SOME SELF-AFFINE SETS IN THE EUCLIDEAN PLANE AND THEIR FRACTAL DIMENSIONS*

Radostina P. Encheva, Georgi H. Georgiev

We discuss the box and the Hausdorff dimensions of two types of self-affine sets in the Euclidean plane. The first type is the class of self-affine curves generated by self-affine zippers. The second one is a total disconnected fractal obtained by two contracting affinities. These affinities are related to every obtuse triangle.

1. Introduction. An affine transformation of the Euclidean plane \mathbb{R}^{2} is a bijective mapping $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which preserves the set of all lines in \mathbb{R}^{2} and the affine ratio of every three collinear points. All affine transformation of \mathbb{R}^{2} form a group with respect to a composition of mappings. An affine transformation $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a contraction if $\left|A\left(z_{1}\right)-A\left(z_{2}\right)\right| \leq\left|z_{1}-z_{2}\right|$ for any $z_{1}, z_{2} \in \mathbb{R}^{2}$ and there exist $z_{1}^{0}, z_{2}^{0} \in \mathbb{R}^{2}$ for which $\left|A\left(z_{1}^{0}\right)-A\left(z_{2}^{0}\right)\right|<\left|z_{1}^{0}-z_{2}^{0}\right|$. Every such transformation is called a contracting affine transformation or, shortly, a contracting affinity. A product of a contracting affinity and an Euclidean motion is also a contracting affinity. A scaling transformation of \mathbb{R}^{2} is an affine transformation given by the equalities

$$
\begin{equation*}
x^{\prime}=a x, \quad y^{\prime}=b y \tag{1}
\end{equation*}
$$

where a and b are nonzero real constants. The scaling transformation defined by (1) is a contracting if and only if $0<a^{2} \leq 1,0<b^{2} \leq 1$ and $a^{2}+b^{2}<2$. In this paper we consider contracting affinities as compositions of contracting scaling transformations, rotations and translations. A finite family of contracting affinities of $\mathbb{R}^{2}\left\{A_{1}, \ldots, A_{m}\right\}$ with $m \geq 2$ is a particular case of an iterated function system or, shortly, IFS. For such IFS, there is an invariant set F (or an attractor F) with the properties: $F \subset \mathbb{R}^{2}$ is a non-empty compact subset, and $F=\bigcup_{i=1}^{m} A_{i}(F)$. The attractor F is called a self-affine set when all A_{i} are contracting affinities.

In the next section we study the box dimension and the Hausdorff dimension of some self-affine curves which are generated by special iterated function systems called selfaffine zippers. In Section 3, we calculate the Hausdorff dimension of a total disconnected fractal. This fractal is an attractor of IFS defined by two contracting affinities. Every obtuse triangle determines such pair of contracting affinities.

[^0]2. Box and Hausdorff dimension of some self-affine zippers in \mathbb{R}^{2}. Let $\mathcal{A}=$ $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ be a finite set of contracting affine mappings of \mathbb{R}^{2} into itself. If there are $m+1$ different points in $\mathbb{R}^{2} p_{0}, p_{1}, \ldots, p_{m}$ such that $A_{i}\left(p_{0}\right)=p_{i-1}$ and $A_{i}\left(p_{m}\right)=p_{i}$ for $i=1,2, \ldots, m$, then the iterated function system \mathcal{A} is called a self-affine zipper with signature $(0,0, \ldots, 0)$. The points $p_{0}, p_{1}, \ldots, p_{m}$ are base points of \mathcal{A}. In $[1,2,3]$ many properties of the self-similar zippers are proved. From Theorem 1.2 in [1] it follows that the attractor F of the iterated function system (IFS) \mathcal{A} is a Jordan arc with endpoints p_{0} and p_{m} if and only if $A_{i}(F) \cap A_{j}(F)=\emptyset$ for $|i-j|>1$ and $\operatorname{Card}\left(A_{i}(F) \cap A_{j}(F)\right)=1$ for $|i-j|=1$.

