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SOME SELF-AFFINE SETS IN THE EUCLIDEAN PLANE
AND THEIR FRACTAL DIMENSIONS*
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We discuss the box and the Hausdorff dimensions of two types of self-affine sets in the
Euclidean plane. The first type is the class of self-affine curves generated by self-affine
zippers. The second one is a total disconnected fractal obtained by two contracting
affinities. These affinities are related to every obtuse triangle.

1. Introduction. An affine transformation of the Euclidean plane R2 is a bijective
mapping A : R2 → R2 which preserves the set of all lines in R2 and the affine ratio of
every three collinear points. All affine transformation of R2 form a group with respect
to a composition of mappings. An affine transformation A : R2 → R2 is a contraction
if |A(z1) − A(z2)| ≤ |z1 − z2| for any z1, z2 ∈ R2 and there exist z0

1 , z0
2 ∈ R2 for which

|A(z0
1) − A(z0

2)| < |z0
1 − z0

2 |. Every such transformation is called a contracting affine
transformation or, shortly, a contracting affinity. A product of a contracting affinity and
an Euclidean motion is also a contracting affinity. A scaling transformation of R2 is an
affine transformation given by the equalities
(1) x′ = ax, y′ = by,

where a and b are nonzero real constants. The scaling transformation defined by (1) is
a contracting if and only if 0 < a2 ≤ 1, 0 < b2 ≤ 1 and a2 + b2 < 2. In this paper
we consider contracting affinities as compositions of contracting scaling transformations,
rotations and translations. A finite family of contracting affinities of R2 {A1, . . . , Am}
with m ≥ 2 is a particular case of an iterated function system or, shortly, IFS. For such
IFS, there is an invariant set F (or an attractor F ) with the properties: F ⊂ R2 is a

non-empty compact subset, and F =
m⋃

i=1

Ai(F ). The attractor F is called a self-affine set

when all Ai are contracting affinities.
In the next section we study the box dimension and the Hausdorff dimension of some

self-affine curves which are generated by special iterated function systems called self-
affine zippers. In Section 3, we calculate the Hausdorff dimension of a total disconnected
fractal. This fractal is an attractor of IFS defined by two contracting affinities. Every
obtuse triangle determines such pair of contracting affinities.
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2. Box and Hausdorff dimension of some self-affine zippers in R2. Let A =
{A1, A2, . . . , Am} be a finite set of contracting affine mappings of R2 into itself. If there
are m + 1 different points in R2 p0, p1, . . . , pm such that Ai(p0) = pi−1 and Ai(pm) = pi

for i = 1, 2, . . . , m, then the iterated function system A is called a self-affine zipper with
signature (0,0,. . . ,0). The points p0, p1, . . . , pm are base points of A. In [1, 2, 3] many
properties of the self-similar zippers are proved. From Theorem 1.2 in [1] it follows that
the attractor F of the iterated function system (IFS) A is a Jordan arc with endpoints
p0 and pm if and only if Ai(F )∩Aj(F ) = ∅ for |i− j| > 1 and Card(Ai(F )∩Aj(F )) = 1
for |i− j| = 1.

In this section we deal with Hausdorff and Box dimension of the set F =
m⋃

i=1

Ai(F )

which is, in general, a fractal.

Theorem 1. Let A = {A1, A2, . . . , Am} be a self-affine zipper in R2. If the linear part

of Ai is represented by the matrix Ti =
(

ai 0
0 ci

)
, where 0 < ci < 1 for i = 1, 2, . . . ,m,

∑m
i=1 ai = 1 and F is the attractor of A, then

dimBF = 1 +
log(c1 + · · ·+ cm)

log m
.

Proof. According to Lemma 1.1 in [1], there exists a continuous mapping γ : [0, 1] →
F with the following property: for a certain real function f : [0, 1] → R it is fulfilled

F = graph f = (x, f(x)) = γ(x).
We denote by i = (i1, i2, . . . , im) ∈ {1, 2, . . . , m}k for k ≥ 1, a k-term sequence with
1 ≤ ij ≤ m. The part of F over the interval Ii of the x-axis is the affine image

Ai1 ◦Ai2 ◦· · ·◦Aik
(F ). We have that Ti1 ◦Ti2 ◦· · ·◦Tik

=
(

ai1ai2 . . . aik
0

0 ci1ci2 . . . cik

)
.

