ON THE MEASURABILITY OF SETS OF SPHERES IN THE GALILEAN SPACE*

Adrijan V. Borisov

The measurable sets of spheres and the corresponding invariant densities with respect to the similarity group and some its subgroups are described.

1. Introduction. The Galilean space G_{3} is defined as a 3-dimensional projective space $P_{3}(R)$ in which the absolute consists of a real plane ω and a real line f in ω together with an elliptic involution ε of the points of f. All regular projectivities commuting with ε and transforming the absolute figure $\{\omega, f\}$ into itself, form the 8-parametric group H_{8} of similarities of G_{3}. In affine coordinates H_{8} has the form

$$
\begin{align*}
& x^{\prime}=a_{11}+a_{12} x, \\
& y^{\prime}=a_{21}+a_{22} x+a_{23} y \cos \varphi+a_{23} z \sin \varphi, \tag{1}\\
& z^{\prime}=a_{31}+a_{32} x-a_{23} y \sin \varphi+a_{23} z \cos \varphi,
\end{align*}
$$

where $a_{i j}$ and φ are real numbers and $a_{12}>0, a_{23}>0$.
In particular, if:
(i) $a_{12}=a_{23}=\alpha$, then the subgroup $H_{7} \subset H_{8}$ consists of transformations which map line segments into proportional segments with coefficient of proportionality α and preserving angles between planes and lines respectively. The group H_{7} is called the group of equiform transformations of the Galilean space G_{3} [4].
(ii) $a_{12}=a_{23}=1$, then we have the subgroup $B_{6} \subset H_{8}$ - the group of Galilean motions or the group of isometries of the Galilean space G_{3}.

The differential geometry of the Galilean space G_{3} has been largely developed by O . Röschel in [5].

The aim of this paper is to study the measurability in the sense of M.I.Stoka [6] and G.I.Drinfeld [2] of sets of spheres with respect to H_{8} and the indicated above subgroups.
2. Measurability with respect to H_{8}. Quadrics in G_{3} have been treated in [7] but a more complete metric classification of regular and singular quadrics has been given in [3].

Let a quadric Σ in the space G_{3} be given by equation of the form

$$
\begin{equation*}
x^{2}+B x-2 C y-2 D z+E=0 \tag{2}
\end{equation*}
$$

where B, C, D, E are real parameters and $C^{2}+D^{2} \neq 0$.

[^0]Remark 2.1. We note that in [3] and in [5] the quadric Σ is called the isotropic circular cylinder and the point sphere (Punktkugel) of the radius

$$
\begin{equation*}
R=\sqrt{C^{2}+D^{2}} \tag{3}
\end{equation*}
$$

respectively. We call this quadric the sphere of the Galilean space G_{3}.
Under the action of (1) the sphere $\Sigma(B, C, D, E)$ is transformed into the sphere $\bar{\Sigma}(\bar{B}, \bar{C}, \bar{D}, \bar{E}):$

$$
\bar{B}=-2 a_{11}+a_{12} B+2 \frac{a_{12}}{a_{23}}\left[\left(a_{22} \cos \varphi-a_{32} \sin \varphi\right) C+\left(a_{22} \sin \varphi+a_{32} \cos \varphi\right) D\right]
$$

$$
\begin{gather*}
\bar{C}=\frac{a_{12}^{2}}{a_{23}}(C \cos \varphi+D \sin \varphi) \tag{4}\\
\bar{D}=\frac{a_{12}^{2}}{a_{23}}(-C \sin \varphi+D \cos \varphi) \\
\bar{E}=a_{11}^{2}-a_{11} a_{12} B+2 \frac{a_{12}^{2}}{a_{23}}\left[\left(\frac{a_{32} \sin \varphi-a_{22} \cos \varphi}{a_{12}} a_{11}+a_{21} \cos \varphi-a_{31} \sin \varphi\right) C+\right. \\
\left.\left(-\frac{a_{32} \cos \varphi+a_{22} \sin \varphi}{a_{12}} a_{11}+a_{21} \sin \varphi+a_{31} \cos \varphi\right) D\right]+a_{12}^{2} E
\end{gather*}
$$