In this section we deal with Hausdorff and Box dimension of the set $F=\bigcup_{i=1}^{m} A_{i}(F)$ which is, in general, a fractal.

Theorem 1. Let $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ be a self-affine zipper in \mathbb{R}^{2}. If the linear part of A_{i} is represented by the matrix $T_{i}=\left(\begin{array}{cc}a_{i} & 0 \\ 0 & c_{i}\end{array}\right)$, where $0<c_{i}<1$ for $i=1,2, \ldots$, m, $\sum_{i=1}^{m} a_{i}=1$ and F is the attractor of \mathcal{A}, then

$$
\operatorname{dim}_{B} F=1+\frac{\log \left(c_{1}+\cdots+c_{m}\right)}{\log m}
$$

Proof. According to Lemma 1.1 in [1], there exists a continuous mapping $\gamma:[0,1] \rightarrow$ F with the following property: for a certain real function $f:[0,1] \rightarrow \mathbb{R}$ it is fulfilled

$$
F=\operatorname{graph} f=(x, f(x))=\gamma(x) .
$$

We denote by $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in\{1,2, \ldots, m\}^{k}$ for $k \geq 1$, a k-term sequence with $1 \leq i_{j} \leq m$. The part of F over the interval $I_{\mathbf{i}}$ of the x-axis is the affine image
$A_{i_{1}} \circ A_{i_{2}} \circ \cdots \circ A_{i_{k}}(F)$. We have that $T_{i_{1}} \circ T_{i_{2}} \circ \ldots \circ T_{i_{k}}=\left(\begin{array}{cc}a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}} & 0 \\ 0 & c_{i_{1}} c_{i_{2}} \ldots c_{i_{k}}\end{array}\right)$.
Hence, $T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ T_{i_{k}}(F)$ is contained in a rectangle of height $h c_{i_{1}} c_{i_{2}} \ldots c_{i_{k}}$, where h is the height of F. Since $A_{i_{1}} \circ A_{i_{2}} \circ \cdots \circ A_{i_{k}}(F)$ is an image of $T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ T_{i_{k}}(F)$ under a translation, the height of $A_{i_{1}} \circ A_{i_{2}} \circ \cdots \circ A_{i_{k}}(F)$ is the same. If q_{1}, q_{2}, q_{3} are three non-collinear points chosen from $p_{0}, p_{1}, \ldots, p_{m}$, then $T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ T_{i_{k}}(F)$ contains the points $T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ T_{i_{k}}\left(q_{j}\right), j=1,2,3$. So that, the height of the obtained triangle is at least $d c_{i_{1}} c_{i_{2}} \ldots c_{i_{k}}$, where d is the vertical distance from q_{2} to the segment $\left[q_{1}, q_{3}\right]$. We denote by $R_{f}\left[I_{\mathbf{i}}\right]=\sup _{x_{1}, x_{2} \in I \mathbf{i}}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|$ the range of the function f over $I_{\mathbf{i}}$. Thus,

$$
d c_{i_{1}} c_{i_{2}} \ldots c_{i_{k}} \leq R_{f}\left[I_{\mathbf{i}}\right] \leq h c_{i_{1}} c_{i_{2}} \ldots c_{i_{k}}
$$

Summing over all m^{k} intervals $I_{\mathbf{i}}$ for fixed $k \geq 1$ we get

$$
\begin{equation*}
d\left(c_{1}+c_{2}+\cdots+c_{m}\right)^{k} \leq \sum_{\mathbf{i} \in\{1, \cdots, m\}^{k}} R_{f}\left[I_{\mathbf{i}}\right] \leq h\left(c_{1}+c_{2}+\cdots+c_{m}\right)^{k} \tag{2}
\end{equation*}
$$