Hence, Ti1 ◦ Ti2 ◦ · · · ◦ Tik
(F ) is contained in a rectangle of height hci1ci2 . . . cik

, where
h is the height of F . Since Ai1 ◦ Ai2 ◦ · · · ◦ Aik

(F ) is an image of Ti1 ◦ Ti2 ◦ · · · ◦ Tik
(F )

under a translation, the height of Ai1 ◦Ai2 ◦· · ·◦Aik
(F ) is the same. If q1, q2, q3 are three

non-collinear points chosen from p0, p1, . . . , pm, then Ti1 ◦ Ti2 ◦ · · · ◦ Tik
(F ) contains the

points Ti1 ◦Ti2 ◦ · · · ◦Tik
(qj), j = 1, 2, 3. So that, the height of the obtained triangle is at

least dci1ci2 . . . cik
, where d is the vertical distance from q2 to the segment [q1, q3]. We

denote by Rf [Ii] = supx1,x2∈Ii |f(x1)− f(x2)| the range of the function f over Ii. Thus,
dci1ci2 . . . cik

≤ Rf [Ii] ≤ hci1ci2 . . . cik
.

Summing over all mk intervals Ii for fixed k ≥ 1 we get

(2) d(c1 + c2 + · · ·+ cm)k ≤
∑

i∈{1,··· ,m}k

Rf [Ii] ≤ h(c1 + c2 + · · ·+ cm)k

From Proposition 11.1 ([4], p. 161) it follows that

mk
∑

i∈{1,...,m}k

Rf [Ii] ≤ Nm−k ≤ 2mk + mk
∑

i∈{1,...,m}k

Rf [Ii],

where Nδ is the number of squares of the δ−mesh that intersect F = graphf . Using (2),
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we obtain
mkd(c1 + c2 + · · ·+ cm)k ≤ Nm−k ≤ 2mk + mkh(c1 + c2 + · · ·+ cm)k.

Now, applying the equivalent definition (see [4], p.43) of the box dimension, we can
conclude that

dimBF = lim
k→∞

log Nm−k

k log m
= 1 +

log(c1 + · · ·+ cm)
log m

·

Theorem 2. Let A = {A1, A2, . . . , Am} be a self-affine zipper in R2. If the linear

part of Ai is represented by the matrix Ti =
(

ai bi

bi ai

)
for i = 1, 2, . . . , m, where

∑m
i=1 ai = 1,

∑m
i=1 bi = 0 and F is the attractor of A, then dimHF = 1.

Proof. We have that F = graphf = {(x, f(x)) = γ(x), f : [0, 1] → R}. If proj F is
the orthogonal projection of F over the segment [0, 1], then dimHF ≥ dimHproj F =
dimH[0, 1] = 1. Let Rϕ be a rotation of angle ϕ around the origin. We obtain that

Ti = R−π/4◦T ′i ◦Rπ/4, where T ′i =
(

ai − bi 0
0 ai + bi

)
. Since the Hausdorff dimension is

an invariant under a rotation, dimHF = dimHF ′, where F ′ is the attractor of the iterated
function system {A′1, A′2, . . . , A′m} with A′i = Rπ/4 ◦Ai ◦R−π/4, i = 1, 2, . . . , m. Applying

Theorem 1, we get dimHF = dimHF ′ ≤ dimBF ′ = 1 + s
s log

∑m
i=1(ai + bi)
log m

= 1 and

this completes the proof.

Proposition 1. Let 4p0p3p be an obtuse triangle in R2 with an obtuse angle <) p0pp3

and let p1 ∈ [p0, p], p2 ∈ [p3, p] be interior points on the sides of the triangle. There
exists a self-affine zipper with base points p0, p1, p2, p3 and an attractor F1, such that
dimHF1 = 1.

