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SOME SELF-AFFINE SETS IN THE EUCLIDEAN PLANE
AND THEIR FRACTAL DIMENSIONS"

Radostina P. Encheva, Georgi H. Georgiev

We discuss the box and the Hausdorff dimensions of two types of self-affine sets in the
Fuclidean plane. The first type is the class of self-affine curves generated by self-affine
zippers. The second one is a total disconnected fractal obtained by two contracting
affinities. These affinities are related to every obtuse triangle.

1. Introduction. An affine transformation of the Euclidean plane R? is a bijective
mapping A : R? — R? which preserves the set of all lines in R? and the affine ratio of
every three collinear points. All affine transformation of R? form a group with respect
to a composition of mappings. An affine transformation A : R? — R? is a contraction
if |A(21) — A(22)| < |21 — 22| for any 21, 29 € R? and there exist 2?, 2§ € R? for which
|A(2Y) — A(29)| < |29 — 23|. Every such transformation is called a contracting affine
transformation or, shortly, a contracting affinity. A product of a contracting affinity and
an Euclidean motion is also a contracting affinity. A scaling transformation of R? is an
affine transformation given by the equalities
(1) 2 =ax, y = by,
where a and b are nonzero real constants. The scaling transformation defined by (1) is
a contracting if and only if 0 < a®? < 1, 0 < b? < 1 and a® + b? < 2. In this paper
we consider contracting affinities as compositions of contracting scaling transformations,
rotations and translations. A finite family of contracting affinities of R? {Ay,..., 4,,}
with m > 2 is a particular case of an iterated function system or, shortly, IFS. For such
IFS, there is an invariant set F (or an attractor F) with the properties: ' C R? is a

m
non-empty compact subset, and F' = U A;(F). The attractor F' is called a self-affine set
when all A; are contracting aﬂinities.l '

In the next section we study the box dimension and the Hausdorff dimension of some
self-affine curves which are generated by special iterated function systems called self-
affine zippers. In Section 3, we calculate the Hausdorff dimension of a total disconnected
fractal. This fractal is an attractor of IFS defined by two contracting affinities. Every
obtuse triangle determines such pair of contracting affinities.

*The research is partially supported by Shumen University under grant 15/150306.
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2. Box and Hausdorff dimension of some self-affine zippers in R?. Let A =
{A1, Ay, ..., Ay} be a finite set of contracting affine mappings of R? into itself. If there
are m + 1 different points in R? pg, p1, ..., pm such that A;(po) = p;_1 and A;(pym) = ps
for i =1,2,...,m, then the iterated function system A is called a self-affine zipper with
signature (0,0,...,0). The points pg,p1,...,pm are base points of A. In [1,2,3] many
properties of the self-similar zippers are proved. From Theorem 1.2 in [1] it follows that
the attractor F' of the iterated function system (IFS) A is a Jordan arc with endpoints
po and py, if and only if A;(F)NA;(F) =0 for |i —j| > 1 and Card(A;(F)NA;(F)) =1
for |i — j| = 1.

In this section we deal with Hausdorff and Box dimension of the set F' = U A (F)
which is, in general, a fractal. =

Theorem 1. Let A = {Ay, A, ..., Ay} be a self-affine zipper in R2. If the linear part
C(l)i g ), where 0 < ¢; <1 fori=1,2,...,m,
St a; =1 and F is the attractor of A, then

1 c e
dimpF =14 08t Fem)
logm

of A; is represented by the matriz T; =

Proof. According to Lemma 1.1 in [1], there exists a continuous mapping v : [0,1] —