From Proposition 11.1 ([4], p. 161) it follows that

$$
m^{k} \sum_{\mathbf{i} \in\{1, \ldots, m\}^{k}} R_{f}\left[I_{\mathbf{i}}\right] \leq N_{m^{-k}} \leq 2 m^{k}+m^{k} \sum_{\mathbf{i} \in\{1, \ldots, m\}^{k}} R_{f}\left[I_{\mathbf{i}}\right],
$$

where N_{δ} is the number of squares of the δ-mesh that intersect $F=\operatorname{graph} f$. Using (2), 168
we obtain

$$
m^{k} d\left(c_{1}+c_{2}+\cdots+c_{m}\right)^{k} \leq N_{m^{-k}} \leq 2 m^{k}+m^{k} h\left(c_{1}+c_{2}+\cdots+c_{m}\right)^{k}
$$

Now, applying the equivalent definition (see [4], p.43) of the box dimension, we can conclude that

$$
\operatorname{dim}_{B} F=\lim _{k \rightarrow \infty} \frac{\log N_{m^{-k}}}{k \log m}=1+\frac{\log \left(c_{1}+\cdots+c_{m}\right)}{\log m}
$$

Theorem 2. Let $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ be a self-affine zipper in \mathbb{R}^{2}. If the linear part of A_{i} is represented by the matrix $T_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ b_{i} & a_{i}\end{array}\right)$ for $i=1,2, \ldots$, m, where $\sum_{i=1}^{m} a_{i}=1, \sum_{i=1}^{m} b_{i}=0$ and F is the attractor of \mathcal{A}, then $\operatorname{dim}_{\mathcal{H}} F=1$.

Proof. We have that $F=\operatorname{graph} f=\{(x, f(x))=\gamma(x), f:[0,1] \rightarrow \mathbb{R}\}$. If proj F is the orthogonal projection of F over the segment $[0,1]$, then $\operatorname{dim}_{\mathcal{H}} F \geq \operatorname{dim}_{\mathcal{H}} \operatorname{proj} F=$ $\operatorname{dim}_{\mathcal{H}}[0,1]=1$. Let R^{φ} be a rotation of angle φ around the origin. We obtain that $T_{i}=R^{-\pi / 4} \circ T_{i}^{\prime} \circ R^{\pi / 4}$, where $T_{i}^{\prime}=\left(\begin{array}{cc}a_{i}-b_{i} & 0 \\ 0 & a_{i}+b_{i}\end{array}\right)$. Since the Hausdorff dimension is an invariant under a rotation, $\operatorname{dim}_{\mathcal{H}} F=\operatorname{dim}_{\mathcal{H}} F^{\prime}$, where F^{\prime} is the attractor of the iterated function system $\left\{A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{m}^{\prime}\right\}$ with $A_{i}^{\prime}=R^{\pi / 4} \circ A_{i} \circ R^{-\pi / 4}, i=1,2, \ldots, m$. Applying Theorem 1, we get $\operatorname{dim}_{\mathcal{H}} F=\operatorname{dim}_{\mathcal{H}} F^{\prime} \leq \operatorname{dim}_{B} F^{\prime}=1+s \frac{s \log \sum_{i=1}^{m}\left(a_{i}+b_{i}\right)}{\log m}=1$ and this completes the proof.

Proposition 1. Let $\triangle p_{0} p_{3} p$ be an obtuse triangle in \mathbb{R}^{2} with an obtuse angle $\Varangle p_{0} p p_{3}$ and let $p_{1} \in\left[p_{0}, p\right], p_{2} \in\left[p_{3}, p\right]$ be interior points on the sides of the triangle. There exists a self-affine zipper with base points $p_{0}, p_{1}, p_{2}, p_{3}$ and an attractor F_{1}, such that $\operatorname{dim}_{\mathcal{H}} F_{1}=1$.