Proof. First, we consider the case when 4p0p3p is an isosceles triangle. Since the
Hausdorff dimension is invariant under a similarity, we may put p0 = (0, 0) and p3 =
(1, 0). Then, p = (1/2, a), 0 < a < 1/2. We construct the mappings

A1

(
x
y

)
=




k

2λ

ka

λ

ka

λ

k

2λ




(
x
y

)
,

A2

(
x
y

)
=




1− l

2λ
− k

2λ

l − k

λ
a

l − k

λ
a 1− l

2λ
− k

2λ




(
x
y

)
+




k

2λ
k

λ
a


 ,

A3

(
x
y

)
=




l

2λ
− l

λ
a

− l

λ
a

l

2λ




(
x
y

)
+




1− l

2λ
l

λ
a


 ,

where λ = |p0 − p| =
√

1/4 + a2, k = |p0 − p1|, l = |p3 − p2|. Since Ai are contracting
affine transformations of R2, Ai(p0) = pi−1 and Ai(p3) = pi for i = 1, 2, 3, the set
A = {A1, A2, A3} is a self-affine zipper with base points p0, p1, p2, p3. The linear part
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Fig. 1. The attractor F1 for p = (0.5, 0.2), k = l = 0.3

of Ai is represented by the matrix in the form of Ti =
(

ai bi

bi ai

)
for i = 1, 2, 3. As

a1 + a2 + a3 =
k

2λ
+ (1− l

2λ
− k

2λ
) +

l

2λ
= 1 and b1 + b2 + b3 =

k

λ
a +

l − k

λ
a− l

λ
a = 0,

from Theorem 2 it follows that dimHF1 = 1, where F1 =
3⋃

i=1

Ai(F1).

If the triangle 4p0p3p is not isosceles, then there exists a contracting affinity g of
R2, such that g(p0, p3, p

′) = p0, p3, p, where 4p0p3p
′ is an isosceles obtuse triangle with

obtuse angle <) p0pp′3. Thus, g is a Lipshitz transformation, i.e. |g(p) − g(q)| ≤ |p − q|.
Using Corollary 2.4 [4] we get 1 ≤ dimHF1 ≤ dimHg−1(F1) = 1. ¤

The attractor F1 is plotted in Figure 1 under the conditions p = (0.5, 0.2), k = l = 0.3.
Let p0 = (0, 0), p1 = (a, b), p2 = (1, 0) be points in the Euclidean plane. Suppose that

a2 + b2 < a. From here 0 < a < 1 and |b| < 1/2. Then, we consider the affine mappings
of R2 defined by

A1

(
x
y

)
=

(
a b/m
b −a/n

)(
x
y

)
,

(3)

A2

(
x
y

)
=

(
1− a −b/r
−b −(1− a)/l

)(
x
y

)
+

(
a
b

)
,

where m ≥ n > 1, r ≥ l > 1 are real numbers.
Proposition 2.The set A = {A1, A2}, where Ai, i = 1, 2 are affine mappings of R2

defined by (3), is a self-affine zipper with base points p0, p1, p2. If F2 = A1(F2) ∪A2(F2)
is the attractor of A, then F2 is a Jordan arc and 1 ≤ dimHF2 ≤ s, where s is the unique
solution of the equation (a2 + b2)s/2 + ((1− a)2 + b2)s/2 = 1.

Proof. It is clear that A1(p0) = p0, A2(p2) = p2 and A1(p2) = A2(p0) = p1. If

Fig. 2. The attractor F2 for p1 = (0.5, 0.47), m = n = 1.7, r = l = 1.2
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p, q ∈ R2 are any points, then we get
(4) |A1(p)−A1(q)| ≤ c1|p− q|, |A2(p)−A2(q)| ≤ c2|p− q|,
where 0 < c1 =

√
a2 + b2 < 1 and 0 < c2 =

√
(1− a)2 + b2 < 1. Thus, A1 and A2

are contracting affine transformations of R2. Consequently, A = {A1, A2} is a self-affine
zipper with base points p0, p1, p2 and dimHF2 ≥ 1. From (4) we have that A1 and A2 are
Lipshitz transformations with Lipshitz constants c1 =

√
a2 + b2 and c2 =

√
(1− a)2 + b2.

Applying Proposition 9.6 ([4], p. 135), we obtain that dimHF2 ≤ s, where cs
1 + cs

2 = 1.

F2 is a Jordan arc with endpoints p0 and p2 if Card(A1(F2)∩A2(F2)) = 1. We find that
A1(p1) = (a2 + b2/m, ab(1− 1/n)) and A2(p1) = ((1− a)a− b2/r + a, (1− a)b(1− 1/l)).
The inequalities 0 < ab(1 − 1/n) < b and 0 < (1 − a)b(1 − 1/l) < b imply that the
points A1(p1) and A2(p1) are inner points in the triangle 4p0p1p2. Since a2 + b2 < a,
a2 + b2/m < a2 + b2 < a and (1− a)a− b2/r + a > a. So that, the triangles 4p0p1A1(p1)
and 4p1p2A2(p1) have not overlaps. Continuing in this way we get that the fractal F2

has no overlaps. This means that Card(A1(F2) ∩A2(F2)) = 1. ¤
The attractor F2 is plotted in Figure 2.
3. Total disconnected affine set as an attractor of IFS. Let A = {A1, A2}

be an iterated function system of two contracting affine transformations of R2. If F =
A1(F ) ∪ A2(F ) is the invariant set of A and A1(F ) ∩ A2(F ) = ∅, then F is totally
disconnected.