The transformations (4) form the so-called associated group \bar{H}_{8} of $H_{8}[6 ; \mathrm{p} .34] . \bar{H}_{8}$ is isomorphic to H_{8} and the invariant density with respect to H_{8} of the spheres (2), if it exists, coincides with the invariant density with respect to \bar{H}_{8} of the points (B, C, D, E) in the set of parameters [6;p.33]. The infinitesimal operators of \bar{H}_{8} are

$$
\begin{gathered}
Y_{1}=2 \frac{\partial}{\partial B}+B \frac{\partial}{\partial E}, \quad Y_{2}=C \frac{\partial}{\partial E}, \quad Y_{3}=C \frac{\partial}{\partial B}, \\
Y_{4}=D \frac{\partial}{\partial E}, \quad Y_{5}=D \frac{\partial}{\partial B}, \quad Y_{6}=D \frac{\partial}{\partial C}-C \frac{\partial}{\partial D}, \\
Y_{7}=C \frac{\partial}{\partial C}+D \frac{\partial}{\partial D}, \quad Y_{8}=B \frac{\partial}{\partial B}+2 C \frac{\partial}{\partial C}+2 D \frac{\partial}{\partial D}+2 E \frac{\partial}{\partial E} .
\end{gathered}
$$

Obviously, Y_{2}, Y_{3}, Y_{6} and Y_{7} are arcwise unconnected and

$$
Y_{8}=2 \frac{E}{C} Y_{2}+\frac{B}{C} Y_{3}+2 Y_{7}
$$

Since

$$
Y_{2}\left(2 \frac{E}{C}\right)+Y_{3}\left(\frac{B}{C}\right)+Y_{7}(2) \neq 0
$$

it follows immediately:
Theorem 2.2. The set (2) of sphere Σ in G_{3} is not measurable under similarity group H_{8} and it has not measurable subgroups.
3. Measurability with respect to the subgroup H_{7}. The associated group \bar{H}_{7} of the group H_{7} has the infinitesimal operators $Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}, Y_{6}$ and $Z_{7}=B \frac{\partial}{\partial B}+C \frac{\partial}{\partial C}+$ $D \frac{\partial}{\partial D}+2 E \frac{\partial}{\partial E}$. The infinitesimal operators Y_{2}, Y_{3}, Y_{6} and Z_{7} are arcwise unconnected 160
and

$$
Y_{1}=\frac{B}{C} Y_{2}+\frac{2}{C} Y_{3}, \quad Y_{4}=\frac{D}{C} Y_{2}, \quad Y_{5}=\frac{D}{C} Y_{3} .
$$

Since

$$
\begin{equation*}
Y_{2}\left(\frac{B}{C}\right)+Y_{3}\left(\frac{2}{C}\right)=0, \quad Y_{2}\left(\frac{D}{C}\right)=0, \quad Y_{3}\left(\frac{D}{C}\right)=0 \tag{5}
\end{equation*}
$$

the corresponding associated group \bar{H}_{7} is measurable and the integral invariant function $f=f(B, C, D, E)$ satisfies the system of R. Deltheil [1;p.28], [6;p.11]

$$
\begin{equation*}
Y_{2}(f)=0, \quad Y_{3}(f)=0, \quad Y_{6}(f)=0, \quad Z_{7}(f)+5 f=0 \tag{6}
\end{equation*}
$$

The system (6) has the solution

$$
f=\frac{h}{\left(C^{2}+D^{2}\right)^{\frac{5}{2}}},
$$

where $h=$ const. Thus, we can state:
Theorem 3.1. The set (2) of spheres Σ in G_{3} is measurable with respect to the group of equiform transformations H_{7} and has the invariant density

$$
\begin{equation*}
d \Sigma=\frac{1}{\left(C^{2}+D^{2}\right)^{\frac{5}{2}}} d B \wedge d C \wedge d D \wedge d E \tag{7}
\end{equation*}
$$

By (3) the formula (7) can be written as

$$
\begin{equation*}
d \Sigma=\frac{1}{R^{5}} d B \wedge d C \wedge d D \wedge d E \tag{8}
\end{equation*}
$$