Proof. First, we consider the case when $\triangle p_{0} p_{3} p$ is an isosceles triangle. Since the Hausdorff dimension is invariant under a similarity, we may put $p_{0}=(0,0)$ and $p_{3}=$ $(1,0)$. Then, $p=(1 / 2, a), 0<a<1 / 2$. We construct the mappings

$$
\begin{gathered}
A_{1}\binom{x}{y}=\left(\begin{array}{cc}
\frac{k}{2 \lambda} & \frac{k a}{\lambda} \\
\frac{k a}{\lambda} & \frac{k}{2 \lambda}
\end{array}\right)\binom{x}{y}, \\
A_{2}\binom{x}{y}=\left(\begin{array}{cc}
1-\frac{l}{2 \lambda}-\frac{k}{2 \lambda} & \frac{l-k}{\lambda} a \\
\frac{l-k}{\lambda} a & 1-\frac{l}{2 \lambda}-\frac{k}{2 \lambda}
\end{array}\right)\binom{x}{y}+\binom{\frac{k}{2 \lambda}}{\frac{k}{\lambda} a}, \\
A_{3}\binom{x}{y}=\left(\begin{array}{cc}
\frac{l}{2 \lambda} & -\frac{l}{\lambda} a \\
-\frac{l}{\lambda} a & \frac{l}{2 \lambda}
\end{array}\right)\binom{x}{y}+\binom{1-\frac{l}{2 \lambda}}{\frac{l}{\lambda} a},
\end{gathered}
$$

where $\lambda=\left|p_{0}-p\right|=\sqrt{1 / 4+a^{2}}, k=\left|p_{0}-p_{1}\right|, l=\left|p_{3}-p_{2}\right|$. Since A_{i} are contracting affine transformations of $\mathbb{R}^{2}, A_{i}\left(p_{0}\right)=p_{i-1}$ and $A_{i}\left(p_{3}\right)=p_{i}$ for $i=1,2,3$, the set $\mathcal{A}=\left\{A_{1}, A_{2}, A_{3}\right\}$ is a self-affine zipper with base points $p_{0}, p_{1}, p_{2}, p_{3}$. The linear part

Fig. 1. The attractor F_{1} for $p=(0.5,0.2), k=l=0.3$
of A_{i} is represented by the matrix in the form of $T_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ b_{i} & a_{i}\end{array}\right)$ for $i=1,2,3$. As $a_{1}+a_{2}+a_{3}=\frac{k}{2 \lambda}+\left(1-\frac{l}{2 \lambda}-\frac{k}{2 \lambda}\right)+\frac{l}{2 \lambda}=1$ and $b_{1}+b_{2}+b_{3}=\frac{k}{\lambda} a+\frac{l-k}{\lambda} a-\frac{l}{\lambda} a=0$, from Theorem 2 it follows that $\operatorname{dim}_{\mathcal{H}} F_{1}=1$, where $F_{1}=\bigcup_{i=1}^{3} A_{i}\left(F_{1}\right)$.

If the triangle $\triangle p_{0} p_{3} p$ is not isosceles, then there exists a contracting affinity g of \mathbb{R}^{2}, such that $g\left(p_{0}, p_{3}, p^{\prime}\right)=p_{0}, p_{3}, p$, where $\triangle p_{0} p_{3} p^{\prime}$ is an isosceles obtuse triangle with obtuse angle $\Varangle p_{0} p p_{3}^{\prime}$. Thus, g is a Lipshitz transformation, i.e. $|g(p)-g(q)| \leq|p-q|$. Using Corollary 2.4 [4] we get $1 \leq \operatorname{dim}_{\mathcal{H}} F_{1} \leq \operatorname{dim}_{\mathcal{H}} g^{-1}\left(F_{1}\right)=1$.