F with the following property: for a certain real function f : [0,1] — R it is fulfilled
F = graph f = (z, f(x)) = ~(x).
We denote by i = (i1,ia,...,9m) € {1,2,...,m}* for k > 1, a k-term sequence with
1 <4; <'m. The part of F over the interval I; of the x-axis is the affine image
A 04;,0---04; (F). We have that T;, oT;,0---0T;, = < iy @iz - - i 0 >
0 Ci, Ciy - - - Ciy
Hence, T;, o T;, o --- o T;, (F') is contained in a rectangle of height hc;, ¢y, .. . ¢, , where
h is the height of F. Since A;, 0 A;, 0---0 A;, (F) is an image of T;, o T}, o --- o T}, (F)
under a translation, the height of A;, 0 A;,0---0A;, (F) is the same. If ¢1, g2, g3 are three
non-collinear points chosen from pg, p1,...,Ppm, then T;, o T;, o -+ o T;, (F) contains the
points T;, oT;, 0---0T;, (g;), j = 1,2, 3. So that, the height of the obtained triangle is at
least dc;, ¢, - . . ¢i,, where d is the vertical distance from g2 to the segment [q1, ¢3]. We
denote by R[] = sup,, ,,eri |f(21) — f(22)| the range of the function f over I;. Thus,
dcilci2 <Gy S Rf[[l] S hC“Cl'Q e Gy
Summing over all mF intervals I; for fixed k > 1 we get
(2) dlertea+-+em) < > RG] <hler+cat - +cm)
ie{1,--,m}k
From Proposition 11.1 ([4], p. 161) it follows that
mF 3" Rp[L] < Nypw <2m% +mF Y Ry[h],
ie{l,...,m}k ie{l,...,m}*

where Nj is the number of squares of the §—mesh that intersect F' = graphf. Using (2),
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we obtain
mkd(cl +eo+ -+ cm)k < N,,—x <2mF + mkh(cl +co+ -+ cm)k.
Now, applying the equivalent definition (see [4], p.43) of the box dimension, we can
conclude that
log N,,,—« 1 log(er + -+ ¢m) .

dimpF = lim ——— =
s el klogm logm

Theorem 2. Let A = {Ay, Aa, ..., Ay} be a self-affine zipper in R2. If the linear
a; bl .

b a; for i = 1,2,...,m, where

Soitia;=1,>" b =0 and F is the attractor of A, then dimy F = 1.

Proof. We have that F = graphf = {(z, f(x)) = v(x), f : [0,1] — R}. If proj F' is
the orthogonal projection of F over the segment [0,1], then dimyF > dimyproj F =
dimy[0,1] = 1. Let R¥ be a rotation of angle ¢ around the origin. We obtain that
a; — bz 0

0 a; + b;
an invariant under a rotation, dim  F' = dimyF’, where F’ is the attractor of the iterated
function system {A7, Ay, ..., A} with A, = R™/*0 A;o R™™/* i =1,2,...,m. Applying
slog 37" (a; + b;)

logm

part of A; is represented by the matriz T; = <

T; = R~™/*oT/oR™/* where T = . Since the Hausdorff dimension is

=1 and

Theorem 1, we get dimyF = dimyF’ < dimgF’ =1+ s
this completes the proof.

Proposition 1. Let Apgpsp be an obtuse triangle in R? with an obtuse angle ¥popps
and let p1 € [po, p|, p2 € [ps, p] be interior points on the sides of the triangle. There
exists a self-affine zipper with base points pg, p1, P2, p3 and an attractor Fy, such that
dimHF1 =1.

Proof. First, we consider the case when Apgpsp is an isosceles triangle. Since the
Hausdorff dimension is invariant under a similarity, we may put po = (0,0) and p; =
(1,0). Then, p = (1/2,a), 0 < a < 1/2. We construct the mappings

k ka
A T\ _ 20 A T 7
y ka k| \ v
A2\
Lk Ik 1
2\ 2\ A T 5y
P L
2(1/) I—k Ik <y>+ Sk
a 1— — — — 3¢
A 2\ 2\
l la I
I b
x ) _ 2) A x 22
PR

where A = |po — p| = V/1/4+a?, k = |po — p1|, | = |ps — p2|. Since A; are contracting
affine transformations of R2, A;(po) = pi—1 and A;(p3) = p; for i = 1,2,3, the set
A = {A;, As, A3} is a self-affine zipper with base points pg, p1, p2, p3. The linear part
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Fig. 1. The attractor F; for p = (0.5,0.2), k =1=0.3

of A; is represented by the matrix in the form of T; = ( Zl 2’ ) for i = 1,2,3. As
k l k l k l—k l

