). As a corollary we have that if

$$
\begin{equation*}
0<\int_{0}^{1} t^{\frac{3}{2}(1+\lambda)}(1-t)^{\frac{3}{2}(1+\lambda)} p(t) d t<\infty \tag{6}
\end{equation*}
$$

then (3), (2) has positive solutions $u \in H_{0}^{2}(0,1)$. Since $0<\lambda<1$, the condition (4) implies (6) which is natural because

$$
C^{2}[0,1] \subset H^{2}(0,1) \subset C^{1}[0,1]
$$

by the embedding theorem. On the other hand, if $0<\lambda \leq \frac{1}{3}$, then (6) implies (5), i.e. our result is between those of Ma \& Tisdell [1] in that case. However, if $\frac{1}{3}<\lambda<1$, then (5) implies (6) which means that the condition (6) is better than (5).
2. Existence results. In this section we consider the boundary value problem

$$
\begin{gather*}
u^{(4)}=p(t) f(u), \quad 0<t<1 \tag{7}\\
u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0
\end{gather*}
$$

where p and f satisfy the following assumptions:
(1) $p \in C(0,1), \quad p>0$ on $(0,1)$,
(2) $f \in C\left(\mathbf{R}^{+}, \mathbf{R}^{+}\right), f(0)=0$,
(3) for some $\lambda, 0<\lambda<1$,
(i) $0<\int_{0}^{1}(s(1-s))^{\frac{3(1+\lambda)}{2}} p(s) d s<\infty$,
(ii) $0<\liminf _{u \rightarrow 0^{+}} \frac{f(u)}{u^{\lambda}} \leq \limsup _{u \rightarrow 0^{+}} \frac{f(u)}{u^{\lambda}}<\infty$,
(4) $\lim _{u \rightarrow+\infty} \frac{f(u)}{u}=0$.

The main result is:
Theorem 1. Suppose that the conditions (1) - (4) are satisfied. Then, (7) has positive solutions $u \in H_{0}^{2}(0,1)$.

We begin the proof with the following

Lemma 2. Under the conditions (1), (3i), the space $H_{0}^{2}(0,1)$ is embedded continuously into the Banach space

$$
L_{p}^{1+\lambda}(0,1):=\left\{u: \int_{0}^{1} p(s)|u(s)|^{1+\lambda} d s<\infty\right\}
$$

with the norm $\|u\|_{p}=\left(\int_{0}^{1} p(s)|u(s)|^{1+\lambda} d s\right)^{\frac{1}{1+\lambda}}$.
Proof. Let us mention first that

$$
\|u\|=\left(\int_{0}^{1} u^{\prime \prime 2} d t\right)^{\frac{1}{2}}
$$

is an equivalent norm in $H_{0}^{2}(0,1)$, since

$$
\int_{0}^{1} u^{\prime 2} d t \leq \frac{1}{2} \int_{0}^{1} u^{2} d t+\frac{1}{2} \int_{0}^{1} u^{\prime \prime 2} d t, \quad \int_{0}^{1} u^{2} d t \leq \frac{1}{\pi^{4}} \int_{0}^{1} u^{\prime \prime 2} d t, \quad u \in H_{0}^{2}(0,1)
$$

For $u \in H_{0}^{2}(0,1)$ we have

$$
u(t)=\int_{0}^{t} \int_{0}^{s} u^{\prime \prime}(\tau) d \tau d s=\int_{0}^{t}(t-\tau) u^{\prime \prime}(\tau) d \tau, \quad t \in[0,1]
$$

Thus,

$$
|u(t)| \leq\|u\|\left(\int_{0}^{t}(t-\tau)^{2} d \tau\right)^{\frac{1}{2}}=\frac{t^{\frac{3}{2}}}{\sqrt{3}}\|u\|, \quad t \in[0,1]
$$

In the same way for $u \in H_{0}^{2}(0,1)$ one has

$$
|u(t)| \leq \frac{(1-t)^{\frac{3}{2}}}{\sqrt{3}}\|u\|, \quad t \in[0,1] .
$$

Consequently,

$$
\begin{aligned}
& (1-t)^{\frac{3}{2}(1+\lambda)} \int_{0}^{t} p(s)|u(s)|^{1+\lambda} \\
\leq & 3^{-\frac{1+\lambda}{2}}\left(\int_{0}^{t}(s(1-s))^{\frac{3}{2}(1+\lambda)} p(s) d s\right)\|u\|^{1+\lambda}, \quad t \in[0,1), \\
& t^{\frac{3}{2}(1+\lambda)} \int_{t}^{1} p(s)|u(s)|^{1+\lambda} \\
\leq & 3^{-\frac{1+\lambda}{2}}\left(\int_{t}^{1}(s(1-s))^{\frac{3}{2}(1+\lambda)} p(s) d s\right)\|u\|^{1+\lambda}, \quad t \in(0,1] .
\end{aligned}
$$

Choosing $t=\frac{1}{2}$, the last two inequalities yield

$$
\|u\|_{p}^{1+\lambda} \leq\left(\frac{8}{3}\right)^{\frac{1+\lambda}{2}}\left(\int_{0}^{1}(s(1-s))^{\frac{3}{2}(1+\lambda)} p(s) d s\right)\|u\|^{1+\lambda}
$$

which completes the proof.
Lemma 3. Under the hypotheses of Lemma 2, the embedding of $H_{0}^{2}(0,1)$ into $L_{p}^{1+\lambda}(0,1)$ is compact.

