SOME RESULTS ABOUT CONVERGENCE AND SUMMABILITY OF SERIES IN HERMITE ASSOCIATED FUNCTIONS*

Georgi S. Boychev

In this paper some results about convergence and Cesaro summability of series in Hermite associated functions are considered.

Hermite polynomials are defined by the equalities [1, (2.11), p. 12]

$$
H_{n}(z)=(-1)^{n} \exp \left(z^{2}\right)\left\{\exp \left(-z^{2}\right)\right\}^{(n)} \quad(n=0,1,2,)
$$

The functions $\left\{G_{n}(z)\right\}_{n=0}^{\infty}$, defined in the open set $H=C \backslash R$ by means of the equalities [1, (4.13), p.27]

$$
G_{n}(z)=-\int_{-\infty}^{+\infty} \frac{\exp \left(-t^{2}\right) H_{n}(t)}{t-z} d t, \quad n=0,1,2, \ldots
$$

are called Hermite associated functions. These functions are holomorphic in the open set H.

Now, we define the following two sequences of holomorphic functions:

$$
\begin{equation*}
G_{n}^{+}(z)=G_{n}(z), \quad \operatorname{Im} z>0, \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

and
(2)

$$
G_{n}^{-}(z)=G_{n}(z), \quad \operatorname{Im} z<0, \quad n=0,1,2, \ldots
$$

For the Hermite associated functions (1) and (2) the following proposition is true [1, (III.3.4)]:
(a) The representation
(3) $G_{n}^{+}(z)=\pi \sqrt{2}(-i)^{n+1}(2 n / e)^{n / 2} \exp \left(-z^{2} / 2\right) \exp (i z \sqrt{2 n+1})\left[1+k_{n}^{+}(z)\right], \quad n=1,2, \ldots$ holds in the half-plane $H^{+}: \operatorname{Im} z>0$, where the complex functions $\left\{k_{n}^{+}(z)\right\}_{n=1}^{+\infty}$ are holomorphic in H^{+}and $k_{n}^{+}(z)=o(1)(n \rightarrow \infty)$ uniformly on every compact subset of H^{+}.
(b) The representation
(4) $G_{n}^{-}(z)=i^{n+1} \pi \sqrt{2}(2 n / e)^{n / 2} \exp \left(-z^{2} / 2\right) \exp (-i z \sqrt{2 n+1})\left[1+k_{n}^{-}(z)\right], n=1,2, \ldots$
holds in the half-plane $H^{-}: \operatorname{Im} z<0$, where the complex functions $\left\{k_{n}^{-}(z)\right\}_{n=1}^{+\infty}$ are ho-lomorphic in H^{-}and $k_{n}^{-}(z)=o(1)(n \rightarrow \infty)$ uniformly on every compact subset of H^{-}.

[^0]It holds that $k^{-}(z)=\overline{k_{n}^{+}(\bar{z})}, n=1,2,3, \ldots$.
A series of the kind

$$
\begin{equation*}
\sum_{n=0}^{+\infty} a_{n} G_{n}^{ \pm}(z) \tag{5}
\end{equation*}
$$

we call Hermite series.
Let $0<\tau<+\infty$ and $S(\tau)=\{z \in C:|\operatorname{Im} z|>\tau\}$. We assume that $S(0)=H$ and $S(\infty)=\emptyset$.
P. Rusev proved the following assertion [1, (IV.3.3), p. 99]

Theorem 1. (a) If the Hermite series (5) converges at a point $z_{0} \in H$, then it is absolutely uniformly convergent on every closed set $\overline{S(\tau)}$ with $\tau>\left|\operatorname{Im} z_{0}\right|$.
(b) If

$$
\tau_{0}=\max \left\{0, \lim _{n \rightarrow \infty} \sup (2 n+1)^{-1} \log \mid(2 n / e)^{n / 2} a_{n}\right\},
$$

then for $\tau \in\left(\tau_{0}, \infty\right)$ the Hermite series (5) is absolutely uniformly convergent on the closed set $\overline{S(\tau)}$ and diverges in $C \backslash \overline{S\left(\tau_{0}\right)}$.

The main result in this paper is the following:
Theorem 2. Let $p \geq-1, z_{0} \in H$ and

$$
\begin{equation*}
a_{n} G_{n}^{ \pm}\left(z_{0}\right)=O\left(n^{p}\right)(n \rightarrow+\infty) \tag{6}
\end{equation*}
$$

Then, the Hermite series (5) is absolutely convergent in the set $S\left(\tau_{0}\right)$, where $\tau_{0}=\left|\operatorname{Im} z_{0}\right|$.
Proof. Suppose that $z_{0}=x_{0}+\tau_{0} i \in H^{+}$and $z_{1}=x_{1}+y_{1} i \in S\left(\tau_{0}\right) \cap H^{+}$. Then,
(7)

$$
y_{1}>\tau_{0} .
$$

We shall prove that the series (5) is absolutely convergent for $z=z_{1}$.
Using (3), it is not difficult to prove that

$$
\begin{equation*}
\left|G_{n}^{+}(z)\right|=K_{n} O(\exp (-\sqrt{2 n+1} y) \quad(n \rightarrow+\infty) \tag{8}
\end{equation*}
$$

where $K_{n}=(2 n / e)^{n / 2}, z \in H^{+}$and $y=\operatorname{Im} z$.
We assume that $a_{0}=0$. Using the representation (3) it is not difficult to prove that there is number $m \in \mathbb{N}$ such that $G_{n}^{+}\left(z_{0}\right) \neq 0$ for $n \geq m$.