The attractor F_{1} is plotted in Figure 1 under the conditions $p=(0.5,0.2), k=l=0.3$.
Let $p_{0}=(0,0), p_{1}=(a, b), p_{2}=(1,0)$ be points in the Euclidean plane. Suppose that $a^{2}+b^{2}<a$. From here $0<a<1$ and $|b|<1 / 2$. Then, we consider the affine mappings of \mathbb{R}^{2} defined by

$$
A_{1}\binom{x}{y}=\left(\begin{array}{cc}
a & b / m \\
b & -a / n
\end{array}\right)\binom{x}{y}
$$

$$
A_{2}\binom{x}{y}=\left(\begin{array}{cc}
1-a & -b / r \tag{3}\\
-b & -(1-a) / l
\end{array}\right)\binom{x}{y}+\binom{a}{b},
$$

where $m \geq n>1, r \geq l>1$ are real numbers.
Proposition 2. The set $\mathcal{A}=\left\{A_{1}, A_{2}\right\}$, where $A_{i}, i=1,2$ are affine mappings of \mathbb{R}^{2} defined by (3), is a self-affine zipper with base points p_{0}, p_{1}, p_{2}. If $F_{2}=A_{1}\left(F_{2}\right) \cup A_{2}\left(F_{2}\right)$ is the attractor of \mathcal{A}, then F_{2} is a Jordan arc and $1 \leq \operatorname{dim}_{\mathcal{H}} F_{2} \leq s$, where s is the unique solution of the equation $\left(a^{2}+b^{2}\right)^{s / 2}+\left((1-a)^{2}+b^{2}\right)^{s / 2}=1$.

Proof. It is clear that $A_{1}\left(p_{0}\right)=p_{0}, A_{2}\left(p_{2}\right)=p_{2}$ and $A_{1}\left(p_{2}\right)=A_{2}\left(p_{0}\right)=p_{1}$. If

Fig. 2. The attractor F_{2} for $p_{1}=(0.5,0.47), m=n=1.7, r=l=1.2$
$p, q \in \mathbb{R}^{2}$ are any points, then we get

$$
\begin{equation*}
\left|A_{1}(p)-A_{1}(q)\right| \leq c_{1}|p-q|,\left|A_{2}(p)-A_{2}(q)\right| \leq c_{2}|p-q| \tag{4}
\end{equation*}
$$

where $0<c_{1}=\sqrt{a^{2}+b^{2}}<1$ and $0<c_{2}=\sqrt{(1-a)^{2}+b^{2}}<1$. Thus, A_{1} and A_{2} are contracting affine transformations of \mathbb{R}^{2}. Consequently, $\mathcal{A}=\left\{A_{1}, A_{2}\right\}$ is a self-affine zipper with base points p_{0}, p_{1}, p_{2} and $\operatorname{dim}_{\mathcal{H}} F_{2} \geq 1$. From (4) we have that A_{1} and A_{2} are Lipshitz transformations with Lipshitz constants $c_{1}=\sqrt{a^{2}+b^{2}}$ and $c_{2}=\sqrt{(1-a)^{2}+b^{2}}$. Applying Proposition 9.6 ([4], p. 135), we obtain that $\operatorname{dim}_{\mathcal{H}} F_{2} \leq s$, where $c_{1}^{s}+c_{2}^{s}=1$.
F_{2} is a Jordan arc with endpoints p_{0} and p_{2} if $\operatorname{Card}\left(A_{1}\left(F_{2}\right) \cap A_{2}\left(F_{2}\right)\right)=1$. We find that $A_{1}\left(p_{1}\right)=\left(a^{2}+b^{2} / m, a b(1-1 / n)\right)$ and $A_{2}\left(p_{1}\right)=\left((1-a) a-b^{2} / r+a,(1-a) b(1-1 / l)\right)$. The inequalities $0<a b(1-1 / n)<b$ and $0<(1-a) b(1-1 / l)<b$ imply that the points $A_{1}\left(p_{1}\right)$ and $A_{2}\left(p_{1}\right)$ are inner points in the triangle $\triangle p_{0} p_{1} p_{2}$. Since $a^{2}+b^{2}<a$, $a^{2}+b^{2} / m<a^{2}+b^{2}<a$ and $(1-a) a-b^{2} / r+a>a$. So that, the triangles $\triangle p_{0} p_{1} A_{1}\left(p_{1}\right)$ and $\triangle p_{1} p_{2} A_{2}\left(p_{1}\right)$ have not overlaps. Continuing in this way we get that the fractal F_{2} has no overlaps. This means that $\operatorname{Card}\left(A_{1}\left(F_{2}\right) \cap A_{2}\left(F_{2}\right)\right)=1$.