Proof. Let $\left(u_{k}\right)$ be a sequence which is weakly convergent to 0 in $H_{0}^{2}(0,1)$. Then, 156
there exists $c>0$ such that

$$
\begin{equation*}
\left\|u_{k}\right\| \leq c, \quad \forall k \tag{8}
\end{equation*}
$$

Since $\left(u_{k}\right)$ is uniformly convergent to 0 in $[0,1]$, for $\varepsilon>0$ there is a number N such that $\left|u_{n}(t)\right|<\varepsilon$ for all $n>N$ and all $t \in[0,1]$.

By the absolute continuity of the Lebesgue integral, there are $0<\delta_{1}<\frac{1}{2}<\delta_{2}<1$ such that

$$
\int_{0}^{\delta_{1}}(s(1-s))^{\frac{3(1+\lambda)}{2}} p(s) d s<\varepsilon, \quad \int_{\delta_{2}}^{1}(s(1-s))^{\frac{3(1+\lambda)}{2}} p(s) d s<\varepsilon
$$

Then, by (8) we have

$$
\begin{aligned}
\left(\frac{1}{2}\right)^{\frac{3}{2}(1+\lambda)} \int_{0}^{\delta_{1}} p(s)\left|u_{n}(s)\right|^{1+\lambda} d s & \leq\left(1-\delta_{1}\right)^{\frac{3}{2}(1+\lambda)} \int_{0}^{\delta_{1}} p(s)\left|u_{n}(s)\right|^{1+\lambda} d s \\
& \leq 3^{-\frac{1+\lambda}{2}} c^{1+\lambda} \int_{0}^{\delta_{1}}(s(1-s))^{\frac{3(1+\lambda)}{2}} p(s) d s \\
& <3^{-\frac{1+\lambda}{2}} c^{1+\lambda} \varepsilon \\
\left(\frac{1}{2}\right)^{\frac{3}{2}(1+\lambda)} \int_{\delta_{2}}^{1} p(s)\left|u_{n}(s)\right|^{1+\lambda} d s & \leq \delta_{2}^{\frac{3}{2}(1+\lambda)} \int_{\delta_{2}}^{1} p(s)\left|u_{n}(s)\right|^{1+\lambda} d s \\
& \leq 3^{-\frac{1+\lambda}{2}} c^{1+\lambda} \int_{\delta_{2}}^{1}(s(1-s))^{\frac{3(1+\lambda)}{2}} p(s) d s \\
& <3^{-\frac{1+\lambda}{2}} c^{1+\lambda} \varepsilon
\end{aligned}
$$

Consequently,

$$
\int_{0}^{\delta_{1}} p(s)\left|u_{n}(s)\right|^{1+\lambda} d s \rightarrow 0, \quad \int_{\delta_{2}}^{1} p(s)\left|u_{n}(s)\right|^{1+\lambda} d s \rightarrow 0
$$

On the other hand

$$
\int_{\delta_{1}}^{\delta_{2}} p(s)\left|u_{n}(s)\right|^{1+\lambda} d s \rightarrow 0
$$

and the proof is complete.
Now, we are ready to establish Theorem 1 . We put the problem (7) in a variational setting by introducing the functional

$$
J(u)=\int_{0}^{1}\left(\frac{1}{2} u^{\prime \prime 2}-p(t) \bar{F}(u)\right) d t
$$

with $\bar{F}(u)=\int_{0}^{u} \bar{f}(s) d s$ and $\bar{f}(u)$ defined by $\bar{f}(u)=0$ for $u<0, \bar{f}(u)=f(u)$ for $u \geq 0$. As in [3], Theorem 1, it can be shown that J is bounded from below, coercive and weakly lower semicontinuous in $H_{0}^{2}(0,1)$. Then, by the general minimization theorem (cf. [4], Theorem), J has a minimizer which is a solution of (7). Moreover, since f is sublinear near 0 , the minimizer of J is nontrivial, i.e. the problem (7) possesses positive solution.

REFERENCES

[1] R. Ma, C. Tisdell. Positive solutions of singular sublinear fourth-order boundary value problems. Applicable Analysis, 84, No 12 (2005), 1199-1220.
[2] Y. Cui, Y. Zou. Positive solutions of singular fourth-order boundary-value problems. Electronic Journal of Differential Equations, 2006 (2006), 1-10.
[3] J. Chaparova, L. Sanchez. A variational approach for the generalized Emden-Fowler equation. Applicable analysis, 82, No 10 (2003), 1003-1016.
[4] J. Mawhin, M. Willem. Critical point theory and Hamiltonian systems. Springer-Verlag, 1989.

Julia Chaparova
Center of Applied Mathematics
and Informatics
University of Rousse
8, Studentska Str.
7017 Rousse, Bulgaria
e-mail: jchaparova@ru.acad.bg

Luis Sanchez

Centro de Matemática e Aplicações Fundamentais University of Lisbon Avenida Professor Gama Pinto, 2 1649-003 Lisbon, Portugal e-mail: sanchez@lmc.fc.ul.pt

ПОЛОЖИТЕЛНИ РЕШЕНИЯ НА СИНГУЛЯРНИ ГРАНИЧНИ ЗАДАЧИ ОТ ЧЕТВЪРТИ РЕД

Юлия В. Чапарова, Луис Санчез

Получено е достатъчно условие за съществуване на положително решение на сингулярна сублинейна гранична задача от четвърти ред, свързана с обобщеното уравнение на Емден-Фоулър. Използван е вариационен подход.

[^0]: ${ }^{*}$ The research of Julia Chaparova was partially supported by the grants VU-MI-02/2005 of the Bulgarian Research Foundation and 2006-PF-03 of the University of Rousse. The research of Luis Sanchez was supported by Fundação para a Ciência e a Tecnologia.

 2000 Mathematics Subject Classification: 34B16,34B18, 46E35
 Key words: Existence, variational methods, Sobolev spaces

