MATEMATИKA И MATEMATИЧЕСКО ОБРАЗОВАНИЕ, 2007 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2007 Proceedings of the Thirty Sixth Spring Conference of the Union of Bulgarian Mathematicians St. Konstantin & Elena resort, Varna, April 2–6, 2007

ON THE MEASURABILITY OF SETS OF SPHERES IN THE GALILEAN SPACE *

Adrijan V. Borisov

The measurable sets of spheres and the corresponding invariant densities with respect to the similarity group and some its subgroups are described.

1. Introduction. The Galilean space G_3 is defined as a 3-dimensional projective space $P_3(R)$ in which the absolute consists of a real plane ω and a real line f in ω together with an elliptic involution ε of the points of f. All regular projectivities commuting with ε and transforming the absolute figure $\{\omega, f\}$ into itself, form the 8-parametric group H_8 of similarities of G_3 . In affine coordinates H_8 has the form

(1)

$$\begin{aligned} x' &= a_{11} + a_{12}x, \\ y' &= a_{21} + a_{22}x + a_{23}y\cos\varphi + a_{23}z\sin\varphi, \\ z' &= a_{31} + a_{32}x - a_{23}y\sin\varphi + a_{23}z\cos\varphi, \end{aligned}$$

where a_{ij} and φ are real numbers and $a_{12} > 0$, $a_{23} > 0$.

In particular, if:

(2)

(i) $a_{12} = a_{23} = \alpha$, then the subgroup $H_7 \subset H_8$ consists of transformations which map line segments into proportional segments with coefficient of proportionality α and preserving angles between planes and lines respectively. The group H_7 is called the group of **equiform transformations** of the Galilean space G_3 [4].

(*ii*) $a_{12} = a_{23} = 1$, then we have the subgroup $B_6 \subset H_8$ - the group of Galilean motions or the group of isometries of the Galilean space G_3 .

The differential geometry of the Galilean space G_3 has been largely developed by O. Röschel in [5].

The aim of this paper is to study the measurability in the sense of M.I.Stoka [6] and G.I.Drinfeld [2] of sets of spheres with respect to H_8 and the indicated above subgroups.

2. Measurability with respect to H_8 . Quadrics in G_3 have been treated in [7] but a more complete metric classification of regular and singular quadrics has been given in [3].

Let a quadric Σ in the space G_3 be given by equation of the form

$$x^2 + Bx - 2Cy - 2Dz + E = 0,$$

where B, C, D, E are real parameters and $C^2 + D^2 \neq 0$.

159

^{*}2000 Mathematics Subject Classification: 53C65

Key words: Galilean space, measurability of sets, invariant density

Remark 2.1. We note that in [3] and in [5] the quadric Σ is called the isotropic circular cylinder and the **point sphere** (Punktkugel) of the radius

$$(3) R = \sqrt{C^2 + D^2}$$

respectively. We call this quadric the sphere of the Galilean space G_3 .

Under the action of (1) the sphere $\Sigma(B, C, D, E)$ is transformed into the sphere $\overline{\Sigma}(\overline{B}, \overline{C}, \overline{D}, \overline{E})$:

$$\bar{B} = -2a_{11} + a_{12}B + 2\frac{a_{12}}{a_{23}}[(a_{22}\cos\varphi - a_{32}\sin\varphi)C + (a_{22}\sin\varphi + a_{32}\cos\varphi)D]$$
(4)

$$\bar{C} = \frac{a_{12}^2}{a_{23}}(C\cos\varphi + D\sin\varphi),$$

$$\bar{D} = \frac{a_{12}^2}{a_{23}}(-C\sin\varphi + D\cos\varphi),$$

$$\bar{E} = a_{11}^2 - a_{11}a_{12}B + 2\frac{a_{12}^2}{a_{23}}\left[\left(\frac{a_{32}\sin\varphi - a_{22}\cos\varphi}{a_{12}}a_{11} + a_{21}\cos\varphi - a_{31}\sin\varphi\right)C + \left(-\frac{a_{32}\cos\varphi + a_{22}\sin\varphi}{a_{12}}a_{11} + a_{21}\sin\varphi + a_{31}\cos\varphi\right)D\right] + a_{12}^2E.$$

The transformations (4) form the so-called associated group \bar{H}_8 of H_8 [6;p.34]. \bar{H}_8 is isomorphic to H_8 and the invariant density with respect to H_8 of the spheres (2), if it exists, coincides with the invariant density with respect to \bar{H}_8 of the points (B, C, D, E)in the set of parameters [6;p.33]. The infinitesimal operators of \bar{H}_8 are

$$Y_{1} = 2\frac{\partial}{\partial B} + B\frac{\partial}{\partial E}, \quad Y_{2} = C\frac{\partial}{\partial E}, \quad Y_{3} = C\frac{\partial}{\partial B},$$
$$Y_{4} = D\frac{\partial}{\partial E}, \quad Y_{5} = D\frac{\partial}{\partial B}, \quad Y_{6} = D\frac{\partial}{\partial C} - C\frac{\partial}{\partial D},$$
$$Y_{7} = C\frac{\partial}{\partial C} + D\frac{\partial}{\partial D}, \quad Y_{8} = B\frac{\partial}{\partial B} + 2C\frac{\partial}{\partial C} + 2D\frac{\partial}{\partial D} + 2E\frac{\partial}{\partial E}$$

Obviously, Y_2, Y_3, Y_6 and Y_7 are arcwise unconnected and

$$Y_8 = 2\frac{E}{C}Y_2 + \frac{B}{C}Y_3 + 2Y_7.$$

Since

$$Y_2\left(2\frac{E}{C}\right) + Y_3\left(\frac{B}{C}\right) + Y_7(2) \neq 0,$$

it follows immediately:

Theorem 2.2. The set (2) of sphere Σ in G_3 is not measurable under similarity group H_8 and it has not measurable subgroups.