= — 1—7—7 7:1 Q = — —_ — =

ar+as+ag 2A+( o 2A)+2/\ and by + by + b3 yet——a-ya=0,

3
from Theorem 2 it follows that dimy F; = 1, where I} = U A;(Fy).
i=1

If the triangle Apgpsp is not isosceles, then there exists a contracting affinity g of
R?, such that g(po, p3,p’) = po, 3, p, where Apopsp’ is an isosceles obtuse triangle with
obtuse angle <popps. Thus, g is a Lipshitz transformation, i.e. |g(p) — g(q)| < |p — ¢.
Using Corollary 2.4 [4] we get 1 < dimy Fy < dimgg~ ! (Fy) = 1. O

The attractor Fy is plotted in Figure 1 under the conditions p = (0.5, 0.2), k =1 =0.3.

Let pp = (0,0), p1 = (a,b), p2 = (1,0) be points in the Euclidean plane. Suppose that
a? +b? < a. From here 0 < a < 1 and |b| < 1/2. Then, we consider the affine mappings

of R? defined by
z\ [ a b/m x
a(3)=0 2 (5)

z\ [ 1—-a —b/r x a
() =05 ) (5)+(0),
where m >n > 1, r > 1 > 1 are real numbers.

Proposition 2. The set A = {Ay, A3}, where A;, i = 1,2 are affine mappings of R?
defined by (3), is a self-affine zipper with base points po, p1,p2. If Fo = A1(Fa) U Ay(Fy)
is the attractor of A, then Fy is a Jordan arc and 1 < dimp Fy < s, where s is the unique
solution of the equation (a® + b%)*/% 4+ ((1 — a)? + b?)%/? = 1.

Proof. It is clear that A;(po) = po, A2(p2) = p2 and A;(p2) = Aa(po) = p1. If

3)

Fig. 2. The attractor F» for p1 = (0.5, 0.47), m=n=17,r=1=1.2
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p, ¢ € R? are any points, then we get

(4) |A1(p) — A1(q)] < e1lp — qls [A2(p) — A2(q)] < c2|p — 4,
where 0 < ¢; = Va?+b% < 1land 0 < ¢ = /(1 —a)2+b% < 1. Thus, A; and A,

are contracting affine transformations of R?. Consequently, A = {A;, A5} is a self-affine
zipper with base points pg, p1, p2 and dimy F> > 1. From (4) we have that A; and A are
Lipshitz transformations with Lipshitz constants ¢; = v/a? + b? and ¢o = /(1 — a)? + b2.
Applying Proposition 9.6 ([4], p. 135), we obtain that dimy F» < s, where ¢§ + ¢§ = 1.

F; is a Jordan arc with endpoints pg and ps if Card(A; (F2)NA2(F>)) = 1. We find that
Ai(p1) = (a®> +b%/m, ab(1 —1/n)) and Az(p1) = ((1 —a)a —b*/r +a, (1 —a)b(1 —1/1)).
The inequalities 0 < ab(l — 1/n) < b and 0 < (1 — a)b(1 — 1/1) < b imply that the
points A;(p1) and Az(p;) are inner points in the triangle Apopipe. Since a? + b? < a,
a?+b%/m < a?+b? <aand (1 —a)a—>b?/r+a> a. So that, the triangles Apop1 A1 (p1)
and Ap1paAa(p1) have not overlaps. Continuing in this way we get that the fractal F»
has no overlaps. This means that Card(A;(F») N A2(F3)) = 1. O

The attractor Fy is plotted in Figure 2.