The attractor F_{2} is plotted in Figure 2.
3. Total disconnected affine set as an attractor of IFS. Let $\mathcal{A}=\left\{A_{1}, A_{2}\right\}$ be an iterated function system of two contracting affine transformations of \mathbb{R}^{2}. If $F=$ $A_{1}(F) \cup A_{2}(F)$ is the invariant set of \mathcal{A} and $A_{1}(F) \cap A_{2}(F)=\emptyset$, then F is totally disconnected.

In this section we find an explicit formula for the Hausdorff dimension of the totally disconnected fractal F which is obtained by a fixed triangle $\triangle p_{0} p_{1} p$. Recently, Kenneth Falconer and Jun Miao [5] gave an explicit formula for the Hausdorff dimension of the attractor F of the IFS $A_{i}=T_{i}+v_{i}, i=1,2, \ldots, N$, and of affine contractions where T_{i} are upper triangular matrices and $\left\|T_{i}\right\|<1 / 2$ for all $i=1, \ldots, N$. In this case the Hausdorff dimension of F is expressed by the diagonal entries of the T_{i}.

Let $p_{0}=(0,0), p_{1}=(1,0)$ and $p=(a, b)$ be the vertices of the positively-oriented obtuse triangle $\triangle p_{0} p_{1} p$ with an obtuse angle $\Varangle p_{1} p p_{0}$. This means that $0<a<1$, $0<b<1 / 2$ and $a^{2}+b^{2}<a$. Let $p_{2} \in\left[p_{0}, p\right]$ and $p_{3} \in\left[p_{1}, p\right]$ be interior points on the sides of the triangle, i. e. $0<k=\left|p_{0}-p_{2}\right|<\left|p_{0}-p\right|$ and $0<l=\left|p_{1}-p_{3}\right|<\left|p_{1}-p\right|$. We consider the affine mappings A_{1} and A_{2} given by

$$
A_{1}\binom{x}{y}=\left(\begin{array}{cc}
\frac{a k}{\lambda} & \frac{b k}{\lambda} \\
\frac{b k}{\lambda} & \frac{a k}{\lambda}
\end{array}\right)\binom{x}{y}
$$

$$
A_{2}\binom{x}{y}=\left(\begin{array}{cc}
\frac{(1-a) l}{\mu} & \frac{-b l}{\mu} \tag{5}\\
\frac{-b . l}{\mu} & \frac{(1-a) l}{\mu}
\end{array}\right)\binom{x}{y}+\binom{\frac{1-(1-a) l}{\mu}}{\frac{b l}{\mu}}
$$

where $\lambda=\left|p_{0}-p\right|=\sqrt{a^{2}+b^{2}}, \mu=\left|p_{1}-p\right|=\sqrt{(1-a)^{2}+b^{2}}$. Both A_{1} and A_{2} are contractive and $A_{1}\left(p_{0}\right)=p_{0}, A_{1}\left(p_{1}\right)=p_{2}, A_{2}\left(p_{1}\right)=p_{1}, A_{2}\left(p_{0}\right)=p_{3}$.