Suppose that $n \geq m$. Then,

$$
b_{n}=a_{n} G_{n}^{+}\left(z_{1}\right)=a_{n} G_{n}^{+}\left(z_{0}\right) \cdot \frac{G_{n}^{+}\left(z_{1}\right)}{G_{n}^{+}\left(z_{0}\right)}
$$

Having in mind the asymptotic formula (8), we get that

$$
\frac{G_{n}^{+}\left(z_{1}\right)}{G_{n}^{+}\left(z_{0}\right)}=O(\exp (-\lambda \sqrt{2 n+1})) \quad(n \rightarrow+\infty)
$$

where $\lambda=\tau_{0}-y_{1}$. From inequality (7) it follows that $\lambda>0$.
Using (6), we get that

$$
\sum_{n=m}^{+\infty}\left|b_{n}\right|=O\left(\sum_{n=m}^{+\infty} n^{p} \exp (-\lambda \sqrt{2 n+1})\right)
$$

Since the series $\sum_{n=1}^{+\infty} n^{p} \exp (-\lambda \sqrt{2 n+1})$ converges, we conclude that the series $\sum_{n=1}^{+\infty}\left|b_{n}\right|$ is convergent. Therefore, the series (5) is absolutely convergent for $z=z_{1}$.

Suppose that $z_{2}=x_{2}-y_{2} i \in S\left(\tau_{0}\right) \cap H^{-}$. Then,

$$
y_{2}>\tau_{0} .
$$

We shall prove that the series (5) is absolutely convergent for $z=z_{2}$.
Using (4), it is easy to prove that

$$
\begin{equation*}
\left|G_{n}^{-}(z)\right|=K_{n} O(\exp (\sqrt{2 n+1} y) \quad(n \rightarrow+\infty)) \tag{9}
\end{equation*}
$$

where $z \in H^{-}$and $y=\operatorname{Im} z$.
Suppose that $n \geq m$. Then,

$$
c_{n}=a_{n} G_{n}^{-}\left(z_{2}\right)=a_{n} G_{n}^{+}\left(z_{0}\right) \cdot \frac{G_{n}^{-}\left(z_{2}\right)}{G_{n}^{+}\left(z_{0}\right)} .
$$

Using (8) and (9), we get that

$$
\frac{G_{n}^{-}\left(z_{2}\right)}{G_{n}^{+}\left(z_{0}\right)}=O(\exp (-\mu \sqrt{2 n+1})) \quad(n \rightarrow+\infty)
$$

where $\mu=y_{2}-\tau_{0}>0$. Then, we have that

$$
\sum_{n=m}^{+\infty}\left|c_{n}\right|=O\left(\sum_{n=m}^{+\infty} n^{p} \exp (-\mu \sqrt{2 n+1})\right)
$$

Hence, the series (5) is absolutely convergent for $z=z_{2}$.
The proof of Theorem 2 in the case when $z_{0} \in H^{-}$is similar to the proof in the case when $z_{0} \in H^{+}$. Thus, Theorem 2 is proved.

As a corollary of Theorem 1 (a) and Theorem 2 we can state the following proposition:
Theorem 3. Let $p \geq-1, z_{0} \in H$ and let (6) hold. Then, the Hermite series (5) is absolutely uniformly convergent on every closed set $\overline{S(\tau)}$ with $\tau>\left|\operatorname{Im} z_{0}\right|$.

Let the series (5) be Cesaro summability with parameter $\delta>-1$, i.e. $(C, \delta)-$ summable for $z=z_{0} \in H$. Then [2, p. 132]

$$
a_{n} G_{n}^{ \pm}\left(z_{0}\right)=O\left(n^{\delta}\right) \quad(n \rightarrow+\infty)
$$

Applying Theorem 2 we get that the series (5) is convergent for $z \in S\left(\left|\operatorname{Im} z_{0}\right|\right)$.
Then, as another corollary of Theorem 2 we get the following result:
Theorem 4. Let $\delta>-1$ and let the series (5) be (C, δ)-summable for $z=z_{0} \in H$. Then, the Hermite series (3) is absolutely convergent in the set $S\left(\left|\operatorname{Im} z_{0}\right|\right)$.

REFERENCES

[1] P. Rusev. Classical Orthogonal Polynomials and Their Associated Functions in Complex Domain. Sofia, 2005.
[2] A. Zygmund. Trigonometric series, vol. I. Moscow, 1965 (in Russian).
Georgi S. Boychev
42, Irechek Str.
Stara Zagora, Bulgaria
e-mail: GBojchev@uni-sz.bg

НЯКОИ РЕЗУЛТАТИ ЗА СХОДИМОСТТА И СУМИРУЕМОСТТА НА РЕДОВЕ ПО АСОЦИИРАНИТЕ ФУНКЦИИ НА ЕРМИТ

Георги С. Бойчев

В този статия са разгледани някои твърдения, свързани със сходимостта и сумируемостта на редове по асоциираните функции на Ермит.

[^0]: *2000 Mathematics Subject Classification: 40A05, 40C15
 Key words: Convergence, Cesaro summability, Hermite polynomials, Hermite associated functions