Differentiating (3), we have

$$
\begin{equation*}
d R=\frac{1}{R}(C d C+D d D) \tag{9}
\end{equation*}
$$

By exterior product of (9) and $d B \wedge d D \wedge d E$ and $d B \wedge d C \wedge d E$, we obtain

$$
\left.\begin{array}{rl}
d B & \wedge d C \\
\wedge & \wedge d D \wedge d E=-\frac{R}{C} d R \wedge d B \wedge d D \wedge d E \\
d B & \wedge d C \wedge d D \wedge d E
\end{array}\right) \frac{R}{D} d R \wedge d B \wedge d C \wedge d E,
$$

respectively. Thus, the formula of density (7) becomes

$$
\begin{align*}
& d \Sigma=\frac{1}{C R^{4}} d R \wedge d B \wedge d D \wedge d E \tag{10}\\
& d \Sigma=\frac{1}{D R^{4}} d R \wedge d B \wedge d C \wedge d E
\end{align*}
$$

We summarize the foregoing results in the following

Corollary 3.2. The density of the spheres (2) in G_{3} satisfies the relations (8) and (10).
4. Measurability with respect to the subgroup B_{6}. The corresponding associated group \bar{B}_{6} of the group B_{6} has infinitesimal operators $Y_{1}=\frac{B}{C} Y_{2}+\frac{2}{C} Y_{3}, Y_{2}, Y_{3}, Y_{4}=$ $\frac{D}{C} Y_{2}, Y_{5}=\frac{D}{C} Y_{3}, Y_{6}$ and, consequently, acts intransitively on the set of spheres (2), i.e. the set of spheres (2) is not measurable with respect to the group B_{6}. From (5) and
$Y_{2}(f)=0, Y_{3}(f)=0, Y_{6}(f)=0$ we deduce that the set (2) has the measurable subset

$$
\begin{equation*}
C^{2}+D^{2}=R^{2} \tag{11}
\end{equation*}
$$

where $R=$ const, i.e. the spheres (2) have a constant radius.
Theorem 4.1. The set of the spheres (2) is not measurable with respect to the isometry group B_{6}. It has the measurable subset (11) with the invariant density

$$
d \Sigma=d B \wedge d C \wedge d E=d B \wedge d D \wedge d E
$$

REFERENCES

[1] R. Deltheil. Probabilités Géométriques. Paris, Gauthier - Villars, 1926.
[2] G.I. Drinfel'd. On the measure of the Lie groups. Zap. Mat. Otdel. Fiz. Mat. Fak. Kharkov. Mat. Obsc., 21 (1949), 47-57 (in Russian).
[3] I. Kamenarović. Quadrics in the Galilean space G_{3}. Rad Hrvatske Akad. Znan. Umjet., 470, No 12 (1995), 139-156.
[4] B.J. Pavković, I. Kamenarović. The equiform differential geometry of curves in the Galilean space G_{3}. Glasnik Matematički, Ser. III, 22(42), No 2 (1987), 449-457.
[5] O. Röschel. Die Geometrie des Galileischen Raumes. Habilitationsschrift, Leoben, 1984.
[6] M. I. Stoka. Geometrie Integrala, Bucuresti, Ed. Acad. RPR, 1967.
[7] L. B. Vižgina, R. I. Prohorova. Quadrics in the Galilean space. Učenye zapiski, 232 (1963), 479-490.

South-West University "Neofit Rilski"
Faculty of Mathematics and Natural Science
Department of Mathematics
66, Ivan Mihailov Str.
2700 Blagoevgrad, Bulgaria
e-mail: adribor@aix.swu.bg

ВЪРХУ ИЗМЕРИМОСТТА НА МНОЖКЕСТВА ОТ СФЕРИ В ГАЛИЛЕЕВО ПРОСТРАНСТВО

Адриян Върбанов Борисов

Описани са измеримите множества от сфери в галилеево пространство и са намерени съответните им инвариантни гъстоти относно групата на подобностите и някои нейни подгрупи.

[^0]: *2000 Mathematics Subject Classification: 53C65
 Key words: Galilean space, measurability of sets, invariant density