Proposition 3. Let $A_{i}, i=1,2$ be the affine mappings defined by (5) and F be the attractor of the IFS $\mathcal{A}=\left\{A_{1}, A_{2}\right\}$. If $\frac{k}{\lambda} \leq 1 / 2$ and $\frac{l}{\mu} \leq 1 / 2$, then $\operatorname{dim}_{\mathcal{H}} F=\max \left\{s_{1}, s_{2}\right\}$,
where

$$
|(a-b) k / \lambda|^{s_{1}}+|(1-a+b) l / \mu|^{s_{1}}=1
$$

and

$$
|(a+b) k / \lambda|^{s_{2}}+|(1-a-b) l / \mu|^{s_{2}}=1 .
$$

Proof. Using the rotations $R^{\pi / 4}$ and $R^{-\pi / 4}$, we get $A_{1}^{\prime}=R^{\pi / 4} \circ A_{1} \circ R^{-\pi / 4}$ and $A_{2}^{\prime}=$ $R^{\pi / 4} \circ A_{2} \circ R^{-\pi / 4}$, where the linear part of A_{1}^{\prime} and A_{2}^{\prime} are represented by the matrices $T_{1}^{\prime}=$ $\left(\begin{array}{cc}(a-b) k / \lambda & 0 \\ 0 & (a+b) k / \lambda\end{array}\right)$ and $T_{2}^{\prime}=\left(\begin{array}{cc}(1-a+b) . l / \mu & 0 \\ 0 & (1-a-b) . l / \mu\end{array}\right)$, respectively. If F^{\prime} is the attractor of the $\operatorname{IFS}\left\{A_{1}^{\prime}, A_{2}^{\prime}\right\}$, then $\operatorname{dim}_{\mathcal{H}} F=\operatorname{dim}_{\mathcal{H}} F^{\prime}$. Hence, the statement follows immediately from Corollary 3.2 in [5].

Example 1. Let us consider a concrete case of such attractor F. Suppose that $p=(0.45,0.4), k=0.3, l=0.2$. Solving the equations $0.0249136^{s_{1}}+0.279382^{s_{1}}=1$ and $0.0441129^{s_{2}}+0.423532^{s_{2}}=1$ we find $s_{1}=0.305999$ and $s_{2}=0.397442$. Hence, $\operatorname{dim}_{\mathcal{H}} F=0.397442$.

REFERENCES

[1] V. V. Aseev, A. V. Tetenov, A. S. Kravchenko. On self-similar jordan curves on the plane, Siberian Math. J., 44, No 3 (2003), 379-386.
[2] V. V. Aseev, A. V. Tetenov. On the self-similar jordan arcs admitting structure parametrization, Siberian Math. J., 46, No 4 (2005), 581-592.
[3] R. Encheva, G. Georgiev. Some self-similar sets defined by a pair of plane contracting similarities, Math. and Education in Math., 35 (2006), 159-163.
[4] K. J. Falconer. Fractal geometry: mathematical foundations and applications, J. Wiley \& Sons, Chichester, 2003.
[5] K. J. Falconer, J. Miao. Dimensions of self-affine fractals and multifractals generated by upper-triangular matrices, Mathematical Institute, University of St. Andrews, Nort Haugh, St Andrews, Scotland (preprint).

Radostina P. Encheva, Georgi H. Georgiev
Faculty of Mathematics and Informatics
Shumen University
Universitetska Str., No. 115
9712 Shumen, Bulgaria
e-mail: r.encheva@fmi.shu-bg.net
g.georgiev@fmi.shu-bg.net

НЯКОИ АВТО-АФИННИ МНОЖЕСТВА В ЕВКЛИДОВАТА РАВНИНА И ТЕХНИТЕ ФРАКТАЛНИ РАЗМЕРНОСТИ

Радостина Петрова Енчева, Георги Христов Георгиев

Разглеждаме клетъчната и Хаусдорфовата размерности на два вида авто-афинни множества. Първият вид е класът на авто-афинните криви, генерирани от афинни зипери. Вторият вид е тотално несвързан фрактал, получен чрез два свиващи афинитета. Тези афинитети са породени от произволен тъпоъгълен триъгълник.

[^0]: *The research is partially supported by Shumen University under grant 15/150306.
 2000 Mathematics Subject Classification: 28A80, 51M15, 51M05
 Key words: contracting affinities, iterated function system