3. Measurability with respect to the subgroup H_7 . The associated group \overline{H}_7 of the group H_7 has the infinitesimal operators $Y_1, Y_2, Y_3, Y_4, Y_5, Y_6$ and $Z_7 = B \frac{\partial}{\partial B} + C \frac{\partial}{\partial C} + D \frac{\partial}{\partial D} + 2E \frac{\partial}{\partial E}$. The infinitesimal operators Y_2, Y_3, Y_6 and Z_7 are arcwise unconnected 160

and

$$Y_1 = \frac{B}{C}Y_2 + \frac{2}{C}Y_3, \quad Y_4 = \frac{D}{C}Y_2, \quad Y_5 = \frac{D}{C}Y_3$$

Since

(5)
$$Y_2\left(\frac{B}{C}\right) + Y_3\left(\frac{2}{C}\right) = 0, \quad Y_2\left(\frac{D}{C}\right) = 0, \quad Y_3\left(\frac{D}{C}\right) = 0,$$

the corresponding associated group \overline{H}_7 is measurable and the integral invariant function f = f(B, C, D, E) satisfies the system of R. Deltheil [1;p.28], [6;p.11]

(6)
$$Y_2(f) = 0, \quad Y_3(f) = 0, \quad Y_6(f) = 0, \quad Z_7(f) + 5f = 0$$

The system (6) has the solution

$$f = \frac{h}{(C^2 + D^2)^{\frac{5}{2}}},$$

where h = const. Thus, we can state:

Theorem 3.1. The set (2) of spheres Σ in G_3 is measurable with respect to the group of equiform transformations H_7 and has the invariant density

(7)
$$d\Sigma = \frac{1}{(C^2 + D^2)^{\frac{5}{2}}} dB \wedge dC \wedge dD \wedge dE.$$

By (3) the formula (7) can be written as

(8)
$$d\Sigma = \frac{1}{R^5} dB \wedge dC \wedge dD \wedge dE.$$

Differentiating (3), we have

(9)
$$dR = \frac{1}{R}(CdC + DdD)$$

By exterior product of (9) and $dB \wedge dD \wedge dE$ and $dB \wedge dC \wedge dE$, we obtain

$$dB \wedge dC \wedge dD \wedge dE = -\frac{R}{C}dR \wedge dB \wedge dD \wedge dE,$$

$$dB \wedge dC \wedge dD \wedge dE = \frac{R}{D}dR \wedge dB \wedge dC \wedge dE,$$

respectively. Thus, the formula of density (7) becomes

(10)
$$d\Sigma = \frac{1}{CR^4} dR \wedge dB \wedge dD \wedge dE$$
$$d\Sigma = \frac{1}{DR^4} dR \wedge dB \wedge dC \wedge dE$$

We summarize the foregoing results in the following

Corollary 3.2. The density of the spheres (2) in G_3 satisfies the relations (8) and (10).

4. Measurability with respect to the subgroup B_6 . The corresponding associated group \overline{B}_6 of the group B_6 has infinitesimal operators $Y_1 = \frac{B}{C}Y_2 + \frac{2}{C}Y_3, Y_2, Y_3, Y_4 = \frac{D}{C}Y_2, Y_5 = \frac{D}{C}Y_3, Y_6$ and, consequently, acts intransitively on the set of spheres (2), i.e. the set of spheres (2) is not measurable with respect to the group B_6 . From (5) and 161 $Y_2(f) = 0, \ Y_3(f) = 0, \ Y_6(f) = 0$ we deduce that the set (2) has the measurable subset (11) $C^2 + D^2 = R^2,$

where R = const, i.e. the spheres (2) have a constant radius.

Theorem 4.1. The set of the spheres (2) is not measurable with respect to the isometry group B_6 . It has the measurable subset (11) with the invariant density

$$d\Sigma = dB \wedge dC \wedge dE = dB \wedge dD \wedge dE.$$

REFERENCES

[1] R. DELTHEIL. Probabilités Géométriques. Paris, Gauthier – Villars, 1926.

[2] G.I. DRINFEL'D. On the measure of the Lie groups. Zap. Mat. Otdel. Fiz. Mat. Fak. Kharkov. Mat. Obsc., **21** (1949), 47–57 (in Russian).

[3] I. KAMENAROVIĆ. Quadrics in the Galilean space G_3 . Rad Hrvatske Akad. Znan. Umjet., 470, No 12 (1995), 139–156.

[4] B.J. PAVKOVIĆ, I. KAMENAROVIĆ. The equiform differential geometry of curves in the Galilean space G_3 . Glasnik Matematički, Ser. III, **22(42)**, No 2 (1987), 449–457.

[5] O. RÖSCHEL. Die Geometrie des Galileischen Raumes. Habilitationsschrift, Leoben, 1984.

[6] M. I. STOKA. Geometrie Integrala, Bucuresti, Ed. Acad. RPR, 1967.

[7] L. B. VIŽGINA, R. I. PROHOROVA. Quadrics in the Galilean space. Učenye zapiski, 232 (1963), 479–490.

South-West University "Neofit Rilski" Faculty of Mathematics and Natural Science Department of Mathematics 66, Ivan Mihailov Str. 2700 Blagoevgrad, Bulgaria e-mail: adribor@aix.swu.bg

ВЪРХУ ИЗМЕРИМОСТТА НА МНОЖЕСТВА ОТ СФЕРИ В ГАЛИЛЕЕВО ПРОСТРАНСТВО

Адриян Върбанов Борисов

Описани са измеримите множества от сфери в галилеево пространство и са намерени съответните им инвариантни гъстоти относно групата на подобностите и някои нейни подгрупи.