In this section we find an explicit formula for the Hausdorff dimension of the totally
disconnected fractal F which is obtained by a fixed triangle 4p0p1p. Recently, Kenneth
Falconer and Jun Miao [5] gave an explicit formula for the Hausdorff dimension of the
attractor F of the IFS Ai = Ti + vi, i = 1, 2, . . . , N , and of affine contractions where
Ti are upper triangular matrices and ‖Ti‖ < 1/2 for all i = 1, . . . , N. In this case the
Hausdorff dimension of F is expressed by the diagonal entries of the Ti.

Let p0 = (0, 0), p1 = (1, 0) and p = (a, b) be the vertices of the positively-oriented
obtuse triangle 4p0p1p with an obtuse angle <) p1p p0. This means that 0 < a < 1,
0 < b < 1/2 and a2 + b2 < a . Let p2 ∈ [p0, p] and p3 ∈ [p1, p] be interior points on the
sides of the triangle, i. e. 0 < k = |p0 − p2| < |p0 − p| and 0 < l = |p1 − p3| < |p1 − p|.
We consider the affine mappings A1 and A2 given by

A1

(
x
y

)
=




ak

λ

bk

λ
bk

λ

ak

λ




(
x
y

)
,

(5)

A2

(
x
y

)
=




(1− a)l
µ

−bl

µ
−b.l

µ

(1− a)l
µ




(
x
y

)
+




1− (1− a)l
µ
bl

µ


 ,

where λ = |p0 − p| =
√

a2 + b2, µ = |p1 − p| =
√

(1− a)2 + b2. Both A1 and A2 are
contractive and A1(p0) = p0, A1(p1) = p2, A2(p1) = p1, A2(p0) = p3.

Proposition 3. Let Ai, i = 1, 2 be the affine mappings defined by (5) and F be the

attractor of the IFS A = {A1, A2}. If k

λ
≤ 1/2 and

l

µ
≤ 1/2, then dimHF = max{s1, s2},
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where
|(a− b)k/λ|s1 + |(1− a + b)l/µ|s1 = 1

and
|(a + b)k/λ|s2 + |(1− a− b)l/µ|s2 = 1.

Proof. Using the rotations Rπ/4 and R−π/4, we get A′1 = Rπ/4 ◦A1 ◦R−π/4 and A′2 =
Rπ/4◦A2◦R−π/4, where the linear part of A′1 and A′2 are represented by the matrices T ′1 =(

(a− b)k/λ 0
0 (a + b)k/λ

)
and T ′2 =

(
(1− a + b).l/µ 0

0 (1− a− b).l/µ

)
, respecti-

vely. If F ′ is the attractor of the IFS {A′1, A′2}, then dimHF = dimHF ′. Hence, the
statement follows immediately from Corollary 3.2 in [5].

Example 1. Let us consider a concrete case of such attractor F . Suppose that
p = (0.45, 0.4), k = 0.3, l = 0.2. Solving the equations 0.0249136s1 + 0.279382s1 = 1
and 0.0441129s2 + 0.423532s2 = 1 we find s1 = 0.305999 and s2 = 0.397442. Hence,
dimHF = 0.397442.
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НЯКОИ АВТО-АФИННИ МНОЖЕСТВА В ЕВКЛИДОВАТА
РАВНИНА И ТЕХНИТЕ ФРАКТАЛНИ РАЗМЕРНОСТИ

Радостина Петрова Енчева, Георги Христов Георгиев

Разглеждаме клетъчната и Хаусдорфовата размерности на два вида авто-афинни
множества. Първият вид е класът на авто-афинните криви, генерирани от афин-
ни зипери. Вторият вид е тотално несвързан фрактал, получен чрез два свиващи
афинитета. Тези афинитети са породени от произволен тъпоъгълен триъгълник.
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