3. Total disconnected affine set as an attractor of IFS. Let A = {A;, A>}
be an iterated function system of two contracting affine transformations of R2. If F =
A1(F) U Ao(F) is the invariant set of A and A;(F) N Ao(F) = (), then F is totally
disconnected.

In this section we find an explicit formula for the Hausdorff dimension of the totally
disconnected fractal F' which is obtained by a fixed triangle Apgp1p. Recently, Kenneth
Falconer and Jun Miao [5] gave an explicit formula for the Hausdorff dimension of the
attractor F' of the IFS A; = T; + v;, i = 1,2,..., N, and of affine contractions where
T; are upper triangular matrices and ||T;]] < 1/2 for all ¢ = 1,..., N. In this case the
Hausdorff dimension of F' is expressed by the diagonal entries of the T;.

Let po = (0,0), p1 = (1,0) and p = (a,b) be the vertices of the positively-oriented
obtuse triangle Apgpip with an obtuse angle ¥p;ppo. This means that 0 < a < 1,
0<b<1/2 and a®+b? < a . Let py € [po,p] and p3 € [p1,p] be interior points on the
sides of the triangle, i. e. 0 < k = |po — p2| < |po —p| and 0 < I = |p1 — p3| < |p1 — |-
We consider the affine mappings A; and As given by

ak bk
xT o A A xT
Al(@/)‘ bk ak <y>
A A
(5)
(1—a)l —bl 1—(1—a)l
T\ _ I I x 1
A2<y>_ —bi (-a)l <y>+ bl ’
Iz t 1

where A = |pg —p| = Va2 + 0%, u = |p1 —p| = /(1 —a)?+b2 Both A; and A, are

contractive and A1(po) = po, A1(p1) = p2, A2(p1) = p1, A2(po) = ps-
Proposition 3. Let A;, i = 1,2 be the affine mappings defined by (5) and F be the
k l
attractor of the IFS A = { Ay, As}. IfX <1/2 and — < 1/2, then dimy F' = max{si, $2},
L
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where
[(a =D)k/A +[(1 —a+b)l/u[* =1
and

(@ + b)k /A2 + |(1 — a — b)l/ul*2 = 1.

Proof. Using the rotations R™/* and R~™/*, we get A} = R™/*0 A0 R~™/* and A}, =
R™/*0Ay0R~™/* where the linear part of A% and A}, are represented by the matrices T/ =

a—0bk/A 0 y 1—a+b).l/n 0 .
( ( 0 (a +b)k/A ) and T = ( ( 0 Y (1—a—b)./pu > respecti-
vely. If F' is the attractor of the IFS {A], AL}, then dimyF = dimyF’. Hence, the
statement follows immediately from Corollary 3.2 in [5].

Example 1. Let us consider a concrete case of such attractor F'. Suppose that
p = (045, 0.4), k = 0.3, I = 0.2. Solving the equations 0.0249136°* + 0.279382%1 = 1
and 0.0441129°%2 + 0.423532%2 = 1 we find s; = 0.305999 and s, = 0.397442. Hence,
dimy F' = 0.397442.
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HAKOUN ABTO-A®PVTHHY MHO2KECTBA B EBKJINJOBATA
PABHUHA 1 TEXHUTE ®PAKTAJTHN PASMEPHOCTUA

Panoctuna IlerpoBa EnueBa, 'eopru Xpucros I'eoprues

Pazruexx name knervanara u Xaycropdosara pa3sMepHOCTH Ha JBa BHIA aBTO-adUHHI
MHOXKecTBa. [[bpBUST BUJ € KJIachT Ha aBTO-apUHHUTE KPUBU, T€HEPUPAHU OT apUH-
HU 3urniepu. BropuaT By € TOTAIHO HECBBP3aH (MPAKTAI, TOIyIeH IPe3 ABa CBUBAIIU
acduruTeTa. Tesu adbuHUTETH Ca IIOPOJIEHU OT IIPOU3BOJIEH T'HIOBI'bJIEH TPUBI'bJIHUK.
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